SOL Broadening by Edge Turbulence: Experiment and Theory

P.H. Diamond

Newton Institute, Cambridge and

Depts. Astronomy & Astrophysics and Physics, UC San Diego

Tokamak Energy 4/29/2024

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Collaborators

- Theory: Xu Chu, Mingyun Cao, Z.B. Guo, Zeyu Li; (UCSD, PPPL, PKU, GA)
- Computation: Nami Li, X.-Q. Xu; (LLNL)
- Experiment: Ting Long, Ting Wu (SWIP), Filipp Khabanov, Rongjie Hong, G. Mckee,
 Zheng Yan, G. Yu, G. Tynan (DIII-D → Frontiers Exp.), Xi Chen (GA)

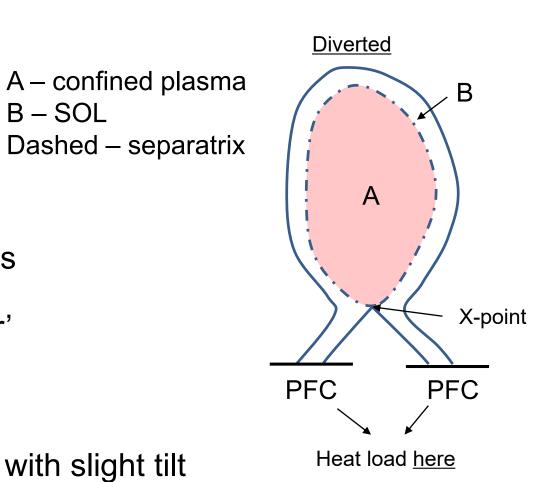
Outline

- Brief Primer on the Edge and SOL
- SOL Width Problem and the Physics of the Plasma Boundary Layer
- Some Data: Turbulence Production Ratio and its Implications
- Some Theory: Calculating the Scale of the Spreading-Driven SOL
- Some Computation: A Closer Look at Turbulence Spreading
- Open Issues and Future Plans

Primer (Brief)

All confinement devices have an <u>edge</u> and SOL (scrape-off layer)

B-SOL


Fueling at Edge

Define:

Confined plasma boundary

- Connection to plasma facing components
- SOL as confined plasma 'boundary layer'

NB: Magnetic field lines are perp to plane, with slight tilt

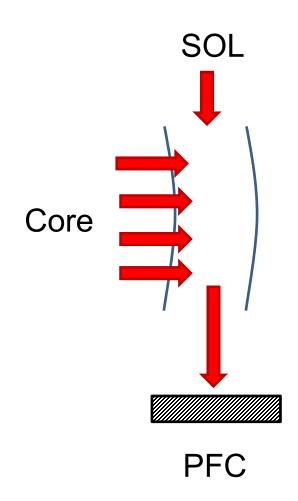
Primer, cont'd

• SOL: $\nabla \cdot \vec{\Gamma} = \nabla \cdot \vec{Q} = 0$ (open lines)

$$\Gamma_{\perp} \approx -D\partial_r n$$
 (?) $\nabla_{\perp} \sim \partial_r \sim 1/\lambda_{\perp}$

$$\nabla_{\perp} \sim \partial_r \sim 1/\lambda_{\perp}$$

$$\Gamma_{\parallel} \approx \alpha c_s n$$

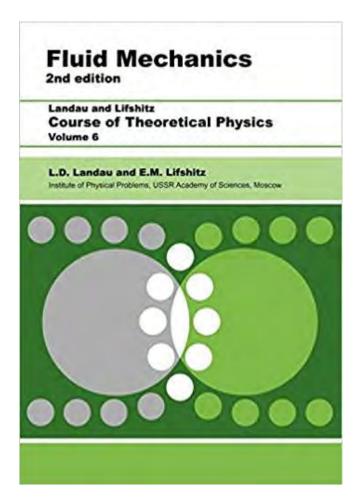

$$V_{\parallel} \sim 1/L_c \sim 1/Rq$$

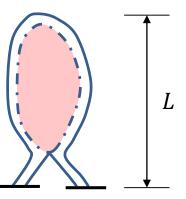
$$\rightarrow D \partial_r^2 n \sim \alpha n/L_c$$

$$\tau_{\parallel} \approx Rq/c_s$$

$$\lambda_{\perp} \sim (D\tau_{\parallel})^{1/2} \sim \text{crude SOL width}$$

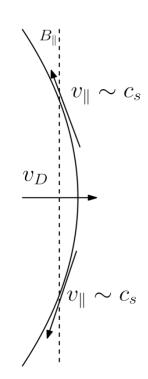
 $+ \rightarrow 1/\tau_{\parallel} \sim \chi_{\parallel}/L_c^2$ conduction, high density




Background

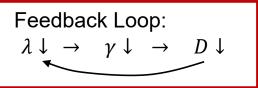
Conventional Wisdom of SOL:

(cf: Stangeby...)

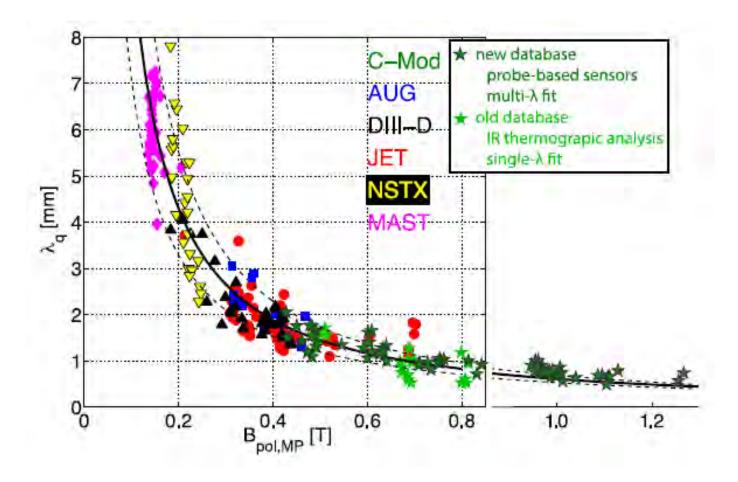

- Turbulent Boundary Layer, ala' Blasius, with D due turbulence
- $-\delta \sim (D\tau)^{1/2}$, $\tau \approx L_c/V_{th}$
- $-D \leftrightarrow local production by SOL instability process$
 - → familiar approach, D ala' QL, ...
- Features:
 - Open magnetic lines → dwell time τ limited by transit,
 conduction, ala' Blasius
 - Intermittency → "Blobs" etc. Observed. Physics?

Background, cont'd

- But... Heuristic Drift (HD) Model (Goldston +)
 - $\ V \sim V_{\rm curv} \ , \ \tau \sim L_c/V_{thi} \ , \ \lambda \sim \epsilon \ \rho_{\theta i}$ \rightarrow SOL width
 - Pathetically small
 - Pessimistic B_{θ} scaling, yet high I_p for confinement
 - Fits lots of data.... (Brunner '18, Silvagni '20)



Why does neoclassical work? → ExB shear suppresses SOL modes i.e.


$$\gamma_{\text{interchange}} \sim \frac{c_s}{(R_c \lambda)^{\frac{1}{2}}} = \frac{3T_{edge}}{|e| \lambda^2}$$

shearing $\leftarrow \rightarrow$ strong λ^{-2} scaling

from:
$$\frac{c_s}{(R_c\lambda)^{\frac{1}{2}}} - \langle V_E \rangle'$$

Background: HD Works in H-mode

HD is Bad News...

Background, cont'd

• THE Existential Problem... (Kikuchi, Sonoma TTF):

Confinement \rightarrow H-mode $\leftarrow \rightarrow$ ExB shear

Desire Power Handling \rightarrow broader heat load, etc $\rightarrow \underline{\text{Both}} \text{ to be good } !$

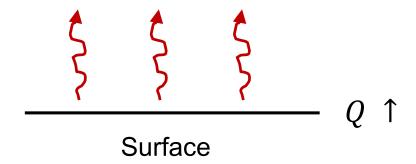
How reconcile? – Pay for power mgmt with confinement ?!

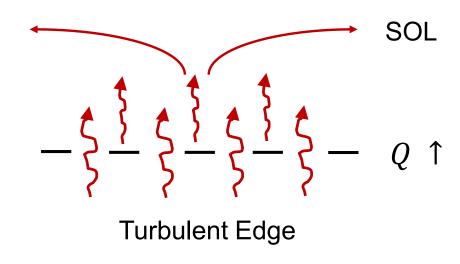
Spurred:

- Exploration of turbulent boundary states with improved confinement: Grassy ELM, WPQHM,
 I-mode, Neg. D ... N.B. What of ITB + L-mode edge?
- SOL width now key part of the story
- Simulations, Visualizations (XGC, BOUT...) ~ "Go" to ITER and all be well
- But... What's the Physics ?? How is the SOL broadened?

SOL Boundary Layer:

Turbulence Production Rate and

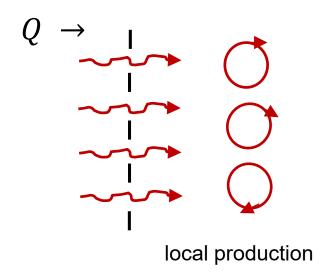

the Role of Spreading


SOL BL Problem

- Classic flux-driven BL problem
 - Heat flux at surface drives
 - Production = gQ $\tilde{V}_E \sim (gQz)^{1/3}$ etc
 - Plumes

Adapt to SOL?

- SOL
 - Open field lines
 - Turbulent energy flux and heat flux, etc drive
 - Turbulence spreading (Garbet, P.D., Hahm, …)
 - Includes 'blobs' c.f. Manz, 2015


SOL BL Problem

SOL Excitation

- Local production (SOL instabilities)
- Turbulence energy influx from pedestal

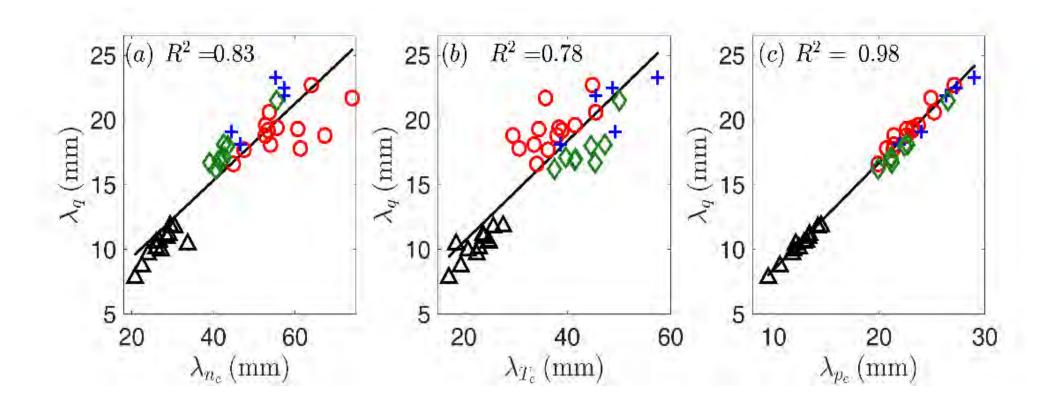
Key Questions:

- Local drive vs spreading ratio $\rightarrow Ra$
- Is the SOL usually dominated by turbulence spreading?
- How far can entrainment penetrate a stable SOL → SOL broadening?
- Effects ExB shear, role structures ?

Physics Issues – Part I

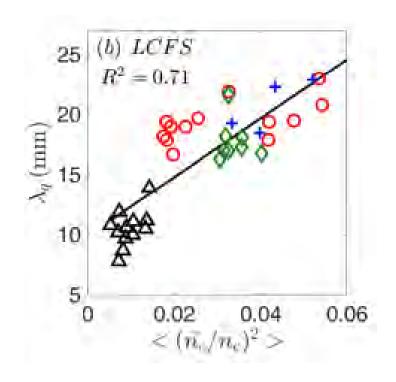
- Measure and Characterize Turbulence Energy Flux at LCFS
- Determine Relative Contributions of :
 - Influx/Spreading thru LCFS
 - SOL Production

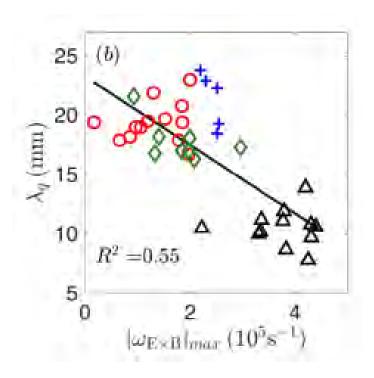
 $R_a \rightarrow Production Ratio$


- Trends in λ_a and R_a vs : ExB shear, 'Blob' Fraction...
- Question: To what extent is SOL turbulence usually spreading driven?
- → Phenomenology... (see Ting Wu +, NF 2023)

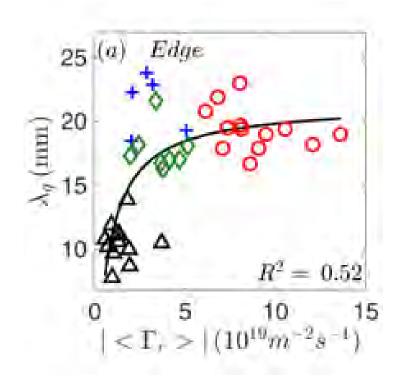
Experiments and Data Set

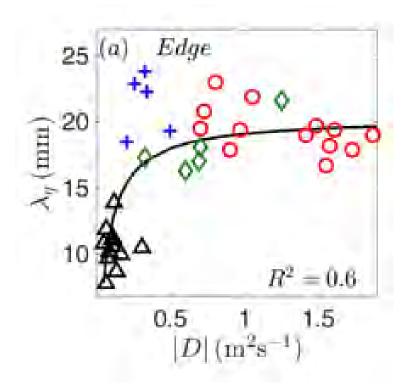
- HL-2A limited OH plasmas classic "boring plasmas"
- N.B.: $\lambda_q \rightarrow SOL$ width


- Reciprocating probe array ←→ Outboard mid-plane
- $q_{\parallel} = \gamma J_{sat} T_e$, $\gamma \equiv$ sheath transmission coefficient
- Database: 'Garden Variety OH' ~ 150 kA, 1.4T
- Similar, with $\lambda_q \gg \lambda_{HD}$, except: black triangles \triangle
 - $-\lambda_q > \lambda_{HD}$, not \gg
 - Significant GAM activity → stronger ExB shear

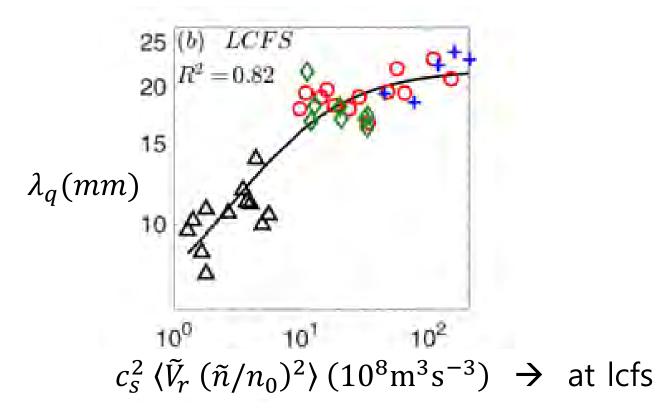

$$\lambda_{n_e} \sim \lambda_{T_e} \sim \lambda_{P_e}$$

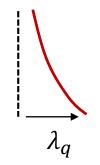
All SOL profiles scales comparable


λ_q Trends 1 – Fluctuation Levels and Shearing



- λ_q increases for increasing fluctuation intensity at <u>lcfs</u>
- λ_q decreases for increasing ExB shear at <u>lcfs</u>
- Max $\omega_{E\times B}$ at shear layer ~ lcfs


λ_q Trends 2 – Particle Flux and Diffusion


- λ_q increases for increasing <u>edge</u> Γ_n
- λ_q increases for increasing <u>edge</u> D
- ? Saturation might expect $\lambda \sim (D\tau)^{1/2}$ scaling ...

λ_q Trends 3 – Spreading!

- $\Gamma_{\varepsilon} = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \rightarrow \text{flux of turbulence internal energy thru lcfs}$
- Direct measurement of <u>local</u> spreading flux
- Consistent with expected trend of expanded SOL width due to increasing spreading across lcfs

SOL Fluctuation Energy – Production Ratio

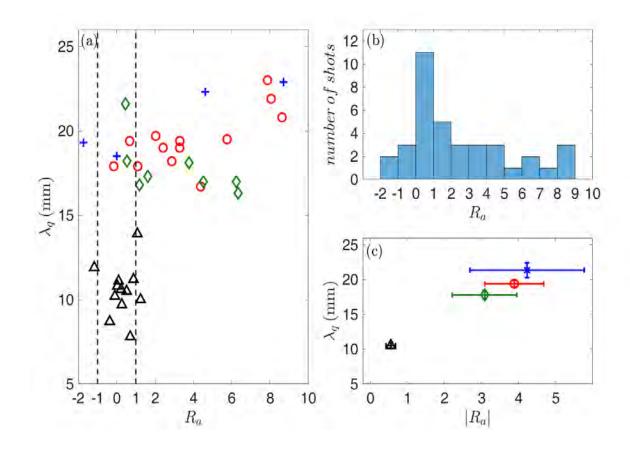
•
$$\partial_{t}(KE)_{SOL} = -\int_{0}^{\lambda} dr \, \nabla \cdot \Gamma_{E} + \int_{0}^{\lambda} dr \left[\frac{c_{S}^{2}}{R} \left\langle \frac{\tilde{V}_{r}\tilde{n}}{n_{0}} \right\rangle - \left\langle \tilde{V}_{r}\tilde{V}_{\perp} \right\rangle \frac{\partial}{\partial r} \left\langle V_{\perp} \right\rangle \right]$$

$$= -\Gamma_{E} |_{\lambda_{q}} + \Gamma_{E}|_{lcfs} + [SOL Integrated local production]$$

Fluctuation Energy Influx to SOL

• $\Gamma_E = \langle \tilde{V}_r \tilde{V}^2 \rangle \approx c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \rightarrow$ amenable to measurement Take: KE flux ~ Int. Energy Flux ($\sqrt{}$ for drift-interchange) this gives ...

Aside: On Calculating the Spreading...


- Why perturbed pressure balance?
 - Else, $\langle \vec{V}\cdot \nabla P\rangle$ and $\langle \rho \nabla\cdot \vec{V}\rangle$ enter energy balance. Acoustic energy propagation irrelevant on $\tau\gg au_{MS}$
 - Can eliminate via vorticity eqn, $\vec{V} = \vec{E} \times \vec{B}$ etc.
- Interchange drive: $\kappa P \rightarrow \kappa \langle \tilde{V}_r \tilde{P} \rangle \approx g c_s^2 \langle \tilde{V}_r \tilde{n} \rangle$
 - as cannot measure \tilde{P} fluctuations

How important is spreading?

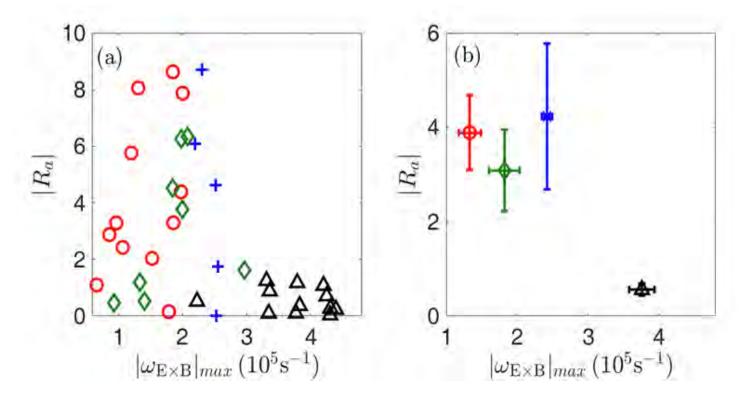
$$R_a = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \Big|_{\text{lcfs}} / \int_0^{\lambda} dr \frac{c_s^2}{R} \langle \tilde{V}_r \tilde{n}/n_0 \rangle$$

- Ratio of fluctuation energy influx from edge i.e. spreading drive to net production in SOL
- $-R_a < 1 \rightarrow SOL$ locally driven
- $-R_a \gg 1 \rightarrow SOL$ is spreading driven
- Quantitative measurement by Langmuir probes
- N.B. very simple; likely lower bound, as local production smaller

Production Ratio - Measurements

$$R_a = \frac{\text{Fluctuation Energy Influx}}{\text{SOL Local Production}}$$

Observe:

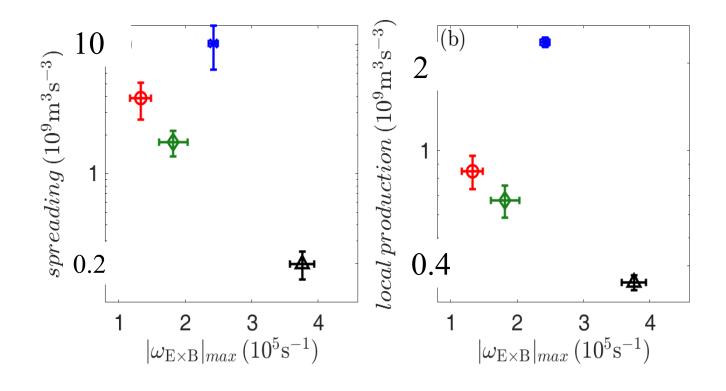

- $-\lambda_a$ increases with R_a
- Most cases $R_a > 1$
- Broad distribution R_a values
- Low R_a values ↔ strong ExB shear
 N.B. Non-trivial, as shear enters production, also via cross phase

Also:

- Some R_a < 0 cases → inward spreading ↔ local measurement trend outward
- Some very large R_a values

What is happening?

Production Ratio vs ExB Shear 1

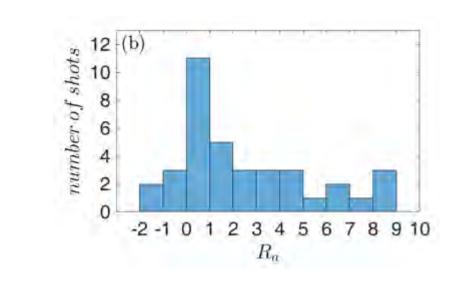


- Low values of $|R_a|$ at high V'_E
- But why?

$$R_a = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle |_{\text{lcfs}} / \int_0^{\lambda} dr \frac{c_s^2}{R} \langle \tilde{V}_r \tilde{n}/n_0 \rangle$$

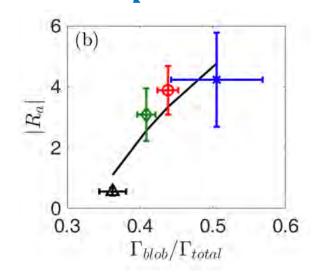
- → Expect shear inhibits both spreading and transport flux?
- ←→ ExB shear enters phase relation in both

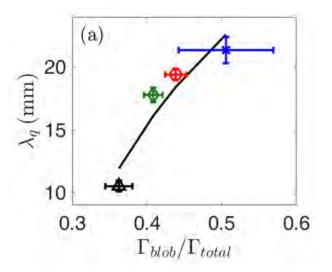
Production Ratio vs ExB Shear, cont'd

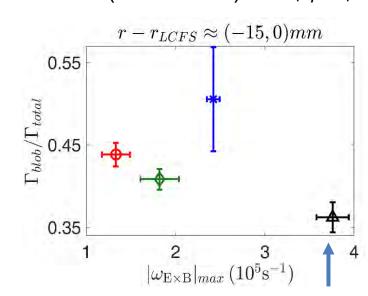


- Both spreading and local production drop due high V_E^\prime
- But spreading x (1/10) vs Production x (1/2)
- \rightarrow Spreading flux significantly more sensitive to V'_E than transport flux
- ←→ Triplet vs quadratic → Phases?

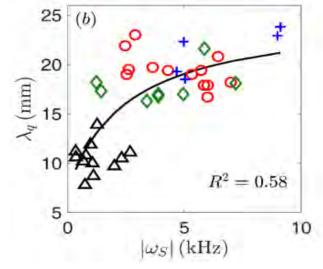
Large $R_a \rightarrow$ 'Blobs' ?!

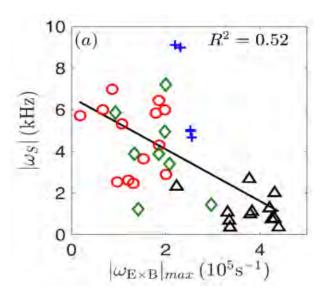

- What of the large R_a values?
- Suspect Structure Emission i.e. "blobs" !?
- Test:
 - Conditional averaging (i.e. threshold $\tilde{n} > 2\tilde{n}_{rms} \rightarrow$ "blob")
 - Threshold arbitrary → setting based upon previous studies
 - Compute R_a , Γ etc. with conditionally averaged quantities


Especially: $\Gamma_{blob} / \Gamma_{total}$


Physics of the "2"?

Large $R_a \rightarrow \lambda_q$ increases with 'blob' fraction


- Large R_a cases \longleftrightarrow larger 'blob fraction' of flux \longleftrightarrow spreading encompasses 'blobs' (c.f. Manz +) \to $\langle \tilde{V}_r \tilde{n}^2 \rangle$
- λ_q increases with Γ_b/Γ_{Tot}



 High ExB shear cases → low 'blob' fraction (Consistent with Bodeo+, '03)

Time Scales

- Spreading rates: $\omega_S \approx -\partial_r \langle \tilde{V}_r \tilde{n} \tilde{n} \rangle / \langle \tilde{n}^2 \rangle$ characteristic rate of spreading (Manz +)
- Shearing rate V'_E

- λ_q broadens for large ω_s
- Stronger shear reduces spreading rate

Partial Summary

- Significant, mostly outward, spreading measured at lcfs
- Identified and calculated production ratio

```
R_a = \text{(spreading influx) / (local production)}
```

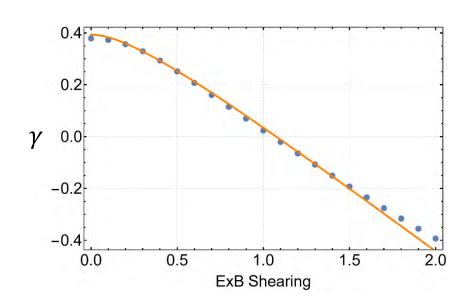
- Most cases: $R_a > 1$ spreading dominant player in SOL energetics
- ExB shear reduces $R_a \leftarrow \Rightarrow$ spreading more sensitive to V_E' than transport and production phases ?
- High R_a spreading $\leftarrow \rightarrow$ 'blob' dominated dynamics \rightarrow how calculate?

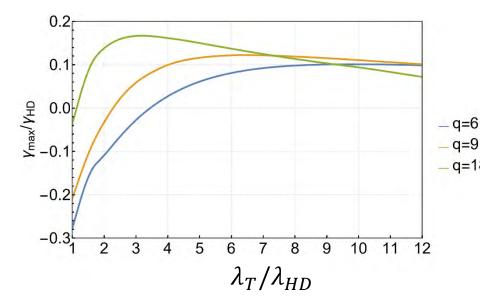
YES → SOL turbulence usually spreading driven!

"The conventional wisdom is little more than convention" - JKG

N.B. No use of closure of spreading flux

Calculating the Width of the Spreading-Driven SOL


Physics Issues – Part II


[C.f. Chu, P.D., Guo, NF 2022 P.D.+ IAEA '23]

- How <u>calculate</u> SOL width for turbulent pedestal but a locally <u>stable</u> SOL?
 - spreading penetration depth
 - must recover HD in WTT limit
- \rightarrow Scaling and cross-over of λ_q relative HD model
- What is effect/impact of barrier on spreading mechanism?
 - Can SOL broadening and good confinement be reconciled?

Model 1 – Stable SOL – Linear Theory

 Standard drift-interchange with sheath boundary conditions + ExB shear (after Myra + Krash.)

Maximal Linear Growth Rate of Interchange Mode in the SOL v.s. normalized layer width λ_D/λ_{HD} at different SOL safety factor q (with $\beta=0.001$)

Linear Growth Rate of a specific mode (fixed k_y) v.s. $E \times B$ shear at $q = 5, \beta = 0.001, k_y \cdot \lambda_{HD} = 1.58$.

- Relevant H-mode ExB shear strongly stabilizing $\gamma_{HD} = c_s/(\lambda_{HD}R)^{1/2}$
- Need λ/λ_{HD} well above unity for SOL instability. $V_E' \approx \frac{3T_e}{|e|\lambda^2} \rightarrow$ layer width sets shear

Model 2 – Two Multiple Adjacent Regions

"Box Model" – after Z.B. Guo, P.D.

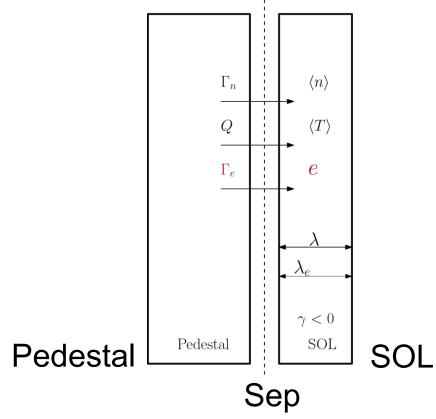


Illustration of Two Box Model: SOL driven by particle flux, heat flux and intensity flux (Γ_e) from the pedestal. The horizontal axis is the radial direction, and vertical axis is the poloidal direction.

Key Point:

- Spreading flux from pedestal can enter stable SOL
- Depth of penetration → extent of SOL broadening
- → Problem in one of entrainment/penetration

Width of Stable SOL

- Fluid particle: $\frac{dr}{dt} = V_{Dr} + \tilde{V}_{drift}$ fluctuating velocity
- Dwell time: τ_{\parallel}

$$\int_{\mathbb{R}^n} \nabla v = \int_{\mathbb{R}^n} \mathbb{R}^n \int_{\mathbb{R}^n} V = \int_{\mathbb{R}^n} \mathbb{R}^n \int_{\mathbb{R}^n} \mathbb{R$$

$$\begin{array}{c} \bullet \quad \delta^2 = \langle \left(\int \left(V_D + \tilde{V} \right) dt \right) \left(\int \left(V_D + \tilde{V} \right) dt \right) \rangle \\ \langle (\text{step})^2 \rangle \quad = V_D^2 \tau_\parallel^2 + \langle \tilde{V}^2 \rangle \tau_c \tau_\parallel \\ \quad = \lambda_{HD}^2 + \varepsilon \tau_\parallel^2 \end{array}$$
 Correlation time modest turbulence $\leftrightarrow \tau_c \geq \tau_\parallel$ turbulence energy density

- So $\lambda = \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right]^{1/2}$ \rightarrow SOL width [Effects add in quadrature]
- How compute ε ? \rightarrow turbulence energy in SOL. Need relate to pedestal
- N.B. Can write: $\lambda = [\lambda_{HD}^2 + \lambda_{e}^2]^{1/2}$ λ_{e} is turbulent width

Calculating the SOL Turbulence Energy 1

- Need compute Γ_e effect on SOL levels
- $K \epsilon$ type model, mean field approach (c.f. Gurcan, P.D. '05 et seq)
 - Can treat various NL processes via σ , κ
 - Exploit conservative form model
- $\partial_t \varepsilon = \gamma \varepsilon \sigma \varepsilon^{1+\kappa} \partial_x \Gamma_e$ Spreading, turbulence energy flux • Growth $\gamma < 0$ NL transfer $\gamma_{NL} \sim \sigma \varepsilon^{\kappa}$ here contains shear + sheath
- \rightarrow N.B.: No Fickian model of Γ_e employed, yet
 - Readily extended to 2D, improved production model, etc.

Calculating the SOL Turbulence Energy 2

- Integrate ε equation \int_0^{λ} ; "constant e" approximation
- Take quantities = layer average
- $\Gamma_{e,0} + \lambda_e \gamma \varepsilon = \lambda_e \sigma \varepsilon^{1+\kappa}$

Separatrix fluctuation energy flux ——

Single parameter characterizing spreading

So for
$$\gamma < 0$$
,

$$\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$$

 λ_e = layer width for ε

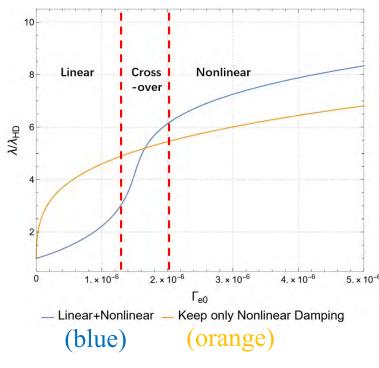
 $\Gamma_{e,0}$ vs linear + nonlinear damping

• Ultimately leads to recursive calculation of Γ_e

Calculating the SOL Turbulence Energy 3

[Mean Field Theory]

Full system:


$$\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$$
$$\lambda_e = \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right]^{1/2}$$

Simple model of turbulent SOL broadening

- $\Gamma_{0,e}$ is single control parameter characterizing spreading
- $\tilde{\Gamma}_{0,e}$? Expect $\tilde{\Gamma}_e \sim \Gamma_0$

SOL width Broadening vs $\Gamma_{e,0}$

SOL width broadens due spreading

 λ/λ_{HD} plotted against the intensity flux Γ_{e0} from the pedestal at $q=4,\beta=0.001,\kappa=0.5,\sigma=0.6$

Variation indicates need for detailed scaling analysis

- Clear decomposition into
 - Weak broadening regime → shear dominated

relevant

- Cross-over regime
- Strong broadening regime
- → NL damping vs spreading

Cross-over for:

$$\langle \tilde{V}^2 \rangle \sim V_D^2 \implies$$
 cross-over $\Gamma_{0,e}$

• Cross-over for $\tilde{V} \sim O(\epsilon)V_*$

SOL Width: Some Analysis

Have
$$\Gamma_{e,0} = |\gamma|e\lambda_e + \lambda_e\sigma e^{1+\kappa}$$

a) Damping dominated

$$\Gamma_e \approx |\gamma| \; \lambda_e \; e \qquad \qquad \lambda_q^2 = \lambda_e^2 + \lambda_{HD}^2$$

$$\lambda_q = \left[\lambda_{HD}^2 + \left(\frac{\Gamma_e \tau_{\parallel}^2}{|\gamma|} \right)^{2/3} \right]^{1/2}$$

- Spreading enters only via Γ_e at sep.
- Shearing via $|\gamma|$
- τ scalings $\rightarrow \tau_{\parallel}$ vs $\tau_{\parallel}^{2/3} \rightarrow$ current scaling of λ_e weaker

SOL Width: Some Analysis, Cont'd

b) NL dominated

$$\Gamma_e \approx \lambda_e \ \sigma \ e^{1+\kappa}$$
 $\lambda_q^2 = \lambda_e^2 + \lambda_{HD}^2$

$$\lambda_q = \left[\lambda_{HD}^2 + \left(\frac{\Gamma_e}{\sigma}\right)^{2/(3+4\kappa)} \tau_{\parallel}^{[4(1+\kappa)/(3+2\kappa)]}\right]^{1/2}$$

- weaker Γ_e scaling, $\lambda_q \sim (\Gamma_e/\sigma)^{1/5}$; STT
- $-\tau_{\parallel}^{3/4}$ vs τ_{\parallel} \rightarrow weaker current scaling

- Need consider pedestal to actually compute $\Gamma_{e,0}$
- Two elements
- Does another -- Pedestal Turbulence: Drift wave? Ballooning? -- Effect of transport barrier ←→ ExB shear layer → barrier permiability!?

Separatrix

Intensity Profile

Key Point: shearing limits correlation in turbulent energy flux

i.e.
$$\Gamma_{e,0} \approx -\tau_c \, I \, \partial_x \, I \approx \tau_c \, I^2 \, / w_{\rm ped}$$
 (Hahm, PD +) ped turbulence correlation time \rightarrow strongly sensitive to shearing intensity

N.B. Caveat Emptor re: intensity flux closure!

Familiar analysis for $D \rightarrow Kubo$

$$D = \int_0^\infty d\tau \, \langle V(0)V(\tau) \rangle = \int_0^\infty d\tau \, \sum_k \left| \tilde{V}_k \right|^2 \exp\left[-k_y^2 \omega_s^2 D \tau^3 - k^2 D \tau \right]$$

• Strong shear (relevant) $au_c = au_t^{1/2} \omega_s^{-1/2}$

$$\tau_c = \tau_t^{1/2} \omega_s^{-1/2}$$

$$\tau_t \sim 1 / k\tilde{V}, \quad \omega_s \sim V_E'$$

Here, via RFB
$$\rightarrow \omega_S = \partial_r \frac{\nabla P_i}{n|e|} \sim \frac{\rho^2}{w_{ped}^2} \Omega_{ci}$$

- $\tau_c + w_{ped}$ + turbulence intensity in pedestal gives $\Gamma_{e,0} \approx \tau_c I^2/w_{ped}$
- Need $\Gamma_{e,0} \ge \Gamma_{e,\min} \approx |\gamma| \lambda_{HD}^3 \tau_{\parallel}^{-2}$

- Pedestal → Drift wave Turbulence
- Necessary turbulence level:

- Weak Shear
$$\frac{\delta V}{c_s} \sim \left(\frac{\rho}{R}\right)^{1/2} q^{-1/4}$$

- Strong Shear
$$\frac{\delta V}{c_s} \sim \left(\frac{\rho}{R}\right)^{1/2} q^{-1/4} \left(\frac{w_{ped}}{\rho}\right)^{-1/8}$$

blue – all damping
orange – nonlinear only
green – linear only
1

0.01

0.02

0.03

 $e\delta\phi/T$

0.04 0.05

- \rightarrow λ/λ_{HD} vs $|e|\hat{\phi}/T_e$ in pedestal
- \rightarrow ρ/R is key parameter
- → Broadens layer at acceptable fluctuation level

- Pedestal → Ballooning modes → Grassy ELMs
- Necessary relate turbulence to $L_{P,crit}$ / L_P 1
- Strong shear:

$$\frac{L_{P_c}}{L_P} - 1 \sim \left(\frac{q\rho}{R}\right)^{\frac{10}{7}} \left(\frac{R}{w_{ped}}\right)^{\frac{16}{7}} \left(\frac{w_{ped}}{\Delta_r}\right)^{\frac{16}{7}} \beta$$

• Supercriticality scales with $\frac{\rho}{R}$, β_t

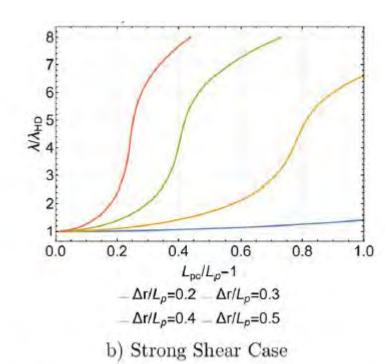
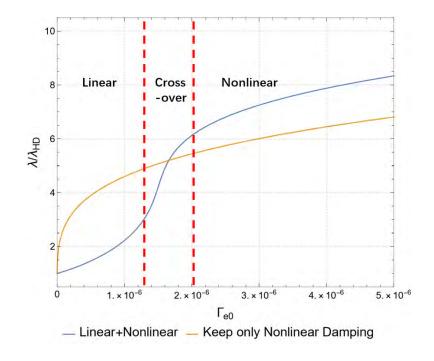


Figure 10. Typical cases for ballooning. The normalized pedestal width $\lambda/\lambda_{\rm HD}$ is plotted against supercriticality $L_{\rm pc}/L_{\rm p}-1$ at different mode width $\Delta/L_{\rm p}$.

Computing the Turbulence Energy Flux 5 → **Bottom Line**


- SOL broadening to $\lambda > \lambda_{HD}$ achieveable at tolerable pedestal fluctuation levels
- DW levels scale $\sim \left(\frac{\rho}{R}\right)^{1/2}$
- Ballooning supercritical scale ~ $\left(\frac{\rho}{R}\right)^{10/7} \beta$
- 'Grassy ELM' state promising
- Sensitivity analysis \rightarrow Cross over ε determined primarily by linear damping (shear). Conclusion ~ insensitive to NL saturation

Partial Summary

Turbulent scattering broadens stable SOL

$$\lambda = \left(\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right)^{1/2}$$

Separatrix turbulence energy flux specifies SOL turbulence drive

$$\Gamma_{0,e} = \lambda_e |\gamma| \varepsilon + \lambda \sigma \varepsilon^{1+\kappa}$$

Broadening increases with $\Gamma_{0,e}$ cross-over for $\langle \tilde{V}^2 \rangle \sim V_D^2$

Non-trivial dependence

• $\Gamma_{0,e}$ must overcome shear layer barrier

Yes – can broaden SOL to $\lambda/\lambda_{MHD} > 1$ at tolerable fluctuation levels Further analysis needed

Some Simulation Results

(cf. Nami Li, X.-Q. Xu, P.D.; N.F.(Lett) '23)

- → BOUT++ → pedestal + SOL
- → 6 field model ("Braginskii for 21st century")
- → Focus on weak peeling mode turbulence in pedestal
 - → MHD turbulence state → small/grassy ELM, also WPQHM

3D Counterpart of Brunner (λ_q vs B_{θ})

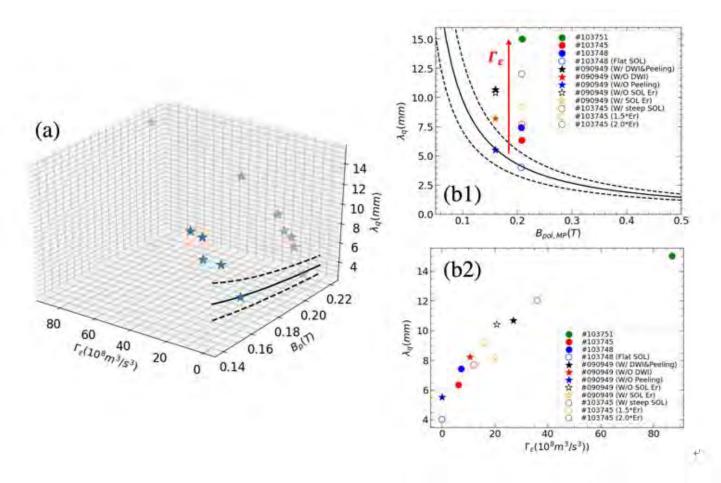


Fig. 3. (a) 3D plot of heat flux width λ_q vs poloidal magnetic field B_p and fluctuation energy density flux Γ_{ε} ; (b) 2D plot of heat flux width λ_q vs poloidal magnetic field B_p (b1) and fluctuation energy density flux Γ_{ε} (b2).

3D Brunner Plot – Comments

- λ_q rises with Γ_e
- Low Γ_e , λ_q tracks hyperbola
- Large Γ_e , λ_q rises above Brunner/Goldston hyperbola
- λ_q grows with Γ_e

Spreading as Mixing Process?

• Conjecture that λ_q should increase with <u>pedestal</u> mixing length $\rightarrow \Gamma_e$

- drift dominated
- cross-over (blue)
- turbulent

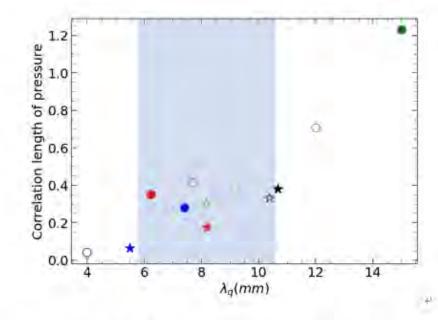


Fig 4. Radial correlation length of pressure near the separatrix vs. heat flux width λ_q .

Relate Spreading to Pedestal Conditions

N.B.

- Γ_e rises with pedestal $\nabla P_0 \longleftrightarrow$ increased drive
- Collisionality dependence Γ_e :
 - high → no bootstrap current →
 ballooning → smaller l_{mix}
 - low → strong bootstrap → peeling
 → larger l_{mix}

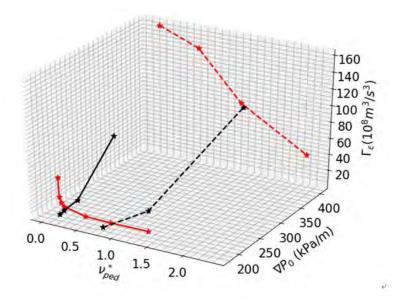


Fig. 7. 3D plot of fluctuation energy density flux Γ_{ε} vs pedestal peak pressure gradient ∇P_0 and v_{ped}^* ; black curves are ∇P_0 scan with low collisionality $v_{ped}^* = 0.108$ (solid curve) and high collisionality $v_{ped}^* = 1$ (dashed curve); red curves are v_{ped}^* scan with small $\nabla P_0 \sim 200 \; kPa/m$ (solid curve) and large $\nabla P_0 \sim 400 \; kPa/m$ (dashed curve).

Fundamental Physics of Γ_e

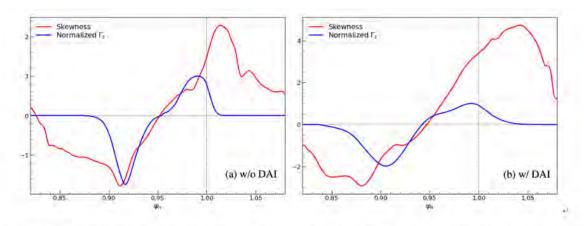


Fig. 6 Radial profiles of normalized fluctuation energy density flux Γ_{ε} (blue) and skewness (red) for without (a) and with (b) drift-Alfvén instability. Here fluctuation energy density flux is normalized to the max value for each case.

- Γ_e spreading tracks \tilde{P} skewness
 - Outward for s > 0 → "blobs"
 - Inward for s < 0 → "voids"
- Zero-crossings Γ_e , s in excellent agreement

Fundamental Physics of Γ_e , cont'd

- Spreading appears likely linked to "coherent structures"
- Likely intermittent (skewness, kurtosis related)
- Related study (Z. Li); $Ku \sim 0.4$, so \rightarrow if Fokker-Planck analysis

$$\frac{\partial e}{\partial t} = -\frac{\partial}{\partial x} (Ve) + \frac{\partial^2}{\partial x^2} (De)$$
 Convective!?

Relate V to pedestal gradient relaxation event (GRE) ?!

Broader Messages

- Turbulence spreading is important even dominant process in setting SOL width. $\Gamma_{0,e}$ is critical element. $\lambda = \lambda(\Gamma_{0,e}$, parameters)
- Production Ratio R_a merits study and characterization
- Spreading is important saturation meachanism for pedestal turbulence
 - Simulation should stress calculation and characterization of turbulence energy flux over visualizations and front propagation studies.
 - Critical questions include local vs FS avg, channels and barrier interaction, Turbulence 'Avalanches'
- Turbulent pedestal states attractive for head load management

Open Issues

- Quantify $\lambda = \lambda \left(\frac{|e|\widehat{\phi}}{T} \Big|_{ped} \right)$ dependence
- Structure of Flux-Gradient relation for turbulence energy?
 - Phase relation physics for intensity flux? crucial to ExB shear effects
 - Kinetics $\rightarrow \langle \tilde{V}_r \delta f \delta f \rangle$, Local vs Flux-Surface Average, EM
 - SOL Diffusive? → Intermittency('Blob'), Dwell Time?
 - SOL → Pedestal Spreading ? ←→ HDL (Goldston) ?
 - i.e. Tail wags Dog? Both wagging? → Basic simulation, experiment?

Counter-propagating pulses?

Concluding Philosophy

- MFE relevant questions within reach in near future. Great attention to λ_a problem (c.f. Samuel Johnson)
- Unreasonable for tokamak experiments to probe ~ critical dynamics so as to elucidate basic questions. Simulations???
- Well diagnosed, basic experiment with some relevant features are sorely needed – akin to 'Tube' studies of flows, ala' CSDX
- How?

Thanks for Attention!

Supported by U.S. Dept. of

Energy under Award Number

DE-FG02-04ER54738