Dynamics of Turbulence Spreading and Why it's Important

P.H. Diamond⁽¹⁾ and Runlai Xu⁽²⁾

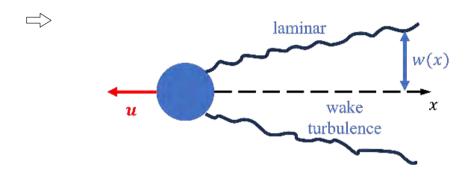
1) Newton Institute, Cambridge and UC San Diego

2) University of Oxford

York Fest-ADI-5 20/2/2024

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Wake-Classic Example of Turbulence Spreading



Similarity Theory Mixing Length Theory $W \sim (F_d / \rho U^2)^{1/3} X^{1/3}$,

 $F_d \sim C_D \rho U^2 A_s$

 C_D independent of viscosity at high Re

- Physics: Entrainment of laminar region by expanding turbulent region. Key is <u>turbulent mixing</u>.
 Wake expands
- □⊃ Townsend '49:
 - Distinction between momentum transport eddy viscosity—and fluctuation energy transport

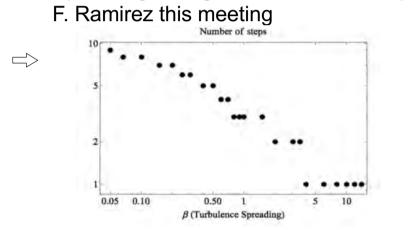
— Jet Velocity:
$$V = \frac{\langle V_{perp} * V^2 \rangle}{\langle V^2 \rangle} \implies$$
 spreading flux

- Failure of eddy viscosity to parametrize spreading

C.f. Ting Long, this meeting

Why Study Spreading?

 \Rightarrow Spreading strength sets staircase step size via intensity scattering. See also



from A. Ashourvan, P.D.

- ⇒ Spreading potentially significant in determining
 - Physical turbulence profiles
 - Non-locality phenomena 🖙 K. Ida
- ⇒ It's observed! M. Kobayashi + 2022
 - T. Long, T. Wu (2021, 2023)
 - Estrada +

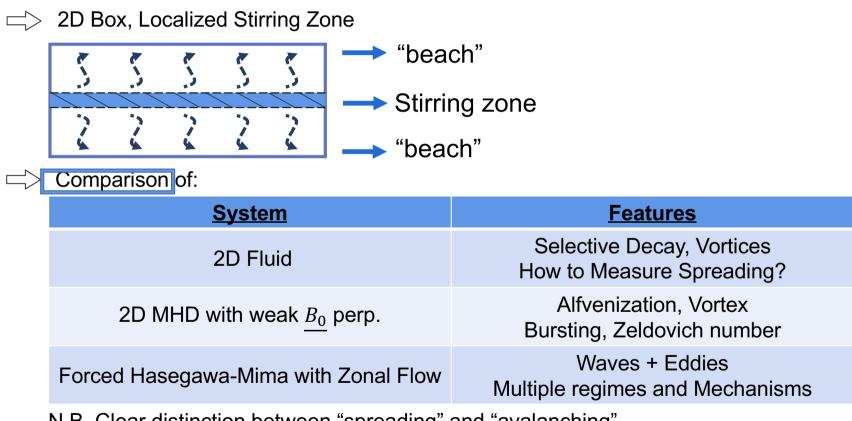
Spreading in MFE Theory

- Numerous gyrokinetic simulations N.B. <u>Basic</u> studies absent ...
- ⇒ Diagnosis primarily by: − color VG
 - tracking of "Front"
- \Rightarrow Theory \Rightarrow Nonlinear Intensity diffusion models
 - ⇒ Reaction-Diffusion Equations especially Fisher + NL diffusion

Recently:

- \implies Renewed interest in context of λ_q broadening problem, cf. P. Diamond, Z. Li, Xu Chu
- \Rightarrow Simulations measure correlation of spreading $\langle \tilde{V}_r \tilde{p} \tilde{p} \rangle$ with λ_q broadening (Nami Li, P.D.,
- Intermittency effects T. Wu, P. D. + 2023, A. Sladkomedova 2024, Xu NF 2023)
 Image: State of the s

Spreading Studies



N.B. Clear distinction between "spreading" and "avalanching"

Numerics: 2D Dedalus simulation

Box Characteristics:

- Dedalus Framework analogous to BOUT++

- Grid Size: 512×512
- Doubly Periodic boundary condition, beach regulates expansion

Forcing Characteristics:

- Superposition of Sinusoidal Forcing, vorticity
- Spectrum: Constant E(k), ensuring uniform energy distribution across wave numbers.
- Correlation Length: Approximately 1/10 of the box scale, some room for dual cascade.
- Localized through a Heaviside step function.
- Phase of forcing randomized every typical eddy turnover time

2D Fluid

<u>2D Fluid</u> - the prototype

Vorticity Equation: $\frac{D\omega}{Dt} = \nu \nabla^2 \omega - \alpha \omega$

Key Physics:

2D Fluid, Cont'd

⇒ Selective Decay

Forward 'Cascade' enstrophy Senses viscosity \rightarrow Senses drag

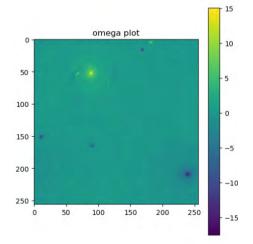
 \rightarrow

Inverse 'Cascade' energy For Final State of Decay:

 $\delta(\Omega + \lambda E) = 0$

Bretherton + Haidvogel

⇒ Role Coherent Structures (Vortices)



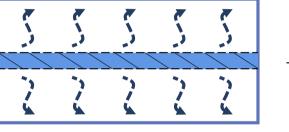
- emergence isolated coherent vortices \rightarrow survive decay

$$\frac{d}{dt}\nabla\omega = (s^2 - \omega^2)^{1/2} \qquad \qquad \omega = \nabla^2 \varphi \to \text{vorticity} \\ s = \partial_{xy}^2 \varphi \to \text{shear}$$

Dipole vortices emerge, also -

2D Fluid

 \Rightarrow Realize:



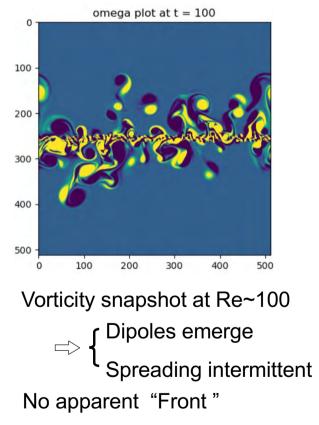
 \rightarrow Forcing layer

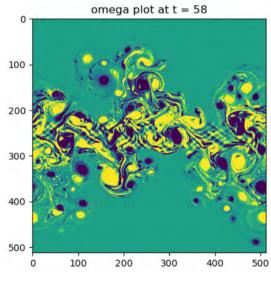
- Most of system in state of Selective Decay !
- Need Consider / Compare :

as measures of "intensity spreading". \Box Selective decay is radically different.

What Happens ?

In Far Field, away from Forcing layer

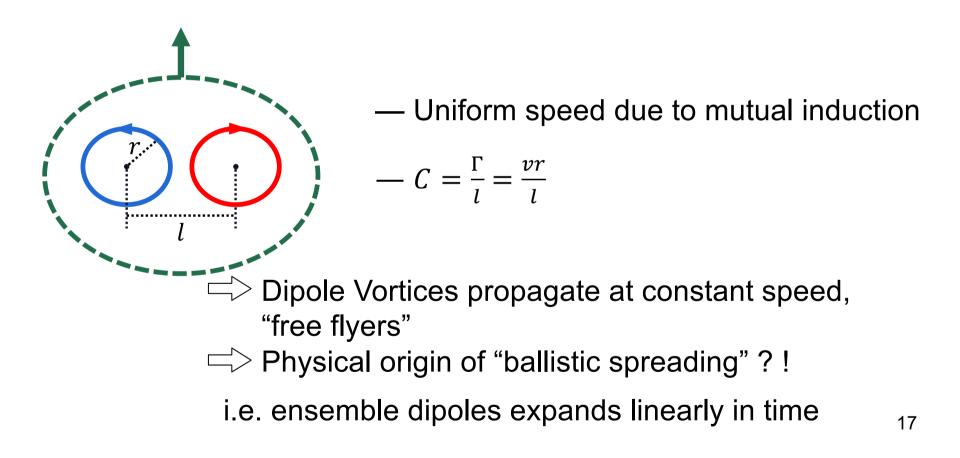




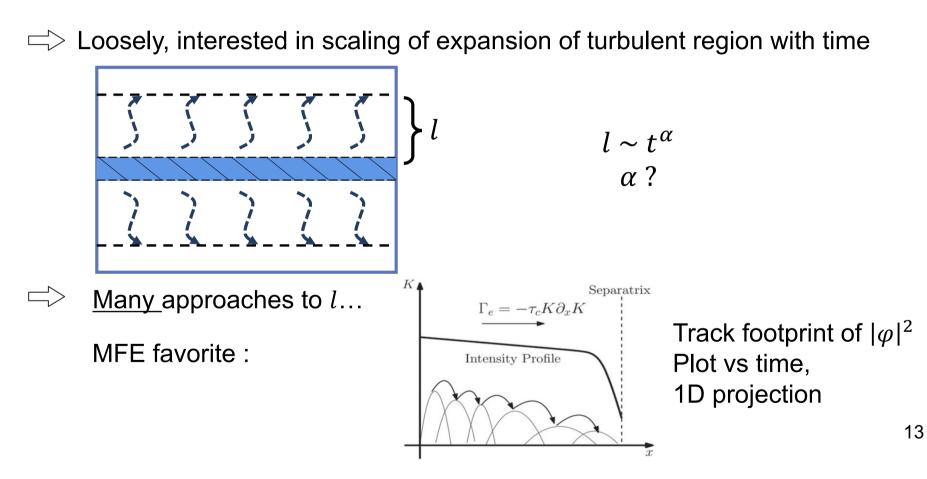
Vorticity snapshot at Re~2000

- Dipoles, filaments, cluster
- Fractalized front

⇒ N.B. <u>Dipole Vortex</u>



On Keeping Score



Keeping Score, cont'd

⇒ Approaches

N.B. :

- Quantity weighting can differ; depending on quantity
- RMS velocity sensitive to how computed

Table 1: Table describing various velocity and transport parameters.

Parameter	Symbol	Equation	Description
RMS Velocity	V _{rms}	$V_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$	Root-mean-square velocity of turbulence, also known as tur- bulence intensity. This can ei- ther be measured near the forc- ing zone and averaged horizon- tally for a characteristic veloc- ity as a basis of comparison, or measured globally to obtain global energy.
Quantity- Weighted RMS Distance	X _{W-rms}	$X_{W-rms} = \sqrt{\frac{\int \delta(x) ^2 Q(x) dx}{\int Q(x) dx}}$	Quantity-weighted root-mean- square position represents the location of the quantity of in- terest, typically energy or en- strophy. One value is gener- ated for each time. The quan- tity Q is usually energy or en- strophy.
Quantity- Weighted RMS Spreading Velocity	V _{W-rms}	V_{W-rms} is the slope of X_{W-rms} plotted against time	Quantity-Weighted RMS Spreading Velocity represents the bulk motion. This is more comprehensive than the front velocity.

Keeping Score, cont'd

- ⇒ Approaches, cont'd
- Front velocity is MFE favorite sensitive to 1D projection, definition
- Transport Flux $\langle V_{\mathcal{Y}}E \rangle$, $\langle V_{\mathcal{Y}}\Omega \rangle$, most physical, clearest connection to dynamics of 2D Fluid but: Sensitive to viscosity and selective decay
- Jet velocity very sensitive to viscosity, field chosen

Front Velocity	V_{front}	V_{front} is the slope	This is usually
		obtained from	comparable to V_{W-rms} ,
		tracking the	although front doesn't
		outermost	exist for low Reynolds
		turbulent patch	number.
Transport Flux	Φ_Q	$\Phi_Q = < Q V_\perp >$	The amount of certain
Density of			quantity passing
certain			through a unit length
quantity			per unit time; flux is
			the integral of flux
			density through the
			horizontal surface,
			which bounds half of
			the region and can be
			related to the rate of
			change of the quantity
			in that region.
Transport "jet"	V_Q	$V_Q = \frac{\langle QV_\perp \rangle}{\langle Q \rangle}$	Also known as
Velocity			normalized flux
			density. Average is
			usually taken
			horizontally. This
			velocity is separately
			obtained for each time.

Keeping Score, cont'd

Observation :

—Lower Re \rightarrow Significant speed, 'front' fluctuations due to variability in dipole population

-Transport velocities quite sensitive to viscosity and selective decay

- i.e. $\langle V_{y}\Omega \rangle$ drops jet velocity $\langle V_{y}\Omega \rangle / \langle \Omega \rangle$ rises $\begin{cases} especially for higher viscosity, Due selective decay \end{cases}$
- -Formation of dipoles follows decay of enstrophy
- Dipoles ultimately determine spreading

Results

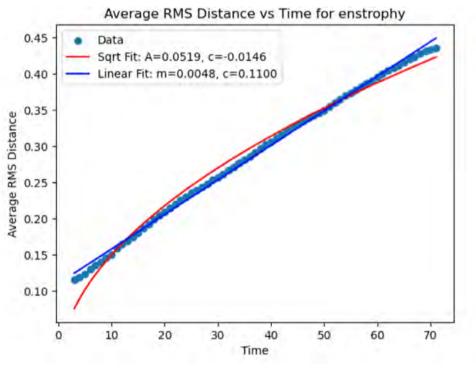
Re ~ 5000

 Ω —weighted rms distance

—Constant spreading speed for enstrophy, i.e., $l \sim ct$

 $\alpha = 1$

- $-c/V_{rms} \sim 0.1$
- -Consistent with picture of dipole vortices carrying spreading flux

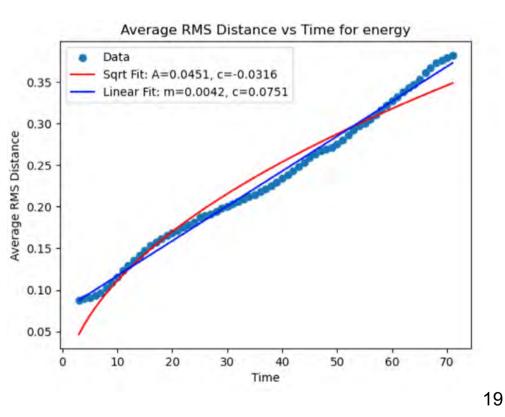


Results, cont'd

Re ~ 5000

E–weighted rms distance

- —Constant spreading speed for energy, i.e., $\alpha \simeq 1$
- $-c/V_{rms} \sim 0.1$
- —Lager dipoles Some energy → increases fluctuations relative to enstrophy case



Summary - 2D Fluid

- Coherent structures Dipole vortices mediate spreading of turbulent region → free flyers
- Mixed region expands as $w \sim t$, consistent with dipoles.
- No discernable "Front", spreading is strongly intermittent. (space+time)
- Spreading PDF is non-trivial.
- Turbulence spreading non-diffusive.

2D MHD + Weak B_0

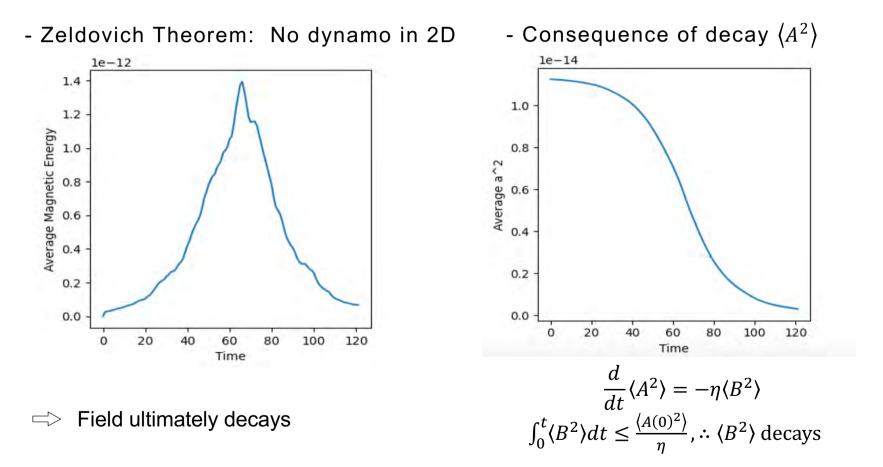
2D MHD

- The equations:
$$\frac{d}{dt}(\nabla^2 \varphi) = \nu \nabla^2 \nabla^2 \varphi + \nabla A \times \hat{\mathbf{z}} \cdot \nabla \nabla^2 A + \tilde{f}$$
$$\frac{d}{dt}A = \eta \nabla^2 A$$
$$\frac{d}{dt} = \partial_t + \nabla \varphi \times \hat{\mathbf{z}} \cdot \nabla$$

- Inviscid Invariants: $E = \langle V^2 + B^2 \rangle$, $H = \langle A^2 \rangle$, $H_c = \langle \vec{V} \cdot \vec{B} \rangle \Longrightarrow 0$, hereafter Conservation of *H* is Key !

- Consider weak mean magnetic field: $B = B_0(y)\hat{x}$ $B_0(y) \sim B_0 \sin(y) \Rightarrow$ initial imposed pattern
- As before, localized forcing region, effectively unmagnetized

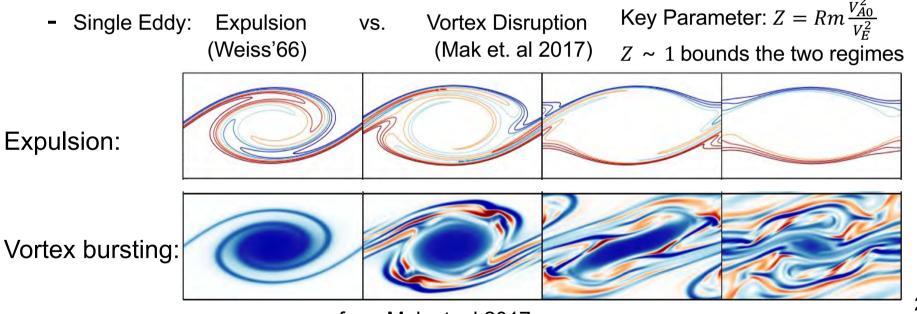
\Rightarrow 2D MHD



Key Physics of 2D MHD

N. B. "Z" Zeldovich

Lorentz force suppresses inverse kinetic energy cascade.
 Inverse cascade (A²) develops



from Mak et. al 2017

Key Physics of 2D MHD, cont'd

 Turbulent Diffusion: (Cattaneo + Vainshtein '92; Gruzinov + P.D. '94)

Closure + $\langle A^2 \rangle$ conservation \Box Quenched Diffusion of *B* - field

From:
$$D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c$$

To:
$$D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c / \left[1 + R_m V_{A0}^2 / \langle \tilde{V}^2 \rangle \right] \sim D_{Kin} / (1 + Z)$$

- Once again,

Key Parameter:
$$Z = R_m \frac{V_{A0}^2}{\langle \tilde{V}^2 \rangle}$$
 $\langle \tilde{V}^2 \rangle vs V_E^2$

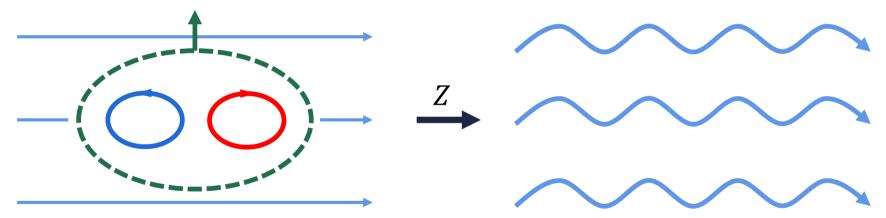
N.B.: - V_{A0} is initial weak mean magnetic field

- R_m large...

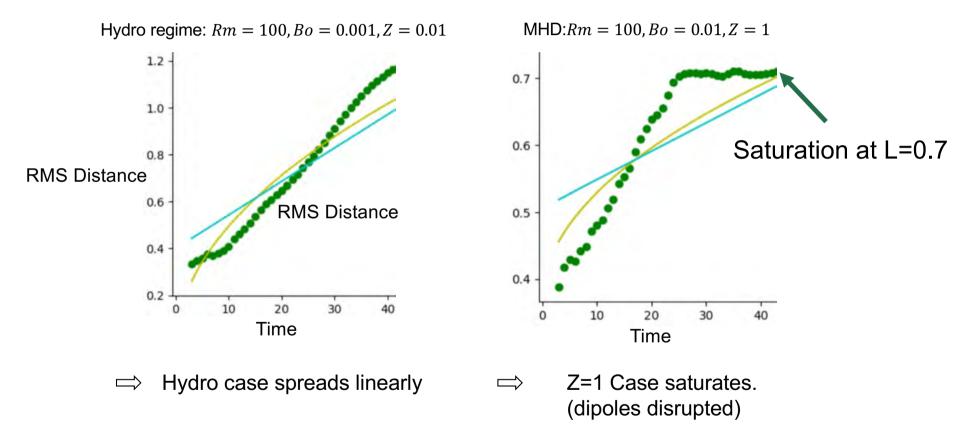
Crux of the Issue!?

- \Rightarrow Hydrodynamics: Dipole vortex 'Carries' turbulence energy \Rightarrow spreading
- \implies But... weak B_0 can 'burst' vortices \implies

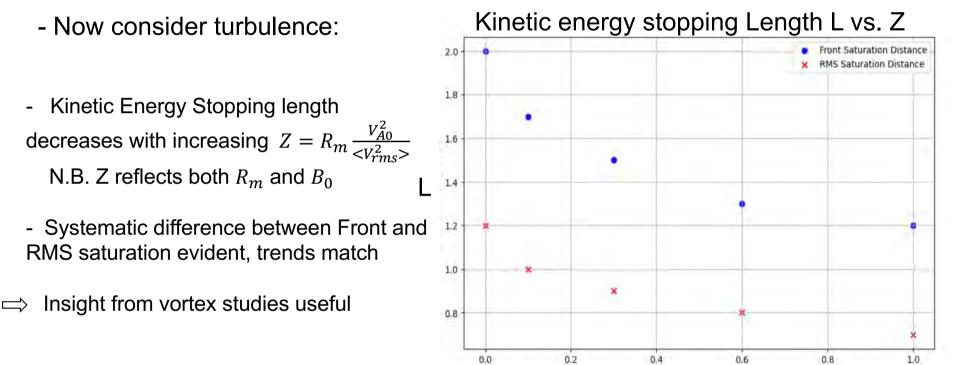
converts dipole kinetic energy to Alfven waves, propagating laterally, and dissipation.



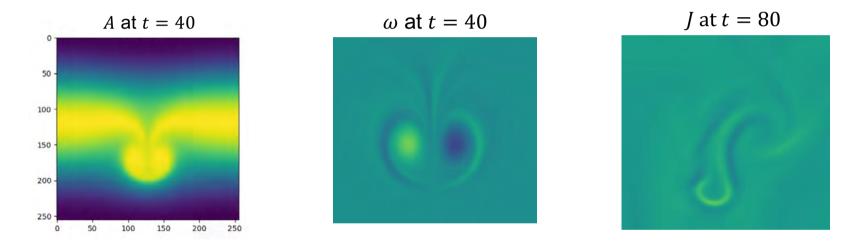
So, can a weak B_0 block spreading in 2D MHD !? N.B. Perp Alfven waves observed



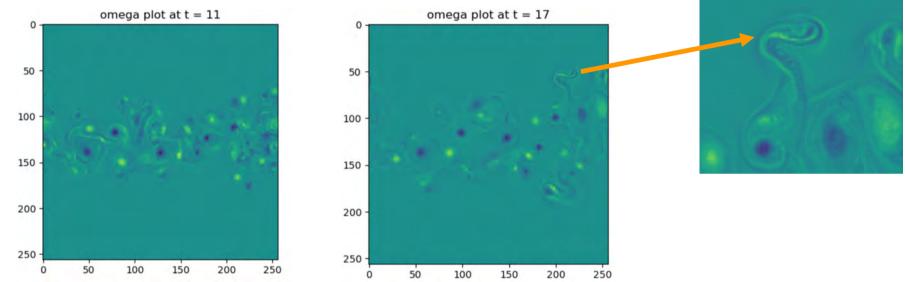
Spreading vs. Z - Turbulence



\Rightarrow Single Dipole in weak B_0



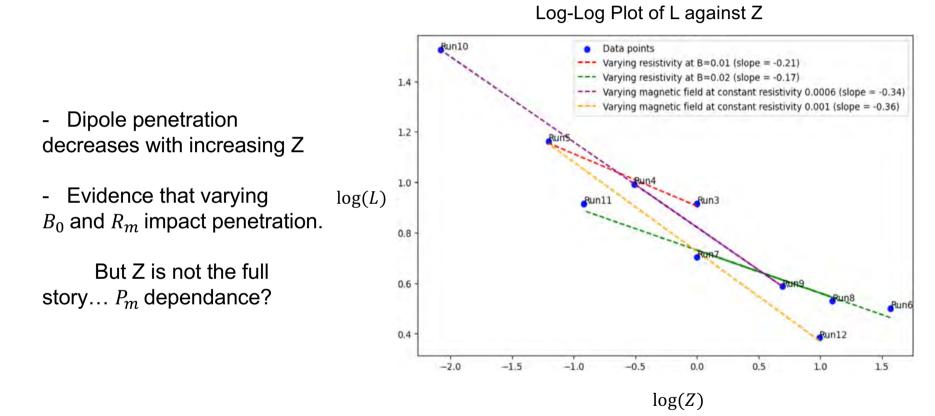
Note wrapping filament tends to cancel and push on dipole, so it distorts and ultimately bursts Filament and vortex bursting. Concentration at small scale \Rightarrow fast dissipation Connection: vortex busting MHD cascade singularity?!



Close Look at Vorticity Field

Bursting/Filamentation

- Z=3, Rm≈50, Re≈500, B=0.01
- Dipoles evident at early times, but encounter stronger field as migrate
- Vortex bursting occurs at later times \Longrightarrow Spreading halted.



⇒ Single Dipole Penetration

=> 2D MHD: Summary

- Weak *B*⁰ enables vortex disruption

Dipole bursting \Longrightarrow Saturates spreading

- Weak \underline{B}_0 blocks advance of kinetic energy
- Process: Conversion dipole KE to Alfven waves, dissipation

-
$$Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$$
 as critical parameter

- Reinforces notion of "free flyer dipoles" as critical to spreading

Forced Hasegawa – Mima + Zonal Flows

H-M + Zonal Flow System

- System:

$$\frac{d}{dt} \left(\tilde{\phi} - \rho_s^2 \nabla_{\perp}^2 \tilde{\phi} \right) + v_* \frac{\partial \tilde{\phi}}{\partial y} + v_{*u} \frac{\partial \tilde{\phi}}{\partial y} = \frac{\partial}{\partial r} \rho_s^2 \left\langle \tilde{v}_r \nabla_{\perp}^2 \tilde{\phi} \right\rangle + v \nabla^2 \nabla^2 (\tilde{\phi}) + \tilde{F} \text{ -Waves, Eddys}$$
$$\frac{d}{dt} = \frac{\partial}{\partial t} + \bar{v}_z \frac{\partial}{\partial y} + \nabla \tilde{\phi} \times \hat{z} \cdot \nabla$$
$$\frac{\partial}{\partial t} \nabla_x^2 \bar{\phi}_z + \frac{\partial}{\partial r} \left\langle \tilde{v}_r \nabla_{\perp}^2 \tilde{\phi} \right\rangle + \mu \nabla_x^2 \bar{\phi}_z = 0 \text{ -Zonal Flow}$$

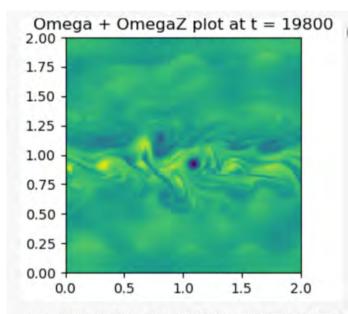
- viscosity controls small scales
- drag controls zonal flow μ

- conserved: Energy
$$\rightarrow \langle \tilde{\phi}^{2} + \rho_{s}^{2} (\nabla \tilde{\phi})^{2} \rangle + \langle \rho_{s}^{2} (\nabla \phi_{z})^{2} \rangle$$

Potential Enstrophy $\rightarrow \langle (\tilde{\phi} - \rho_{s}^{2} \nabla^{2} \tilde{\phi})^{2} \rangle + \langle (\rho_{s}^{2} \nabla^{2} \phi_{z})^{2} \rangle$
Waves ZF
37

Typical saturated snapshot(Kubo 0.2)

- Dipoles disappear
- Large coherent vortex



Total <u>vorticity</u> snapshot at the end. Steady state; Turbulent in the center only. Dipole isn't a steady structure in this system; instead, we get single vortex that looks like Jupiter's eye, which is not gonna move by itself

Total Vorticity:
$$\nabla^2(\tilde{\phi} + \phi_z)$$

H-M + Zonal Flow System, cont'd

- $\begin{array}{ll} waves & \omega = \omega_*/(1 + k_{\perp}^2 \rho_s^2), & \underline{v_{gr}} \\ \text{eddies} & \tilde{v} & \begin{cases} \tilde{v} \ \text{vs} \ v_* \rightarrow \\ \text{zonal mode (symmetry)} \end{cases} \end{array}$ \rightarrow Now:
 - $\begin{cases} \sum_{k} v_{gr}(k) \xi_{k} \to \text{and other} \\ \langle \tilde{v}_{r} \xi \rangle \to 3^{\text{rd}} \text{ order} \end{cases}$ Energy Flux: i.e. ⇒

N.B. 2 channels for "turbulence spreading" Waves/Wave transport Turbulent mixing

-Branching ratio, vs. Ku number ?

For clarity; Contrast:

- \implies Spreading in presence of fixed, externally prescribed shear layer
- $\implies \underline{\mathsf{Here:}} \rightarrow \mathsf{Forcing} \rightarrow \begin{cases} \mathsf{Waves} \\ \mathsf{Eddies} \end{cases} \rightarrow \mathsf{Zonal flow (self-generated)} \end{cases}$

: forcing (\tilde{v}_{rms}, Re) + drag \Rightarrow control parameters

⇒ "weak" and "strong" Turbulence Regimes

$$v_{gr} \text{ VS } v_r \rightarrow \frac{\langle \tilde{v}_r \xi \rangle}{\sum_k v_{gr}(k)\xi_k} \rightarrow \frac{\tilde{v}_r \tau_c f}{\Delta_c} \rightarrow Ku$$

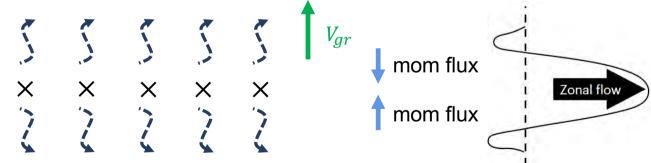
$$\Delta_c \sim v_{gr} \tau_c$$

 $\implies Ku < 1 \rightarrow \text{wave dominated spreading}$ $Ku > 1 \rightarrow \text{mixing dominated spreading}$

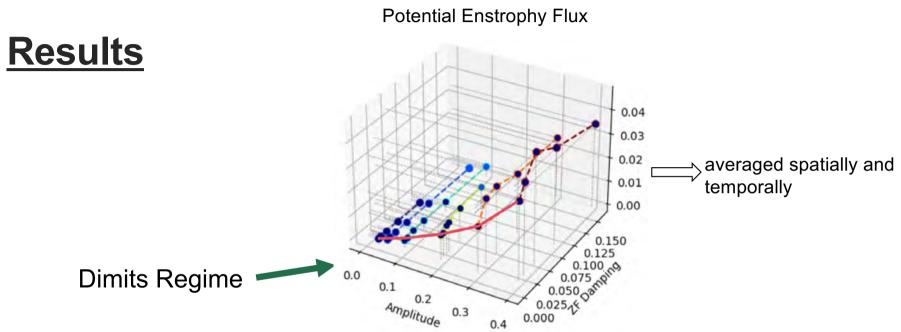
H-M + Zonal Flow System, cont'd

- → Enter the Zonal Flow...
 - Multiple channels for NL interaction
 - But with $ZF \leftrightarrow$ eddy, wave coupling to ZF dominant
 - ZF is the mode of minimal inertia, damping, transport

⇒ energy coupled to ZF ($\tilde{v}_r = 0$) cannot "spread", unless recoupled to waves



→ Degradation of ZF (back transfer) is crucial to spreading



- Potential enstrophy flux generally <u>increases</u> as drag increases. "Dimits regime" for turbulence spreading. Spreading diminishes as power coupled to Z.F.
- Self-generated barrier to spreading.
- For A increasing, PE flux rises sharply, even for weak ZF damping. Fate of ZF?
- "KH-type" mechanism loss of Dimits regime at high Kubo # characterization?

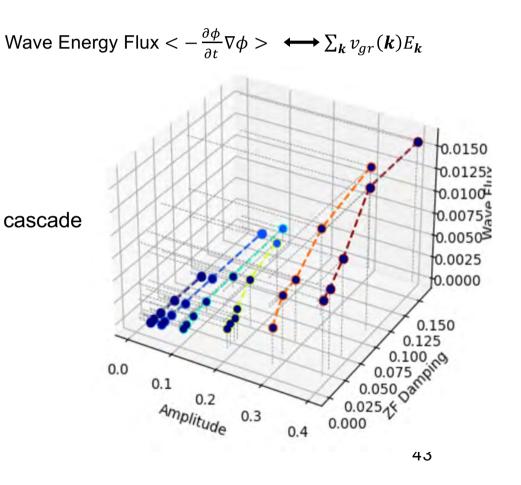
<u>Results</u>, Cont'd <u>Wave Energy Flux</u>

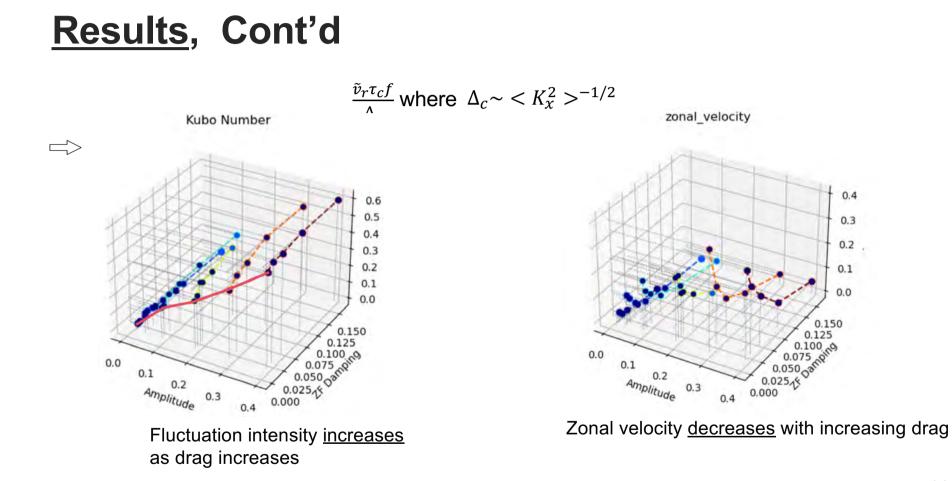
Dimits regime at low forcing and ZF damping

-Increases with ZF damping and forcing amplitude

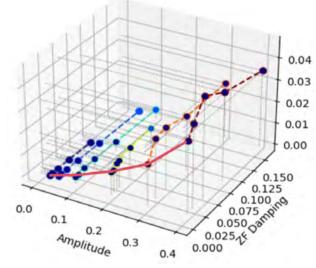
- Dominant K_x increases under ZF decorrelation - Spectrum condensation towards low k with inverse cascade

implication for v_{gr} and $\sum_{k} v_{gr}(k) E_{k}$





→ Spreading and Fate of Zonal Flows



→ Spreading rises for increased forcing, even for $\mu \rightarrow 0$ → Dimits regime destroyed. How? \Rightarrow Seems necessary for spreading in systems with ZF

→ Animal Hunt for linear instabilities(KH, Tertiary ...) seems pointless in turbulence

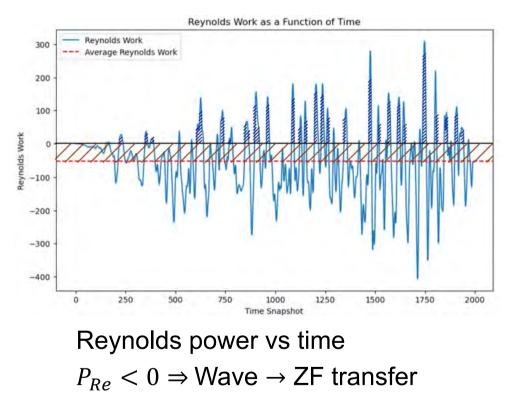
→ Instead,
$$P_{\text{Re}} = -\langle \widetilde{V_x} \widetilde{V_y} \rangle \cdot \frac{\partial \overline{V_y}}{\partial x}$$
 Power transfer fluctuations → flow $P_{Re} < 0$: Wave → ZF transfer $P_{Re} > 0$: ZF → Wave transfer ⇒ ZF decay

Quantifying Wave-ZF Power transfer

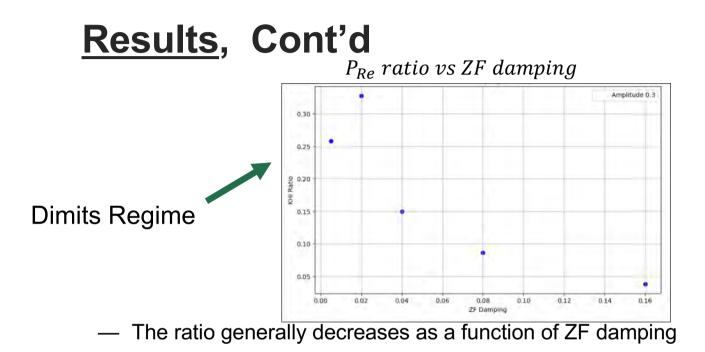
$$1/2*rac{\partial \overline{V}_y^2}{\partial t}=\omega_Z<\widetilde{v_x}\widetilde{v_y}>-drag*\overline{V}_y$$

Reynolds power

We quantify $ZF \rightarrow$ Waves Power Transfer as the ratio of the area above the axis to work done on the zonal flow.



$$P_{Re} > 0 \Rightarrow \mathsf{ZF} \rightarrow \mathsf{Wave transfer}$$

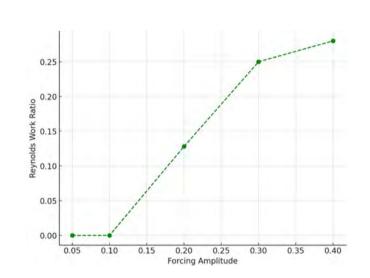


- The ratio increases for increasing Kubo number
- Possible improvement: Non-local transfer ala' closure, instead QL

$$P_{
m Re} \approx -(V_{
m rms}^2 \cdot au_{
m corr}) \cdot \omega_{
m zonal}^2$$
 48

Results, Cont'd, Reynolds power vs Kubo

P_{Re} ratio vs forcing amplitude



Preliminary → Explore other FOMs

- The ratio goes up as a function of Kubo number
- Indicates that re-coupling of ZF energy to turbulence increases for stronger forcing
- Avoids instability morass

Summary - Drift Wave Turbulence

- \rightarrow Spreading fluxes mapped in forcing, ZF damping parameter space
- \rightarrow Dominant mechanism \leftrightarrow Ku (waves vs mixing), Both waves and mixings in play.
- \rightarrow Dimits-like regime discovered
- \rightarrow ZF quenching intimately linked to spreading
- $\rightarrow P_{Re} > 0$ bursts track breakdown of Dimits regime and onset turbulent mixing

→<u>General Summary</u>

- → Coherent structures dipoles frequently mediate spreading \leftarrow → underpin "ballistic scaling"
- \rightarrow Spreading dynamics non-diffusive; Conventional wisdom misleading, or worse.
- N.B. stay tuned for talks by Alsu, Ting, Filipp
- \rightarrow In DWT, wave propagation and turbulent mixing both drive spreading
- \rightarrow ZF quenching critical to spreading in DWT. Power coupling most useful to describe ZF quench.

→ Future Plans

—High resolution studies

—Understand ZF quenching physics and calculate power recoupling-general case, GK formulation?

—Spreading in Avalanching. Relative Efficiency? Spreading and Transport? Flux-driven H-W System. Potential Enstrophy Flux!?

More general:

- -Is spreading mechanism universal? Seems unlikely
- —Towards a model, models... Ku~1 is an interesting challenge
- —Relation/connection of DW+ZF spreading and Jet Migration (L. Cope)