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ABSTRACT

The theory of shock acceleration predicts the maximum particle energy to be limited only by the accelera-
tion time and the size (geometry) of the shock. This led to optimistic estimates for the galactic cosmic-ray
energy achievable in supernova remnant (SNR) shocks. The estimates imply that the accelerated particles,
while making no strong impact on the shock structure (test-particle approach), are nevertheless scattered by
the strong self-generated Alfvén waves (turbulent boost) needed to accelerate them quickly. We demonstrate
that these two assumptions are in conflict when applied to SNRs of the age required for cosmic-ray accelera-
tion to the ‘‘ knee ’’ energy. We study the combined effect of acceleration nonlinearity (shock modification by
accelerated particles) and wave generation on the acceleration process. We show that the refraction of self-
generated waves resulting from the deceleration of the plasma flow by the pressure of energetic particles
causes enhanced losses of these particles. This effect slows down the acceleration and changes the shape of the
particle spectrum near the cutoff. The implications for observations of TeV emission from SNRs are also
discussed.

Subject headings: acceleration of particles — cosmic rays — shock waves — supernova remnants —
turbulence

1. INTRODUCTION

The first-order Fermi or diffusive-shock acceleration
(DSA) has long been considered to be responsible for the
production of galactic cosmic rays (CRs) in supernova rem-
nants (SNRs), as well as for the radio, X-ray, and �-ray
emission from these and other shock-related objects. The
most crucial characteristic of this process that is usually
examined in terms of its capability to explain a given obser-
vation is the rate at which it operates. Indeed, what is often
expected from theory or even inferred from observations is
an extended particle energy spectrum, frequently a power
law, but more rapidly decaying at the highest energies
observed. Often, this decay is referred to as an energy or
momentum cutoff and is usually associated with a finite
acceleration time or with losses if the loss rate exceeds the
acceleration rate. As long as the losses are unimportant, the
cutoff pmaxðtÞ advances with time according to the following
equation,

dpmax

dt
¼ pmax

tacc
; ð1Þ

whereas in the presence of losses, the acceleration rate
pmax=tacc can be equated with the loss rate to yield a steady
state value of pmax. The acceleration timescale is determined
by (e.g., Axford 1981)

tacc ¼
3

u1 � u2

Z pmax

pmin

�1ðpÞ
u1

þ �2ðpÞ
u2

� �
dp

p
; ð2Þ

with u1 and u2 being the upstream and downstream flow
speeds in the shock frame and with �1,2 being the particle
diffusivities in the respective media. One can recognize in
the last formula the sum of average residence times of a par-
ticle spent upstream and downstream of the shock front

before it completes one acceleration cycle, integrated over
the entire acceleration history from pmin to pmax. Given the
flow speeds u1,2, which in many cases are known reasonably
well, the most sensitive quantity is the particle diffusivity �.
This, in turn, is determined by the rate at which particles are
pitch angle scattered by the Alfvén turbulence. If the latter
were just background turbulence in the interstellar medium
(ISM), the acceleration process would be too slow to pro-
duce the galactic CRs in SNRs (e.g., Lagage & Cesarsky
1983). However, it was realized (e.g., Bell 1978; Blandford
& Ostriker 1978) that accelerated particles should create the
scattering environment by themselves, generating Alfvén
waves on the cyclotron resonance kpl=m ¼ !c, where k is
the magnitude of the wavevector (directed along the mag-
netic field) and p, l, m, and !c are the particle momentum,
cosine of its pitch angle, mass, and nonrelativistic (eB=mc)
gyrofrequency. Note that the diffusive character of particle
transport (and the determination of �) has been rigorously
obtained within a quasi-linear theory, i.e., it is subject to
constraints on the turbulence level.

The wave generation, however, proved to be very efficient
(see e.g., Völk, Drury, &McKenzie 1984; Ko 1991, and x 2).
In particular, using again the quasi-linear approximation,
the normalized wave energy density �B=B0ð Þ2 can be related
to the partial pressure PC of CRs that resonantly drive these
waves through

�B=B0ð Þ2� MAPC=�u
2 ; ð3Þ

where MA is the Alfvén Mach number and �u2 is the shock
ram pressure. Since MA is typically a large parameter,
�B=B0 may become larger than unity, even if the accelera-
tion itself is relatively inefficient, i.e., if PC=�u25 1. Strictly
speaking, this invalidates the quasi-linear approach as a
means for describing the generation of strong turbulence at
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shocks. The commonly accepted way to circumvent this dif-
ficulty is to assume that the turbulence saturates at
�B=B0 � 1, which means that the mean free path of pitch
angle scattered particles is of the order of their gyroradius
rg. Then, � ¼ �B � crgðpÞ=3, where the speed of light c is
substituted for the CR velocity and �B stands for the Bohm
diffusion coefficient. This immediately sets the acceleration
timescale in equation (2) at the level of the particle gyroper-
iod eB=pð Þ�1 times c=u1ð Þ2. In principle, the turbulence level
�B=B0 significantly exceeding unity is possible in local shock
environments (see, e.g., numerical studies by Bennett & Elli-
son 1995; Bell & Lucek 2000). As a consequence of that, the
diffusion coefficient could be even smaller than �B, and
hence the acceleration rate would be faster than it is com-
monly believed to be. At the same time, since Alfvénic-type
turbulence is usually considered, the respective velocity per-
turbations must be super-Alfvénic and supersonic, which
raises questions about the ability of the turbulence to sus-
tain itself in an extended area without rapid dissipation that
will decrease the �B=B0 level. Likewise, decreasing of the
turbulence level below the Bohm limit, due to the finite
extent of the turbulence zone upstream and wave damping,
should slow down the acceleration (Lagage & Cesarsky
1983; Achterberg & Blandford 1986).

However, the acceleration rate given by equation (2) with
� ¼ �B was found to be fast enough to explain (at least mar-
ginally) the acceleration of CRs in SNRs up to the ‘‘ knee ’’
energy, �1015 eV, over their lifetime. Much further opti-
mism has been caused by the studies of Drury, Aharonian,
& Völk (1994) andNaito & Takahara (1994). They analyzed
the prospects for the detection of super-TeV emission from
nearby SNRs that should be produced by the decays of �0

mesons born in collisions of shock-accelerated protons with
the nuclei of interstellar gas. The expected fluxes were
shown to be detectable by imaging Cerenkov telescopes.
Note that similar calculations with similar conclusions have
been performed by Berezinsky & Ptuskin (1989). Moreover,
EGRET (Esposito et al. 1996) detected a lower energy (d1
GeV) emission coinciding with some galactic SNRs. The
spectra also seemed consistent with the DSA predictions.
One can even argue that the low-energy EGRET data veri-
fied one of the most difficult elements of the entire accelera-
tion mechanism, the so-called injection. In essence, this is a
selection process (not completely understood) whereby a
small number of thermal particles become subject to further
acceleration (see Gieseler, Jones, & Kang 2000; Zank et al.
2001 for the latest development of the injection theory and
Malkov & Drury 2001 for a review) and can then be treated
by standard means of the DSA theory that was designed to
describe particles with velocities much higher than the shock
velocity. Therefore, what seemed left for the theory was to
continue the EGRET spectrum (that sets the normalization
constant, or injection rate) with some standard DSA slope
(nearly E�2 or somewhat steeper) and to predict the �-ray
flux in the TeV range in which it could be detected by Ceren-
kov telescopes.

Unfortunately, despite the physical robustness of the
arguments given by Berezinsky & Ptuskin (1989), Drury
et al. (1994), and Naito & Takahara (1994), no statisti-
cally significant signal that could be attributed to any of
the EGRET sources was detected. The further complica-
tion is that a critical energy band between GeV and TeV
energies is currently not covered by available
instruments. Therefore, based on these observational

results, it was suggested (e.g., Buckley et al. 1998) that
there is probably a spectral break or even cutoff some-
where within this band. However, the spectrum above
GeV energies remains an enigma. This will be resolved
perhaps with the launch of the Gamma-Ray Large-Area
Space Telescope mission and when the new generation of
Cerenkov telescopes with lower energy thresholds begins
to operate. However, the discovery of the 100 TeV emis-
sion from SNR 1006 (Tanimori et al. 1998), as well as
some other remnants not seen by EGRET at lower ener-
gies (see, e.g., Atoyan et al. 2000; Aharonian et al. 2001;
Allen, Petre, & Gotthelf 2001; Kirk & Dendy 2001 for a
complete discussion), although almost universally identi-
fied with electrons diffusively accelerated to similar ener-
gies, is widely interpreted as a strong support of the
mechanism itself. The above suggests, however, that in
reality, it might be not as robust as is its simplified test-
particle version with enhanced turbulence and particle
scattering.

In this paper we attempt to understand what may hap-
pen to the spectrum provided that the acceleration is
indeed fast enough to access TeV energies over the life-
time of the SNRs in question. Our starting point is that
the fast acceleration also means that the pressure of
accelerated particles becomes significant in an early stage
of supernova evolution so that the shock structure is
highly nonlinear. At first glance, this should not slow
down acceleration, since according to equation (3), this
changes the turbulence level, thus improving particle con-
finement near the shock front and thus making accelera-
tion faster (smaller �). However, the formation of a long
CR precursor (in which the upstream flow is gradually
decelerated by the pressure of CRs, PC) influences the
spectral properties of the turbulence by affecting the prop-
agation and excitation of the Alfvén waves. This effect is
twofold. First, the waves are compressed in the converg-
ing plasma flow upstream and are thus blueshifted, elimi-
nating the long waves needed to keep exactly the highest
energy particles diffusively bound to the accelerator. Sec-
ond, and as a result of the first, at the highest energies
there remain fewer particles than expected, so that the
level of resonant waves is smaller, and hence the accelera-
tion rate is lower. We believe that these effects have been
largely overlooked before, which may have caused a sub-
stantial overestimation of the particle maximum energy
in strongly nonlinear regimes.

2. BASIC EQUATIONS AND APPROXIMATIONS

We use the standard diffusion-convection equation for
describing the transport of high-energy particles (CRs) near
a CR-modified shock. First, we normalize the distribution
function f ðpÞ to p2 dp:

@f

@t
þU

@f

@x
� @

@x
�
@f

@x
¼ 1

3

@U

@x
p
@f

@p
: ð4Þ

Here x is directed along the shock normal, which for
simplicity is assumed to be the direction of the ambient
magnetic field. The two quantities that control the accelera-
tion process are the flow profile UðxÞ and the particle diffu-
sivity �ðx; pÞ. The first one is coupled to the particle
distribution f through the equations of mass and momen-
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tum conservation,

@

@t
�þ @

@x
�U ¼ 0 ; ð5Þ

@

@t
�U þ @

@x
�U2 þ PC þ Pg

� �
¼ 0 ; ð6Þ

where

PCðxÞ ¼
4�

3
mc2

Z 1

pinj

p4dpffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p f ðp; xÞ ð7Þ

is the pressure of the CR gas, Pg is the thermal gas pressure,
and � is its density. The lower boundary in momentum
space, pinj, separates CRs from the thermal plasma that is
not directly involved in our kinetic treatment of CRs but
rather enters the equations through the magnitude of f at
p ¼ pinj, which specifies the injection rate of thermal plasma
into the acceleration process. The injection rate is assumed
to be small and does not affect the gas density conservation
given by equation (5) or the gas pressure in equation (6).
These effects have been systematically included by Kang &
Jones (1990). The particle momentum p is normalized tomc.

Since we are primarily concerned with the wave genera-
tion and particle confinement upstream of the discontinuity,
we assume that the upstream region is at x > 0, so that the
velocity profile can be represented in the shock frame as
UðxÞ ¼ �uðxÞ, where the (positive) flow speed uðxÞ jumps
from u2 � u(0�) downstream to u0 � uð0þÞ > u2 across the
subshock and then gradually increases up to
u1 � uðþ1Þ � u0 (see Fig. 2a).

We can neglect the contribution of the gas pressure to
equation (6) in the upstream region (x > 0, but not at
x � 0), restricting our consideration to the high Mach num-
ber shocks, M41 (see Malkov 1997 for the details of this
approximation). Of course, the gas pressure is retained
when treating the subshock (discontinuous part of the shock
structure). Since the CR pressure PC and the related energy
EC do not vary on the subshock scale, the jumps of all rele-
vant physical quantities can be obtained from the conven-
tional Rankine-Hugoniot conditions. In particular, for the
flow compression at the subshock, we have

u0
u2

¼ � þ 1

� � 1þ 2M�2
0

: ð8Þ

Here M0 is the Mach number in front of the subshock.
When the flow compression in the CR precursor can be
considered as adiabatic, this can be expressed through the
given far upstream Mach number in a standard way,
M2

0 ¼ M2=R�þ1, where R � u1=u0 is the flow precompres-
sion in the CR precursor. We also set � ¼ 5=3 in what
follows.

Equations (4)–(8) self-consistently describe both the
shock structure uðxÞ and the particle spectrum f ðx; pÞ,
given its normalization (injection rate) and the particle diffu-
sivity �ðx; pÞ. The determination of these two parameters is
a serious problem in its own right, which is discussed in the
next subsection. Even when they are parameterized rather
than self-consistently determined, there are still two differ-
ent approaches to the system formed by equations (4)–(8).
One is the so-called two-fluid model (TFM), which simply
takes the energy moment EC of equation (4) and thus elimi-
nates the particle momentum p, leaving, however, the
remaining system unclosed, generally speaking. The TFM

has been introduced and partly analyzed by Axford, Leer, &
Skadron (1977). A complete graphical classification of its
stationary solutions has been given byDrury & Völk (1981),
while Axford, Leer, & McKenzie (1982) gave the full ana-
lytic solution. Time-dependent solutions have been studied,
e.g., by Dorfi (1990), Jones & Kang (1992), and Donohue et
al. (1994). The TFM closure problem becomes serious for �
growing substantially with p. There are theoretical indica-
tions that the character of the underlying kinetic solution
changes if this growth is faster than p1/2 and it is no longer
quantitatively described correctly by the TFM (e.g., Malkov
&Drury 2001). We therefore take a kinetic approach, which
is also discussed in the next subsection.

Turning to the determination of the CR diffusion coeffi-
cient �, we note that since the CR precursor scale height is
��ðpmaxÞ=u1 � ðc=u1ÞrgðpmaxÞ, which is still c=u141 times
larger than the longest wave in the spectrum, �rgðpmaxÞ, we
can use a wave kinetic equation in the eikonal approxima-
tion for describing the evolution of Alfvén waves:

@Nk

@t
þ @!

@k

@Nk

@x
� @!

@x

@Nk

@k
¼ �kNk þ St Nkf g : ð9Þ

HereNk is the number of wave quanta and ! is the wave fre-
quency ! ¼ �kuþ kVA ’ �ku. The left-hand side has the
usual Hamiltonian form that states the conservation of Nk

along the lines of constant frequency, !ðk; xÞ ¼ const on
the (k, x)-plane. The first term on the right-hand side
describes the wave generation from the cyclotron instability
of a slightly anisotropic particle distribution. It can be
expressed through its spatial gradient. The resonance condi-
tion for the wave-particle interaction also contains the par-
ticle pitch angle cos�1 l by means of the expression
kpl ¼ eB=c, which generally speaking requires the treat-
ment of particle distribution in two-dimensional momen-
tum space (p, l). A significant simplification can be
achieved by the so-called resonance sharpening procedure
(Skilling 1975; Drury, Duffy, & Kirk 1996), whereby a cer-
tain ‘‘ optimal ’’ value of l is ascribed to all particles, and the
resonance condition puts k and p into a one-to-one relation,
i.e., kp ¼ const. The second term on the right-hand side
stands for nonlinear wave-particle and wave-wave interac-
tions such as the induced scattering of waves on thermal
protons and mode coupling (Sagdeev & Galeev 1969). We
suggest a simple model for this nonlinear term in x 3.2.

To conclude this subsection, we emphasize that while
equations (4)–(8) already treat the acceleration process and
flow structure on equal footing, the fluctuation part given
by equation (9) must be included in this treatment, and as
we see in the next section, it by no means plays a subdomi-
nant role in this triad.

2.1. The Significance of Acceleration Nonlinearities

There are two aspects of the acceleration for which nonli-
nearity is crucial to its outcome. The first aspect is the exci-
tation of scattering waves by accelerated particles and the
second one is the back-reaction of these particles on the
shock structure. The latter is critical for both the particle
injection and the wave excitation; that is, for particle con-
finement.

Indeed, as we stated, the system of equations (4)–(8) self-
consistently describes particle acceleration and the shock
structure (nonlinearly modified by the particle pressure)
only if the particle scattering law is known (which is con-
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tained in the diffusion coefficient �) and the injection rate
from the thermal plasma is also known. Physically, the scat-
tering rate determines the particle maximum momentum
pmax, as equation (2) indicates. The difficulty, however, is
that both the cutoff momentum pmax and the wavenumber
cutoff of the scattering turbulence change in time simultane-
ously (one controlling the other) due to the cyclotron reso-
nance condition. However, the speed at which they change
has not been calculated self-consistently. The linear solution
given by equations (1) and (2) is essentially based on the
assumption that pmax is growing with the help of already-
existing stationary turbulence. In reality, the particle energy
cutoff and the corresponding cutoff on the wave spectrum,
as we mentioned, both advance together, and since waves
need to grow from a very small background amplitude at
each current cutoff position, an additional slow-down must
be introduced into the entire process. A good analogy here
is the problem of beam relaxation in plasmas (Ivanov 1978)
(in which a front on the particle velocity distribution also
propagates on self-generated rather than on preexisting res-
onant waves). This suggests that the speed of the front in
momentum space, as given by equations (1) and (2), should
be reduced by a factor of �lnðW=WISMÞ, whereWISM is the
background turbulence amplitude and W is the saturated
wave amplitude generated by accelerated particles. As we
mentioned, the latter may be associated with WB ¼ B2

0=8�,
so that the acceleration time given by equation (2) may
increase by a factor of �10 (e.g., Achterberg, Blandford, &
Reynolds [1994] estimateWISM=WB � 10�5). Evidently, the
additional logarithmic factor takes care of the time needed
for waves to grow before they start to scatter particles with
the current momentum p at the Bohm rate.

The above consideration also shows that particles with
p < pmax are confined to the shock through fast pitch angle
scattering, while particles with p > pmax are only scattered
very slowly due to the absence of self-generated waves and
leave the accelerator. Mathematically, this means
f ðp > pmaxÞ � 0 or �ðp > pmaxÞ � 1. Note that the propa-
gating front solution must produce a different (sharper) cut-
off shape at p ¼ pmaxðtÞ than those from approaches based
on the preexisting turbulence, i.e., on a prescribed (for all p)
�ðpÞ, (e.g., Berezhko, Yelshin, & Ksenofontov 1996). Even
if the speed and the form of the front at pmaxðtÞ are
unknown, the above Ansatz allows an analytic solution of
the system in equations (4)–(8) (Malkov 1997) for p < pmax

in the limit of strong shocks (M41), for high maximum
momentum pmax (that may slowly advance in time) and for
essentially arbitrary, but in particular Bohm, �ðpÞ depend-
ence for p < pmax (which as we mentioned is often assumed
in numerical studies for all p, e.g., Duffy 1992). The analytic
solutions are tabulated, e.g., by Malkov & Drury (2001),
and extensively used below.

Since waves are generated by accelerated particles
upstream in the precursor, the main nonlinear impact on
the wave dynamics and thus on pmax must be from the
flow precompression. The latter can be characterized by
the parameter R ¼ u1=u0, which is shown in Figure 1 as
a function of the injection parameter � for different maxi-
mum momenta pmax. The injection parameter � is related
to the normalization of the particle distribution function
f in equation (4) as

� ¼ 4�

3

mc2

�1u
2
1

p4inj f0ðpinjÞ ; ð10Þ

where f0ðpÞ is the downstream value of f. In this form,
the injection rate � naturally appears as a coefficient in
front of the CR pressure in the momentum flux conserva-
tion equation (6) when the CR pressure is normalized to
the ram pressure �1u

2
1 (see eq. [12] in x 3).

One aspect of the solution shown in Figure 1 that is
important here is that for any given injection rate �, the
growing maximum momentum pmaxðtÞ will ultimately
exceed a critical value, beyond which the test-particle regime
fails to exist. (It is natural to assume that the acceleration
starts at this regime, i.e., where R � 1, e.g., point A on Fig.
1). Formally, the system must then transit to a much higher
R that will still be very sensitive to the current values of �
(�0.01) and pmax (=106), as can be seen from Figure 1 (point
B). Obviously, the further development of the acceleration
process will depend on how the parameters � and pmax react
to this strong increase of R. One possibility is to simply
assume that a constant fraction of the subshock plasma is
injected, so that the injection rate substantially increases
because the plasma density at the subshock grows linearly
withR. Then, the systemmust leave the critical region where
the Rð�Þ dependence is very sharp or even nonunique and
proceed to a highly supercritical regime characterized by
higher � (point C). The curve Rð�Þ saturates there at the
level /M3/4, which in the most straightforward way can
be deduced from the condition of the subshock preserva-
tion, M0e1 (see eq. [8]). A general formula for Rð�; MÞ
with theM3/4 scaling as a limiting case can be found inMal-
kov (1997). This scenario was realized in many numerical
models (e.g., Ellison & Eichler 1985; Kazanas & Ellison
1986; Berezhko et al. 1996), since they normalized the injec-
tion parameter to the plasma density at the subshock
�0 ¼ �1R, which should clearly lead to the R / M3=4 scal-
ing. Obviously, the precompression R and thus the accelera-
tion efficiency will then be insensitive to � (in deep contrast
to the case � ’ const, point B) since point C is already on

 

 

Fig. 1.—Response of the shock structure (bifurcation diagram) to the
injection of thermal particles at the rate �. The strength of the response is
characterized by the precompression of the flow in the CR shock precursor
R ¼ u1=u0. The flow Mach number M ¼ 150. Different curves correspond
to different values of maximum momentum normalized to mc. For each
given � and pmax, one (for pmax < pcr ’ 500Þ or three (for pmax � pcr) solu-
tions exist. Note that solution multiplicity does not exist for shocks with
M � Mcr ’ 70 (Malkov et al. 2000; Malkov & Drury 2001). Given an
initial injection � and compression R at point A [with RðAÞ � 1], the injec-
tion and R at point C are calculated as �ðCÞ ¼ RðCÞ�ðAÞ (see text for fur-
ther explanations).
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the saturated part of the Rð�Þ curve. Often, this insensitivity
is observed in numerical studies with the parameterized
injection rate (e.g., Berezhko et al. 1996), so it is tempting to
conclude that we do not need to know the injection rate very
accurately as soon as it exceeds the critical rate.

However, the injection rate is known to be suppressed by
a number of self-regulating mechanisms such as trapping of
thermal particles downstream by the injection driven turbu-
lence (Malkov 1998) and insufficient heating of the down-
stream plasma in strongly modified shocks. These effects
seem to more than compensate for the compressive growth
of plasma density. Recently, these effects have been system-
atically included in numerical studies by Gieseler et al.
(2000) and Kang, Jones, & Gieseler (2001). They did not
confirm the simple � / R rule. Instead, they indicated that
in the course of nonlinear shock modification accompanied
by growing R, the injection rate � remains remarkably con-
stant (Gieseler et al. 2000). Moreover, the preliminary
results of a new adaptive mesh refinement (AMR) modifica-
tion of these schemes, allowing higher pmax, indicate that the
injection efficiency may even begin to decrease with growing
pmax (Kang et al. 2001; Kang, Jones, &Gieseler 2002). These
self-regulation mechanisms are applicable to both strictly
parallel and oblique shocks, of which the former are clearly
an exceptional case. Even slightly oblique shocks have an
additional self-regulation of injection via a nonlinearly
increasing obliquity. Indeed, since the tangential magnetic
field component Bt is amplified at the subshock by a factor
ofR, the subshockmay be strongly oblique even if the shock
itself is not. This leads to an exponentially strong suppres-
sion of the leakage of downstream thermal particles to
upstream (for a Maxwellian downstream distribution),
since the intersection point of a field line (which the particles
sit on) with the shock front rapidly moves away from these
particles. On the other hand, enhanced particle reflection
off the oblique subshock should increase injection.

Inspection of Figure 1 shows that if we (conservatively)
assume �ðRÞ ¼ const (AB) rather than � / R (AC), the
results will differ dramatically, particularly in terms of the
injection rate. Note that particle spectra that correspond to
the points B and C also differ very strongly (see Malkov &
Drury 2001 for graphical examples). What is important for
the subject of the present paper is that in both these cases, as
well as for any other point on the part BC of the bifurcation
curve, the compression R is very high. It has been pointed
out by Malkov, Diamond, & Völk (2000) that this must
have a strong impact not only on the injection rate as dis-
cussed above, but also on the wave propagation and thus on
the particle confinement. This in turn should lead to signifi-
cant reduction of the maximum momentum achievable by
this acceleration mechanism. We quantify these effects in
the next section.

3. ANALYSIS

Returning to equations (4) and (9), it is convenient to use
the wave energy density Ik normalized to d ln k and to the
energy density of the background magnetic field B2

0=8�
instead ofNk,

Ik ¼ k2VA

B2
0=8�

Nk ; ð11Þ

along with the partial pressure of CRs normalized to d ln p

and to the shock ram pressure �1u
2
1:

P ¼ 4�

3

mc2

�1u
2
1

p5ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p f ðp; xÞ : ð12Þ

Using these variables, denoting g ¼ P=p, and assuming a
steady state and p41, equations (4) and (9) can be rewritten
as (Bell 1978; Drury et al. 1996)

@

@x
ugþ �

@g

@x

� �
¼ 1

3
uxp

@g

@p
; ð13Þ

u
@I

@x
þ uxp

3 @

@p

I

p2
¼

2u21
VA

@

@x
P� St If g : ð14Þ

Here ux � @u=@x and the wave intensity I � IðpÞ ¼ Ik is
now treated as a function of p rather than k, according to
the resonance relation kp ¼ const. The CR diffusion coeffi-
cient � can be expressed through the wave intensity by

� ¼ �B

I
; ð15Þ

where �BðpÞ is the Bohm diffusion coefficient. The difference
between these equations and those used by, e.g., Bell (1978)
and Drury et al. (1996) is due to the terms with ux 6¼ 0 and
the Stoss term on the right-hand side of equation (14). Far
away from the subshock, where ux ! 0 and where the wave
collision term is also small due to the low particle pressure
P, one simply obtains

I ¼ 2u1
VA

P : ð16Þ

Note that this shows the limitation of the linear approach in
the case of strong shocks, MA � u1=VA41. The most
important change to the acceleration process comes from
the terms with ux 6¼ 0. Indeed, let us first recall how equa-
tion (13) can be treated in the linear case ux � 0 for x > 0.
We integrate both sides between some x > 0 and+l, which
yields

u1gþ
�0VA

2u1

1

g

@g

@x
¼ 0 ; ð17Þ

where we denote �0 � �B=p ’ const for p41. Although this
equation has a formal spatial scale l � �0=u1MAg, its only
solution is a power law,

g / 1= xþ x0ð Þ ; ð18Þ

and thus has no scale [x0 ¼ x0ðpÞ is an integration constant].
It simply states the balance between the diffusive flux of par-
ticles upstream (second term in eq. [17]) and their advection
with thermal plasma downstream (the first term). As we see
below, this balance is not possible everywhere upstream,
and the physical reason why it appears to be so robust in the
case ux ¼ 0 is that flows of particles and waves on the (x, p)-
plane (including the diffusive particle transport) are both
directed along the x-axis. If, however, the flow modification
upstream is significant (ux > 0, x > 0), the situation changes
fundamentally. Figure 2 explains how the flows of particles
and waves on the (x, p)-plane become misaligned, even
though they are both advected with the thermal plasma. In
fact, the flows separate from each other, and since neither of
them can exist without the other (waves are generated by
particles that, in turn, are trapped in the shock precursor by
the waves), they both disappear in some part of phase space.
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To understand how this happens, we rewrite equations (13)
and (14) in the following characteristic form (we return to
the particle number density f ):

u
@

@x
� 1

3
uxp

@

@p

� �
f ¼ � @

@x
�
@f

@x
; ð19Þ

u
@

@x
þ uxp

@

@p

� �
I

p2
¼

2u21
VAp2

@

@x
P� 1

p2
St If g : ð20Þ

One sees from the left-hand sides of these equations that
particles are transported toward the subshock in x and
upward in p along the family of characteristics up3 ¼ const,
whereas waves also move toward the subshock but down-
ward in p along the characteristics u=p ¼ const, so that the
longest waves generated by the highest energy particles
(p ’ pmax), far upstream where u ’ u1, are transported with
the flow to p ¼ p� � pmaxu0=u1 when they reach the sub-
shock (u � u0). As long as uðxÞ does not significantly change
(u0 � u1), the waves and particles propagate together (along
the x-axis) as, e.g., in the case of unmodified shock or far
away from the subshock, where ux ! 0. When the flow
compression becomes important (ux 6¼ 0), their separation
leads to the decrease of both the particle and wave energy
densities toward the subshock. Note that for strongly non-
linear acceleration regimes, p�5 pmax. To describe this
mathematically, let us assume first that the relation in equa-
tion (16) between P and I is still a reasonable approxima-
tion, even if ux is nonzero but small. Then, integrating
equation (13) again between some x > 0 and x ¼ 1, instead
of equation (17), we obtain

ugþ u1
L

g

@g

@x
¼ � 1

3

Z 1

x

uxp
@g

@p
dx : ð21Þ

In contrast to the solution of equation (17), the length scale
L � �0=2u1MA enters the solution of this equation. This is
because it has a nonzero right-hand side. In the next subsec-

tion we obtain a solution of this equation that rapidly
changes on a scale�L.

3.1. Internal Asymptotic Solution for g

First we note that L5LC , where LC ¼ �ðpmaxÞ=u1 is the
total scale height of the CR precursor on which uðxÞ
changes. Next, in addition to x and p, we introduce a fast
(internal) variable �ðx; pÞ as follows,

� ¼ x� xf ðpÞ
L

; ð22Þ

where x ¼ xf ðpÞ is some special curve on the (x, p)-plane
that bounds the solution and is specified below. We rewrite
equation (21) for

� fixed; L ! 0 : ð23Þ

Separating fast variable terms on the right-hand side by
replacing

@g

@p
! @g

@p
� L�1 @xf

@p

@g

@�
;

to the leading order in L=LC ! 0, we obtain

uf gþ
u1
g

@g

@�
¼ 1

3
p
duf
dp

G � gð Þ � 1

3

Z 1

x

uxp
@G

@p
dx : ð24Þ

Here we denote uf ðpÞ � u xf ðpÞ
� �

and

Gðx; pÞ ¼ lim
�!1

gð�; x; pÞ : ð25Þ

The existence of this limit is confirmed on obtaining the sol-
ution of equation (24) below. First, we introduce the follow-
ing notations:

wðpÞ ¼ uf þ
1

3
p
duf
dp

;

Sðx; pÞ ¼ 1

3
p
duf
dp

G � 1

3

Z 1

x

uxp
@G

@p
dx :

Equation (24) can then be rewritten as

wgþ u1
g

@g

@�
¼ S ; ð26Þ

and its solution can thus be written as

gð�; x; pÞ ¼ Sðx; pÞ
wðpÞ þ e�S�=u1

: ð27Þ

One sees that the limit in equation (25) indeed exists and is
equal to G ¼ S=w. Furthermore, equation (27) describes a
transition front on the particle distribution between its
asymptotic value g ¼ G at � ! 1 and g ¼ 0 at � ! �1.
This front solution results from particle losses caused by the
lack of resonant waves toward the subshock, as we argued
while discussing equations (19) and (20). Note that accord-
ing to the ordering in equation (23), we should set x ¼ xf ðpÞ
in Sðx; pÞ when solving equation (26) for gð�Þ, and we must
indeed do it for � � 1 as well as for all negative � < 0. In the
limit � ! 1, however, we can use the result from equation
(27) for arbitrary x > xf ðpÞ, since it remains valid in this
case; however, it merely states that in this region, the com-
plete solution is represented by its ‘‘ external ’’ part Gðx; pÞ
(eq. [25]). This, in turn, is yet to be determined. Before we do
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p
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u

u

u L
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*
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ξ(x,p)=0Front

Fig. 2.—(a) Flow structure and (b) phase plane of particles and resonant
waves (p� ¼ pmaxu0=u1; see text).

No. 2, 2002 TeV PROTONS IN SNRs 861



this in x 3.3, we should verify the validity of the internal sol-
ution and calculate its unknown function xf ðpÞ.

3.2. NonlinearModification of the Internal Solution and
Determination of xf ðpÞ

The way that we resolved equation (14) for I (see eq. [16])
may become inadequate for two reasons. First, the second
term on the left-hand side of equation (14) may become
comparable to the first one. This problem could be resolved,
in principle, by integrating this equation along the charac-
teristic u=p ¼ const (instead of the x-axis, as we did to
obtain eq. [16]), unless the Stoss term on its right-hand side
alters the hyperbolic type of this equation. A matter of big-
ger concern is that the increase of ux obviously has to do
with strong shock modification, so that P � 1. Clearly,
under these circumstances, the balance between the left-
hand side of equation (14) and the pressure term on the
right-hand side leads to impossibly large I. Evidently, the
second term on the right-hand side must come into play
before this has happened, so that the steady state will be
maintained by the balance between this term and the pres-
sure term, while the left-hand side will become subdomi-
nant. Thus, for Iwe have the following equation:

2u21
VA

@

@x
P� St If g ¼ 0 : ð28Þ

As is often the case, we can assume that the wave collision
term StfIg / I2, and in the long-wave limit k ! 0, it is also
proportional to k2 (which means to p�2). The pressure gra-
dient can be estimated as P=Lp, where Lp is the scale height
of particles of momentum p, which we assume for simplicity
to be proportional to p as in the standard Bohm case. Thus,
for Iwe have

I2 ’ u1
�VA

pP ; ð29Þ

where � characterizes the strength of nonlinear wave inter-
action. Using the last estimate, instead of equation (21), we
have

ugþ u1
Lnlffiffiffi
g

p
@g

@x
¼ � 1

3

Z 1

x

uxp
@g

@p
dx ; ð30Þ

where Lnl ¼ �0�1=2=u1M
1=2
A . Introducing the fast variable �

from equation (22) with Lnl instead of L and repeating the
derivation in x 3.1, for gwe obtain the following equation,

wgþ u1ffiffiffi
g

p
@g

@�
¼ S ;

with the obvious solution

g ¼ S

w
tanh2

ffiffiffiffiffiffiffi
wS

p

2u1
� : ð31Þ

This solution is valid for �e�0 > 0 (�0 � G�1), whereas at
�1 < �d�0, one should use the linear equation (16) for the
wave spectral density and thus the solution in equation (27)
instead of equation (31). The uniformly valid solution can
also be obtained by using an interpolation between equation
(16) and equation (29) for I. We do not need, however,
the explicit form of the front transition in the particle
distribution in the region � � 1, which means x � xf ðpÞ.
We merely exploit the fact that this transition is much

narrower (its width is Dx � Lnl=½Gðxf ; pÞ�1=2) than that of
the main part GðxÞ in the interval xf < x < 1. The spatial
scale of the latter is at least ��B=u1, or even broader if the
linear approximation in equation (18) can be used, in which
case the length scale is determined by the linear damping of
Alfvén waves (Drury et al. 1996).

The only characteristic of the above internal solution that
is needed to calculate the external solution Gðx; pÞ is the
position of the front transition in g on the (x, p)-plane, i.e.,
we need to calculate the function x ¼ xf ðpÞ. To do this, we
return to equation (20). We solve it by neglecting its left-
hand side and finally arrive at the result for g and thus for I
in equation (20) that contains the fast variable �. Generally,
this produces large terms in the next order of approximation
coming from the left-hand side. To avoid that, we must
choose the position of the transition front [�ðx; pÞ ¼ 0] in
such a way that it coincides with one of the characteristics of
the operator on the left-hand side of equation (20), i.e.,

u
@

@x
þ uxp

@

@p

� �
�ðx; pÞ ¼ 0

or

uf ðpÞ � p
duf
dp

¼ 0 :

The choice of the concrete characteristic is based on the exis-
tence of the absolute maximum momentum pmax, beyond
which there are neither particles nor waves. That means

uf ðpÞ � u xf ðpÞ
� �

¼ u1
p

pmax
:

This formula shows how the converging flow uðxÞ trans-
forms the momentum cutoff at the periphery of the shock
transition (u � u1) to its reduced value p� � pmaxu0=u1 at
u ¼ u0 (Fig. 2). Note that p* is the momentum beyond which
the effect of wave compression on the particle spectrum is
significant. Finally, the function x ¼ xf ðpÞ is defined as

xf ðpÞ ¼ u�1 u1
p

pmax

� �
:

3.3. External Solution

While having obtained the form and the position
x ¼ xf ðpÞ of the narrow front in the particle distribution
gðx; pÞ, we still need to calculate g to the right from the
front where it decays with x (see Fig. 3). This would be the
external solutionGðx; pÞ introduced in the previous subsec-
tions. It is clear that

max
x

gðx; pÞ � Gðxf ; pÞ � G0ðpÞ ;

so that from equation (21), we have the following equation:

uf ðpÞG0ðpÞ ¼ � 1

3

Z 1

xf ðpÞ
uxp

@G

@p
dx : ð32Þ

The most important information about Gðx; pÞ is con-
tained inG0ðpÞ, for which from the last equation, we obtain

@

@p
vðpÞG0ðpÞ þ 4

u1
pmax

G0ðpÞ ¼ 0 ; ð33Þ
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where we have introduced vðpÞ by

vðpÞ ¼ 1

G0ðpÞ

Z u1

uf ðpÞ
Gðx; pÞ duðxÞ : ð34Þ

Equation (33) can easily be solved forG0,

G0ðpÞ ¼
Cu1
vðpÞ exp �4

u1
pmax

Z
dp

vðpÞ

� �
; ð35Þ

where C is a normalization constant that should be deter-
mined from matching this solution with that in the region
p < p�. However, the function v depends on the solution
itself. Fortunately, this quantity can be calculated prior to
determining G0, and therefore, this solution can be written
in a closed form. To illustrate this, let us consider a particu-
larly simple case of p ’ pmax and then turn to the general
case afterward. Clearly, p ’ pmax means uf ðpÞ ’ u1. Evi-
dently, we can replace G in equation (34) by G0, so that for
vðpÞ, we have vðpÞ ’ u1 � uf ðpÞ ¼ u1 1� p=pmaxð Þ. Thus,
from equation (35) we obtain the following shape of the cut-
off near pmax:

G0 ’ C pmax � pð Þ3 : ð36Þ

In the rest of the (x, p)-domain where x > xf ðpÞ and p is not
close to pmax, we can assume that the CR diffusion coeffi-
cient is close to its Bohm value. Indeed, in contrast to the
phase-space region x � xf ðpÞ, at each given (x, p) there are
waves generated along the entire characteristic of equation
(14) passing through that point of the phase space and
occupying an extended region of the CR precursor (Fig. 2).
We can then use the asymptotic highMach number solution
found inMalkov (1997):

gðx; pÞ ¼ g0ðpÞ exp � 1þ 	

�ðpÞ

Z x

0

u dx

� �
: ð37Þ

Here 	 is numerically small (typically ’ 1
6), and this solution

without a 	 term manifests the balance between the diffu-
sion and convection terms on the left-hand side of equation
(13), which is a more accurate approximation far upstream
where the flow modification (right-hand side) is weak. The
flow profile depends on the form of �ðpÞ, and for
� ¼ �B / p in the internal part of the shock transition, uðxÞ
behaves linearly with x. Adopting this solution to the region
x > xf , we can write

Gðx; pÞ ¼ G0ðpÞ exp � 1þ 	

�B

Z x

xf

u dx

 !
;

so that for v, we have

vðpÞ ¼
Z u1

uf ðpÞ
du exp � 1þ 	

�B

Z u

uf

u0 du0

uxðu0Þ

" #
:

In the Bohm case, we can use the simplified linear approxi-
mation for uðxÞ from Malkov (1997), u ¼ u0 þ u1x=LC ,
where LC ¼ ��Bðp̂pÞ=2
u1, 
 � 1:09, and it is implied that
the maximum contribution to the particle pressure comes
from the momentum p ¼ p̂p (specified later). Now we can
express v in the form of an error integral:

vðpÞ ’
Z u1

uf

du exp � 1þ 	ð ÞLC

2u1�BðpÞ
u2 � u2f

� 	� �
: ð38Þ

The algebra further simplifies in two limiting cases (the sec-
ond of which has already been mentioned):

vðpÞ ¼ u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��B=2u1 1þ 	ð ÞLC

p
; p5 pmax ;

1� p=pmax ; p ’ pmax :

(

This yields the following asymptotic behavior ofG0ðpÞ:

G0ðpÞ ¼

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p 1þ 	ð Þ=
p

p
exp � 8

pmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	ð Þpp̂p=


p� �
; p5 pmax ;

pmax � pð Þ3 ; p ’ pmax :

8><
>:

ð39Þ

This result was obtained for particles with momenta
p � p� � pmax=R ¼ pmaxu0=u1, whereas for p < p�, we can
use the spectra tabulated in Malkov & Drury (2001) for dif-
ferent pmax, which should now be associated with p ¼ p̂p .
The matching of these two spectra should give the normal-
ization constant C in the solution in equation (39). This is
the subject of the next section.

3.4. Connection with theMain Part of the Spectrum

A typical solution of the nonlinear acceleration problem
with a prescribed maximum momentum pmax calculated
using the method of integral equations developed inMalkov
(1997) and Malkov & Drury (2001) is shown in Figure 4
with the dash-dotted line. Since the influence of shock modi-
fication on the injection rate is not known for high pmax (see,
however, Kang et al. 2001, where the values of pmax � 10
have been reached), we have taken the injection rate
� � 0:1, i.e., well inside the interval between the points A
and C in Figure 1 (see x 2.1).

p

p

p

uuu0

v(p)

v(p)

p

(p  -p)

1/2

max

*

10

max

u=u (p)
f

losses

diffusion

convection

ac
ce

l.

Fig. 3.—Phase plane of accelerated particles in the flow velocity–particle
momentum coordinates. The particles are localized between the thick line
(abovewhich there are no resonant waves to confine them) and the thin line,
where the particle density decays exponentially toward higher u (see text).
The relevant transport processes are indicated by arrows.
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To calculate an integral spectrum containing both the
part modified by the wave compression in the shock precur-
sor as well as its lower energy downstream part (pdp�), we
proceed as follows (see eq. [37] for the spatial structure of
the spectrum). In the momentum range p < p� ¼ pmax=R,
we can obviously use the samemethod of integral equations.
However, the role of maximum momentum is now played
not by pmax but by p̂p (i.e., a dynamical cutoff where the maxi-
mum contribution to the CR pressure is coming from). Fur-
thermore, given � and p̂p, we calculate the self-consistent
flow structure with the precompression R shown in Figure 1
as well as the particle spectrum. The latter is shown in Fig-
ure 4 with the dashed line. Note that the spectrum matching
point p* with the cutoff area p� < p < pmax is now deter-
mined, and we are ready to obtain the final spectrum by cal-
culating its cutoff part from equations (35), (38), and (39).
The spectrum is drawn with the full line. The momentum p̂p
can now be obtained as a maximal point of the function pG0

(particle partial pressure per logarithmic interval) from
equation (39) (top line), which yields

p̂p � pmax

8

ffiffiffiffiffiffiffiffiffiffiffiffi



1þ 	

s
� 0:1pmax :

It should be clear from our treatment that this formula is
valid only when the shock is strongly modified, namely
when p� � pmax=R < 0:1pmax (the case that we are inter-
ested in). Since R cannot exceed M3/4, this means that the
shock must be sufficiently strong,M3=4 > 10.

4. DISCUSSION

There are at least two reasons to believe that the standard
acceleration theory may have estimated the maximum par-
ticle energy or the form of the spectrum below it incorrectly.
The first reason is simply a possible conflict with the obser-
vations of TeV emission from SNRs, as we discussed in the

x 1. The second reason is a theoretical one, that arises natu-
rally from considering the nonlinear response of the shock
structure to the acceleration that is exemplified in Figure 1.
According to this picture, the response is so strong that it is
unlikely that the acceleration can proceed at the same rate
with no change in physics after such a dramatic shock
restructuring (the precompression R may rise by 1–2 orders
of magnitude depending on the Mach number). Time-
dependent numerical simulations (e.g., Kang et al. 2002)
show that the modifications occur very quickly, and com-
pression is increased substantially even before pmax � 1
[note that this would be consistent with the bifurcation dia-
gram in Fig. 1 for initial � � ðc=u1ÞnCR=n1e0:1, where
nCR=n1 is the ratio of CR number density at the shock to
that of the background plasma far upstream]. The shock
modification, in turn, must follow rather abruptly after the
maximum momentum has passed through the critical value.
It was argued recently (Malkov et al. 2000) that this should
drive crucial acceleration parameters such as the maximum
momentum and injection rate back to their critical values,
which must limit shock modification and settle it at some
marginal level: the so-called self-organized critical (SOC)
level (see also Jones 2001; Malkov &Drury 2001; Malkov &
Diamond 2001 for more discussions of the critical interrela-
tion between the injection, maximum energy, and shock
structure). Mathematically, the SOC state is characterized
by the requirement of merging the two critical points on the
bifurcation diagram in Figure 1 into one inflection point on
the �ðRÞ graph. Perhaps the most appealing aspect of this
approach is its ability to predict the values of all three order
parameters (injection rate, maximum momentum, and
compression ratio) given only the control parameter (the
Mach number), just from our knowledge of the nonlinear
response Rð�; pmaxÞ shown in Figure 1, and no further
calculations.

However, the required back-reaction mechanisms on the
injection and maximum momentum need to be demon-
strated to operate. We have already discussed at a qualita-
tive level how the injection rate is reduced by shock
modification. The subject of this paper has been the reduc-
tion of particle momenta related to the formation of a spec-
tral break at p ¼ p�, as a result of wave compression in a
modified shock precursor. The position of the spectral break
is universally related to the degree of system nonlinearity R,
since p� ¼ pmax=R. Hence, the problem seems to be con-
verted to the study of nonlinear properties of the accelera-
tion that are formally known from the analytic solution
shown in Figure 1. It should be noted, however, that the
injection rate � required for accurate determination of the
spectral break p* through R, in the case of strongly nonlin-
ear acceleration, can currently be obtained only from the
SOC Ansatz. Another obvious restriction to our mechanism
is that the significant reduction of p* is not to be expected in
oblique shocks, where the resonance relation kp / B is
approximately preserved because of the compression of B
simultaneously with k. On the other hand, as we already
mentioned in x 2.1, the nonlinear increase of the subshock
obliqueness should strongly reduce the proton injection
rate, which should ultimately reduce the density of the high-
est energy particles as well. It can also open the door to the
preferential acceleration of electrons at the quasi-perpendic-
ular portions of the subshock, since they may be injected
rather efficiently there (seeMalkov &Drury 2001, and refer-
ences therein).

Fig. 4.—Particle spectra at a strong shock obtained from an analytic sol-
ution (Malkov 1997; Malkov &Drury 2001) forM ¼ 150 (as in Fig. 1) and
injection rate � � 0:1. The dash-dotted line shows the solution with the
abrupt momentum cutoff at p ¼ pmax ¼ 105. The spectrum drawn with the
solid line demonstrates the effect of wave compression calculated using eqs.
(35) and (38). The spectrum that would be obtained using the same
technique as for the dash-dotted case but with the maximummomentum at
p ¼ p̂p (see text) is shown by the dashed line.
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An equally important problem is that strong losses of par-
ticles between p* and pmax must slow down the growth of
pmaxðtÞ due to the reduction of resonant waves. As we
argued in x 2.1, this may result in an order of magnitude
slower acceleration than one would expect from the stand-
ard Bohm diffusion paradigm. Consequently, the dynami-
cally and observationally significant spectral break p* may
be at least 2 orders of magnitude below the maximum
momentum pmax (again, depending on M) that could be
reached in the unimpeded acceleration, which is normally
implied in estimates of maximum energy achievable in
SNRs over their active lifetime.

In addition to the above mentioned uncertainty in
pmaxðtÞ, its relation to the position of the spectral break
p� ¼ pmax=R also needs further clarification. Indeed, since
R depends on a dynamical cutoff p̂p, which in general is
linked to p* and pmax, the latter relation is still implicit. It
can be easily resolved, however, in a supercritical regime
[the saturated part of theRð�Þ dependence in Fig. 1, see also
Malkov & Drury 2001 for details], which requires1

�p̂p=pinj4M3=4. One then simply has R � M3=4. As it was
argued, however, the injection is unlikely to be high enough
to reach this regime. An additional argument against it is
that the spectral break becomes unrealistically small in the
M ! 1 limit, since p� ¼ pmax=M3=4. In the opposite case,

�p̂p=pinj5M3=4, the compression ratio saturates with M at
R � �p̂p=pinj. Note that the injection rate must still be above
critical; otherwise R � 1. Now we need to specify p̂p. The
simple approximation used in the previous section yielded
p̂p � 0:1pmax, so that p� � 10pinj=� (independent of pmax),
which can be regarded as a lower bound on p*. Indeed, the
above relation between p̂p and p* can be applied only to the
outermost part of the shock transition (see xx 3.3 and 3.4).
Downstream, the spectrum cuts off very sharply immedi-
ately beyond p* (x 3.1). Therefore, the dynamical cutoff
p̂p � p�, and we obtain the following upper bound on p*,
p� � pinjpmaxðtÞ=�


 �
1=2.

It should be clear that unless � is dramatically reduced as
a result of shock modification, even this upper bound places
p* way below pmax. This may be the reason for the nondetec-
tion of protons at TeV energies in SNRs. Finally, this does
not contradict the detection of 10–100 TeV electrons in,
e.g., SNR 1006, since they may be accelerated by other
mechanisms (e.g., Papadopoulos 1981; Galeev 1984; Bykov
&Uvarov 1999; Laming 2001) or may have higher radiation
efficiency.
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