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The dynamics of and an interplay among structures !mean shear flows, zonal flows, and generalized
Kelvin–Helmholtz modes" are studied in drift wave turbulence. Mean shear flows are found to
inhibit the nonlinear generation of zonal flows by weakening the coherent modulation response of
the drift wave spectrum. Based on this result, a minimal model for the L→H !low- to
high-confinement" transition is proposed, which involves the amplitude of drift waves, zonal flows,
and the density gradient. A transition to quiescent H-mode sets in as the profile becomes sufficiently
steep to completely damp out drift waves, following an oscillatory transition phase where zonal
flows regulate drift wave turbulence. The different roles of mean flows and zonal flows are
elucidated. Finally, the effect of poloidally nonaxisymmetric structures !generalized Kelvin–
Helmholtz mode" on anomalous transport is investigated, especially in reference to damping of
collisionless zonal flows. Results indicate that nonlinear excitation of this structure can be
potentially important in enhancing anomalous transport as well as in damping zonal flows. © 2003
American Institute of Physics. #DOI: 10.1063/1.1559006$

I. INTRODUCTION

Regulation of anomalous transport by sheared flows is
conceived as a most promising mechanism for accessing a
high confinement regime !the so-called H-mode" in fusion
plasmas. This regulation is brought about by the decorrela-
tion of drift wave turbulence by shearing, which reduces the
spatial scales of turbulent eddies, eventually tearing them
apart. The importance of this effect was first recognized for a
!time-averaged" mean E!B shear flow !see Ref. 1, and ref-
erences therein", which is mainly driven by the density
and/or temperature gradient. The shearing by a mean flow is
coherent in time and thus can be very efficient in reducing
transport. Furthermore, the damping of drift waves by a
mean shear flow steepens the profile as a result of the re-
duced turbulent transport, and thus can even further boost the
drift wave damping. This process appears to be a crucial
ingredient in the transition to H-mode, although the causal
relation between the profile steepening and turbulence damp-
ing has not yet been established experimentally.

In addition to mean flows, the suppression of turbulence
can occur by zonal flows which are self-generated from tur-
bulence via Reynolds stress.2 Unlike a mean flow, these are
random E!B poloidal flows, with finite, but low frequency.
The reduction in anomalous transport by zonal flows has
been clearly demonstrated in computer experiments; it is also
shown in laboratory experiments.3 Zonal flows may be po-
tentially as important as mean flows in regulating turbulence
because of their radial localization on small scales !which
enhances the shearing rate", even if their finite correlation
time !or frequency" may reduce the shearing effect.4 In par-
ticular, the presence of zonal flows around the L→H transi-

tion was indicated by a strong !three wave" coupling between
zonal flows and drift waves through a bicoherence analysis.5
It is interesting that in contrast to the case of a mean shear
flow, drift wave turbulence and zonal flows are
self-regulating.6 That is, the damping of drift wave turbu-
lence by zonal flows does not enhance the growth of zonal
flows, but weakens it by depleting the very source of zonal
flow generation. As a consequence of this difference, mean
shear and zonal flows are likely to play a somewhat different
role in L→H transition at different times.

The forgoing observation then suggests that an under-
standing of the dynamics of a combined system of a mean
shear flow, zonal flows, and drift wave turbulence and the
interplay among them is necessary for the prediction of
anomalous transport, especially for a comprehensive picture
of the L→H transition. The purpose of this paper is to study
some of these issues in detail. Specific problems that we
address are:

!i" What is the effect of a mean shear flow on zonal
flows?

!ii" What roles do a mean shear and zonal flows play in
the L→H transition?

!iii" What are the other structures contributing to anoma-
lous transport? In particular, what is the impact of a
poloidally nonaxisymmetric mode on collisionless
zonal flow damping?

Let us elaborate on these three issues in the following.
First, one of the interesting problems regarding the interplay
among a mean shear flow, zonal flows, and drift waves,
which has not been studied so far, is the effect of a mean
shear flow on the generation of zonal flows. Zonal flows are
excited by a long wave length modulation of drift wave tur-
bulence. During this modulation, a mean flow shears under-

a"Paper UI2 4, Bull. Am. Phys. Soc. 47, 325 !2002".
b"Invited speaker. Electronic mail: ejk@physics.ucsd.edu

PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003

16981070-664X/2003/10(5)/1698/7/$20.00 © 2003 American Institute of Physics

Downloaded 07 Feb 2005 to 132.239.69.156. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



lying drift wave turbulence, which can effectively decorre-
late the modulation, thereby inhibiting the growth of zonal
flows. Our result indeed indicates that this is the case. Thus,
the effect of a mean shear flow may offer an alternative
damping mechanism of collisionless zonal flows, in addition
to nonlinear spectral feedback and linear Kelvin–Helmholtz
instability.

Second, a minimal model for L→H transition should
incorporate the dynamics of a mean shear flow, zonal flows,
and drift wave turbulence, since as noted previously, both
mean and zonal flows are likely to participate during transi-
tion. Thus, based on the result for the effect of mean shear on
zonal flow, we propose a simple model for L→H transition
to facilitate the study of the importance of mean shear and
zonal flows during this transition. We find that zonal flows
regulate drift wave turbulence before the transition to H
mode and damp away together with the drift wave turbulence
as the transition to H mode is completed by pressure profile
steepening. Moreover, bursty temporal behavior due to self-
regulating nature of zonal flows and drift waves is recovered
in our simple model.6

Third, in addition to mean shear flows and zonal flows,
there may be more structures affecting anomalous transport.
One obvious example is a streamer, which is radially ex-
tended and poloidally localized and is thought to enhance the
radial transport.7 Another example, which has received less
attention, is the generalized Kelvin–Helmholtz mode !re-
ferred to as GKH hereafter".8 This is a poloidally nonaxisym-
metric mode (m%0), in contrast to the case of the zonal
flow. This structure may arise as a result of linear Kelvin–
Helmholtz instability of zonal flows, which breaks up the
zonal flows and thus serves as a damping mechanism for
them in the collisionless limit. However, as is well known,
magnetic shear tends to make the linear Kelvin–Helmholtz
mode rather feeble.9 An alternative route to generating this
structure is via modulational instability of drift wave
turbulence,8 in a similar way to the generation of zonal
flows. This nonlinear mechanism is particularly important as
a linear picture of the Kelvin–Helmholtz instability is valid
only in an exceptional case, where the amplitude of drift
wave is negligible !such as in a Dimits shift regime10" com-
pared to zonal flows and also when there is a clear time scale
separation between zonal flows and the Kelvin–Helmholtz
mode. In the last part of the paper, we thus explore the non-
linear generation of GKH mode. The specific goals here are
to compare nonlinear with linear generation and to find out
when the linear picture of the GKH mode is valid. We pro-
pose that nonlinearly generated GKH mode can enhance the
anomalous transport.

This remainder of the paper is organized as follows. In
Sec. II, the effect of a mean flow on zonal flows are studied
in the context of modulational instability. Based on the result
obtained here, a minimal model for L→H transition is pro-
vided in Sec. III. The nonlinear generation of GKH mode is
studied in Sec. IV. Our conclusion and discussions are pro-
vided in Sec. V.

II. THE EFFECT OF A MEAN SHEAR FLOW ON
ZONAL FLOWS

To study the effect of a mean shear flow on modulational
instability of zonal flows, we assume that the equilibrium
background consists of a mean shear flow &VE' and mean
drift wave quanta density &Nk'. Here, Nk is the drift wave
quanta density. To leading order, the mean drift wave quanta
satisfies (&Nk'")*&Nk'2, where ( and )* are the linear
growth and nonlinear damping rate of drift waves. The
modulation of drift wave quanta Ñ by zonal flows ṼE !in the
form of exp+ipx,) is then governed by the following linear-
ized wave kinetic equation

-

-tÑk#ipvgxÑk$k.&VE! '
-

-kr
Ñk#(Ñk

"ipk.ṼE
-

-kr
&Nk', !1"

where ( is the linear growth rates and vg is the group veloc-
ity !measured in the moving frame with E!B velocity" of
drift waves, respectively. Note that the use of !kinematic"
linear growth rate in Eq. !1" is just an approximation. By
using a quasilinear closure, we can express the evolution of a
mean drift wave quanta density &Nk' as

-

-t &Nk'$k.&VE! '&Nk'#
-

-kr
/k"(&Nk'$)*&Nk'2. !2"

Here, /k"$&(-x(k.ṼE)Ñ' is the quasilinear flux, which
represents diffusion of &Nk' in kr space, ultimately leading to
the damping of drift wave turbulence in the presence of dis-
sipation. Note that this is a self-regulating term. The effect of
a mean shear flow &VE' on Ñk is explicitly shown in the third
term on the left-hand side of Eq. !1". In order to incorporate
this effect, we solve Eq. !1" along a nonperturbed orbit by
introducing a total time derivative Dt as

Dt"
-

-t $k.&VE! '
-

-kr
. !3"

In this coordinate, the shearing effect by &VE! ' is explicitly
reflected in the linear increase of kr in time as

Dtkr"$k.&VE! '. !4"

Equation !1" can be integrated along this nonperturbed orbit
from an initial time t0 to final time t as

Ñk!p ,t ""!
t0

t
dt! exp" $(! t$t!"$ip!

t!

t
dt"vgx! t""#

!ipk.ṼE!p ,t!"
-&Nk! t!"'

-kr! t!"
, !5"

where a term depending on the initial condition is dropped
by assuming (t$t0)(%1. The shearing effect by a mean
flow is embedded in the time dependent group velocity vgx
and equilibrium wave quanta density spectrum
-&Nk(kr(t!))'/-kr(t!). For instance, the result of a usual
modulational instability in the absence of a mean shear can
be recovered from Eq. !5", by taking kr(t!) and vg(t") to be
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constant. For simple drift wave turbulence with *"** /(1
#k2), vgx"$2krv* /(1#k2)2. Here, **"v*k. , v*
"cs /Ln is the electron diamagnetic velocity, cs"!Te /mi,
and Ln"$(-x ln ni0)$1 is the scale length of the background
density; the length is measured in unit of 0s . Thus, the de-
pendence of vgx on &VE! ' through kr represents the slowdown
of the propagation of drift waves due to enhanced inertia
!i.e., large kr) via mean shearing. On the other hand, the
second term -&Nk(kr(t!))'/-kr(t!) ("$Dt!&Nk(kr(t!))'/
k.&VE! ') captures the shearing effect of a mean flow on &Nk'.

For a modulational analysis to be valid, the equilibrium
&Nk' should vary on a time scale much longer than the char-
acteristic time scale of a drift wave. Therefore, we shall as-
sume that the time variation in vgx is much faster than
-&Nk(kr(t!))'/-kr(t!), and also that 1("1/( is much
smaller than the characteristic time scale of zonal flows 1c
"1/2 (1(&1c). Furthermore, we limit our analysis to the
weak shearing case where 1( is smaller than the shearing
time scale of the mean flow 1s"1/&VE! ' (1(&1s). This is
because in the opposite limit of strong shear, the mean wave
quanta density &Nk' is likely to vary too rapidly in time to
justify our quasilinear analysis. We thus approximate
-&Nk(kr(t!))'/-kr(t!)3-&Nk(kr(t))'/-kr(t) and substitute
the time dependence of exp+$i2t, for Ñk and ṼE in Eq. !5".
By noting that the fastest time scale in Eq. !5" resides in the
argument of an exponential function, we evaluate the time
integral by integration by parts up to O(&VE! '2). The result of
this straightforward algebra is

Ñk!p ,2"3$p2k.4ZFR
-&Nk'
-kr

, !6"

where ṼE"ip4ZF and the real part of R is given by

Re!R "3
(

(2#!2$pvgx"2
$
12k.

2&VE! '2**
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2 "4

!$ (5!1#k.
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2"2

!(2#!2$pvgx"2"5
$
16(3kr
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2$kr

2"2

!(2#!2$pvgx"2"4
% .
!7"

Note that this result is valid in the weak shear limit. For k!

&1 and ('pvgx'2 , Eq. !7" is simplified to

Re!R "3
1
($ 1$

12p2&VE! '2**
2 k.

2

(4
% . !8"

The sign of Re(R) is always positive since R was obtained
by treating the effect of &VE! '2 as a small perturbation. Equa-
tion !8", derived in a weak shearing limit, is not valid around
L→H where the mean shearing rate becomes comparable to
the linear growth rate. Thus, Eq. !8" shall be extrapolated to
a strong shear case for a simple model for L→H transition in
Sec. III.

On the other hand, the evolution of zonal flows 4ZF ,
driven by Reynolds stress, can be written in terms of the
modulation of wave quanta density Nk"(1#k2)2&4k!&2 as

$i24ZF!p ,2""! d2k
k.kr

!1#k2"2 Ñ , !9"

where 4! is the electric potential of drift waves. Thus, the
frequency (2) of zonal flows follows from Eqs. !6" and !9"
as

23ip2! d2k
k.
2kr

!1#k2"2 R' $
-&Nk'
-kr

( . !10"

The substitution of Eq. !8" in Eq. !10" clearly shows that a
mean shear flow suppresses the growth rate of zonal flows!
This reduction arises due to the time variation of vgx , which
can be understood as related to the decorrelation of drift
wave propagation by a shear flow, which in turn weakens the
!coherent" modulation response of the drift wave spectrum.
Note that zonal flow growth rate may also be reduced by ion
Compton scattering,11,12 which has not been taken into ac-
count in our analysis.

As a mean shear flow reduces the growth of zonal flows,
it should also decrease the self-regulating flux in kr space,
which we denoted as /k . This can be easily checked by
computing /k as follows. We substitute Eq. !6" in /k and
then evaluate the correlation !or, average" by assuming that
the statistics of zonal flows is homogeneous in x, i.e.,

&ṼE!p1 ,2"ṼE!p2 ,2"'"5!p1#p2"&ṼE!p1 ,2"&2. !11"

The result is

/k"$k.
2! dpp2R!$p "&ṼE!p ,2"&2

-&Nk'
-kr

. !12"

For k!&1 and ('pvgx'2 , the use of Eq. !8" in Eq. !12"
confirms the reduction in the real part of /k due to a mean
shear flow, as expected.

III. A MINIMAL MODEL FOR L\H TRANSITION

In Sec. II, a mean shear flow is found to inhibit zonal
flow generation. This effect is likely to be important during
the transition to a high confinement regime where the mean
E!B shear flow becomes strong as the profile steepens.
Note here that while it is possible that a mean shear flow can
be driven by Reynolds stress, its effect is negligible com-
pared to that of the pressure profile, when the latter has a
steep gradient. Furthermore, Reynolds stress drive for a
mean flow is likely to be weaker than that for zonal flows as
the former has larger !radial" scale than the latter. Thus, by
ignoring Reynolds stress drive for a mean flow, we consider
a minimal model for the L→H transition which consists of
the amplitude of drift wave turbulence 67&N', zonal flow
shear VZF7ṼE! , and a !ion" pressure pi , together with the
momentum balance equation which relates a mean shear
flow &VE' to a profile. For simplicity, we take the following
momentum balance relation

&VE'"$
1
eBz

' 1n dpidr ( . !13"

Note that a toroidal flow, which can be potentially important
in L→H transition, has been neglected in Eq. !13". Note also
that the pressure profile should evolve on time scale much
larger than than zonal flows to justify the neglect of VZF in
Eq. !13". By assuming a constant ion temperature profile, Eq.
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!13" can be written in terms of mean flow shear V"&VE! ' and
the gradient of density profile N"$(Ln /n)-rn as

V"dN 2, !14"

with a constant d.13 We now propose a simple 0D model
!depending only on time" for the evolution of 6 , VZF , and N,
as follows:

- t6"6N$a162$a2V26$a3VZF
2 6 , !15"

- tVZF"b1
6VZF

1#b2V2
$b3VZF , !16"

- tN"$c16N$c2N#Q . !17"

Here, ai , bi , and ci are constant, which depend on a specific
model. The meaning of various terms are as follows. From
the left, the terms on the right-hand side of Eq. !15" represent
the generation of drift wave from density gradient !i.e., linear
drift wave instability", nonlinear saturation of drift waves,
and suppression of drift waves by V and VZF , respectively.
Note that a2)a3 in the limit where the frequency of zonal
flows is much smaller than the decorrelation time of
turbulence.4 The first and second terms on the right-hand
side of Eq. !16" capture the generation of VZF by Reynolds
stress and zonal flow damping, respectively. The growth in-
hibition by a mean shear, which is valid even for a strong
shear, is modeled by a term 1/(1#b2V2). The three terms on
the right-hand side of Eq. !17" represent, from the left, the
turbulent diffusion of the profile by drift wave turbulence,
neoclassical transport, and input power. Note that the major
difference between this model and those that were previously
studied13 lies in the self-consistent treatment of the dynamics
of zonal flows.

For fixed values of parameters ai , bi , and ci , the evo-
lution of this system #Eqs. !15"–!17"$ is determined by the
input power Q, which serves as a control parameter for this
system. For sufficiently large Q, the profile becomes steep to
completely damp drift waves, and the system evolves to a
quiescent H mode, where

6"VZF"0, N"
Q
c2
. !18"

In this regime, the slope of the profile is determined by neo-
classical transport. Note that we have ignored a magnetohy-
drodynamic !MHD" instability which can be caused by fur-
ther steepening of pressure profile in this H-mode state. To
study how this system evolves to H mode, we make Q as a
linear function of time (Q"0.01t) and solve Eqs. !15"–!17",
by taking the values of parameters ai , bi , and ci to be order
of unity. The evolution of 6 !solid line", VZF !dotted line",
and N/5 !dashed line" are shown in Fig. 1. As can be seen
clearly, there are three distinct stages. The early stage is char-
acterized by growing drift waves by linear instability !from
N), followed by rapidly growing self-generated zonal flows.
As the shearing by zonal flows becomes efficient to damp
drift waves, a system evolves into a transition regime where
zonal flows and drift waves are self-regulating and exhibit
oscillatory behavior: 6 and VZF grow as they draw energy
from N and 6 , respectively while 6 and N damp by growing

VZF and 6 , respectively. Note that the oscillatory behavior is
a generic feature of a self-regulating system of drift waves
and zonal flows.6,4,15 Note also that this oscillatory transition
phase may explain dithering observed in ASDEX Upgrade16
although there could be other causes leading to oscillatory
behavior.17 In addition to oscillation, there is a gradual in-
crease in 6 . This is caused by the reduction in the zonal flow
growth by the mean shear flow, which in turn promotes the
growth of drift waves. The behavior of this envelope is given
by a stationary solution 6"b1(1#b2V2)/b3 #see Eq. !16"$,
which increases as the profile steepens (V"dN 2). Finally,
for sufficiently large Q, drift waves are completely damped
by strong mean flow shearing, entering deep into H mode !a
quiescent H mode". As drift waves damp, zonal flows die
out, and the profile steepens linearly with Q, consistent with
Eq. !18".

The inhibition of zonal flow growth by a mean shear
flow #term with b2V2 in Eq. !16"$ prolongs the oscillatory
transition phase as it effectively reduces drift wave damping
!by zonal flows". This can be clearly seen by comparing Fig.
1 with Fig. 2, which was obtained by using the same param-
eter values as Fig. 1, but with b2"0; the transition to a
quiescent H mode occurs at Q31.3 in Fig. 1 while it hap-
pens at smaller Q31.2 in Fig. 2. In this case, the oscillation
of 6 is about a roughly constant value, in contrast to Fig. 1.
This constant value is again given by a stationary solution
6"b3 /b1"2/3 with b2"0 #see Eq. !16"$. A slight decrease
in the amplitude of oscillation is due to nonlinear damping of
drift waves (a262). Therefore, the effect of mean shearing on

FIG. 1. Evolution of 6 !solid line", VZF !dotted line", and N/5 !dashed line"
as a function of input power Q"0.01t . Parameter values are a1"0.2, a2
"a3"0.7, b1"1.5, b2"b3"1, c1"1, c2"0.5, and d"1.

FIG. 2. The same as Fig. 1 besides b2"0.
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zonal flow generation is manifested in the longer duration of
oscillatory transition phase and a slow rise in the envelope of
the oscillation.

These results indicate that zonal flows help !or ‘‘trig-
ger’’" the transition to a high confinement regime by regulat-
ing drift wave turbulence before the transition to a quiescent
H mode. That is, zonal flows lower the threshold of Q for the
transition. To demonstrate this effect, we depict the evolution
of 6 !solid" and N !dashed line" in Fig. 3, by solving Eqs.
!15" and !17" with VZF"0 for the same parameters values as
in Fig. 1. It clearly illustrates that due to the absence of zonal
flows, the amplitude of drift waves is too large to reach a
quiescent H mode for the values Q up to 2; the transition
will occur at higher value, i.e., Q'2. For comparison, the Q
dependence of 6 and N in Fig. 1 are superimposed by dotted
and dotted–dashed lines, respectively, in Fig. 3.

Our results imply that the duration of the transition re-
gime, where drift waves and zonal flows are self-regulating
and exhibit oscillatory !bursty temporal" behavior, sensi-
tively depends on how rapidly the input power Q is raised.
For instance, too rapid an increase in Q would cause the
disappearance of this regime, i.e., its duration would become
arbitrarily short, and certainly less than the experimental
resolution time. Therefore, to experimentally test the role of
zonal flows in L→H transition, input power should be
ramped up slowly. One of the most recent experiments,
which was successful in accessing this transition regime, was
reported in Ref. 14, where periodic bursts were observed
before the transition to quiescent H mode. There a slow tran-
sition was achieved by slowly increasing the input power.
Our results obtained from a minimal model Eqs. !15"–!17"
not only offer a simple theoretical explanation for this bursty
temporal behavior during the transition regime !which is re-
ferred to as IM mode in Ref. 14" but also provides a concrete
route leading to a quiescent H mode by a pressure profile
steepening. Furthermore, it can also predict the correlation
between pressure profile and zonal flows. Note that the the-
oretical explanation for bursts provided in Ref. 14 invoked a
self-regulation between drift waves and a poloidal flow
which is assumed to be driven by Reynolds stress alone,
ignoring the dynamics of zonal flows and those of the pres-
sure profile.

IV. GENERALIZED KELVIN–HELMHOLTZ MODE

We have so far assumed that large-scale structures, in-
fluencing anomalous transport in plasmas, are radially local-
ized mean shear and zonal flows. This is, of course, an over-
simplified picture, and there are other structures, that can be
potentially important in transport. As noted in the Introduc-
tion, one such structure is a streamer, which is poloidally
localized but radially extended. Other example, that we are
going to focus on in this paper, is a poloidally nonaxisym-
metric mode with a finite m%0 !GKH". In toroidal geometry,
this can be viewed as a mode with a small but finite m. GKH
modes arise naturally when zonal flows !or mean shear flow"
become linearly unstable to classical shear !Kelvin–
Helmholtz" instability due to inflection point. It is well
known that in a torus with a magnetic shear, this linear in-
stability becomes energetically unfavorable, as the exchange
of two vortices around an inflection point requires the energy
to realign them with magnetic fields.9 In ion temperature
gradient !ITG" turbulence, the linear instability may be ex-
cited with a small growth rate (&&-xx4ZF&) in a radially lo-
calized regime, provided that the zonal flow 4ZF has an op-
posite phase to zonal temperature TZF !i.e., 4ZFTZF&0).18
By assuming 4ZFTZF&0, Ref. 18 invoked the linear Kelvin–
Helmholtz instability as a mechanism which terminates the
Dimits up shift regime.

In this section, we explore an alternative mechanism for
generating GKH mode, which also provides indirect zonal
flow damping. In the case when GKH mode evolves on time
scales much larger than the characteristic time scale of drift
wave turbulence !i.e., * , (), drift waves are adiabatically
modulated by the former. This modulation can lead to the
growth of GKH mode !i.e., modulational instability". Note
that this is the very mechanism for the generation of zonal
flows. That is, GKH modes can be excited nonlinearly by
modulational instability !or, Reynolds stress". As the energy
source of these modes is drift wave turbulence, their excita-
tion effectively weakens the growth of zonal flows.

The nonlinear generation of GKH modes are particularly
interesting for the following reasons. First, the Dimits up
shift regime10 !where drift wave turbulence is very weak" is
an exceptional case with no collisional damping of zonal
flows and with a sufficiently weak turbulence drive !e.g.,
very close to marginality, small q, etc.". Note that the Dimits
up shift regime is based on local picture in which a nonlocal
effect induced by the turbulence spreading19 is ignored. Sec-
ond, the components of zonal temperature TZF and zonal
flow 4ZF with negative phase shift !i.e., TZF4ZF&0) !which
is required for unstable linear Kelvin–Helmholtz instability",
may not be robust. In fact, by a self-consistent modulational
instability calculation for a curvature driven ITG model, this
phase was shown to be likely to be ‘‘positive,’’ rather than
negative.8 Third, a linear picture of Kelvin–Helmholtz insta-
bility of zonal flows is invalid when zonal flows themselves
evolve on time scale shorter than that of the instability. Fi-
nally, GKH modes !with a finite radial flow" contribute to
radial transport, and their excitation may provide an effective
damping of zonal flows !see below".

In the following, we estimate the growth rate of GKH

FIG. 3. Evolution of 6 !solid line" and N !dashed line" as a function of input
power Q"0.01t with VZF"0. Parameter values are the same as Fig. 1
(a1"0.2, a2"a3"0.7, c1"1, c2"0.5, and d"1). For comparison, 6 !dot-
ted line" and N !dotted–dashed line" in Fig. 1 are superimposed.
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modes by modulational instability and then discuss its impli-
cation, including the validity of the linear picture of GKH.
To this end, we use a simple model with cold ions in two
dimensional slab geometry and consider a flute-like pertur-
bation (k *)0) for GKH modes. The electric potential for
GKH mode is denoted by 4 , and that for drift waves by 4!.
Nonlinear generation of 4 by Reynolds stress is then given
by

-

-t 8!
24"!-xx$-yy"&vx!vy!'#

1
2 -xy&vy!

2$vx!
2', !19"

where v!"$8!4!ẑ . We assume a homogeneous and iso-
tropic drift wave turbulence background, which satisfies
(&Nk'")*&Nk'2, and consider harmonic modulation of Nk
and 4 around this background as Ñk343exp+$i(2t$px
$qy),. The linearized wave kinetic equation then gives

5Ñk

54
"$i

!pky$qkx"!p-kx#q-ky"&Nk'

2$!pvgx#qvgy"#i( . !20"

The nonlinear growth rate #i.e., (NL"Im(2)$ is obtained
from Eqs. !19" and !20", with the help of Nk"(1
#k2)2&4k!&2, as

2"
p2$q2

p2#q2! d2k
kxky

!1#k!
2 "2

!pky$qkx"!p-kx#q-ky"&Nk'

#2$!pvgx#qvgy"#i($
.

!21"
Note that in the limit of q→0, Eq. !21" simply leads to the
growth rate of zonal flows as

(ZF3! d2k
kx
2ky
2

2!1#k2"2
p2(

!pvgx"2#(2
' $

-&Nk'

-kx
2 ( , !22"

which is positive for a normal drift wave spectrum -kx&N'
&0. To estimate the growth rate for GKH mode, we assume
vgy'vgx , (/&vgyq&35ky /q&1, (/&vgxp&35kx /p(0sk)2
(1, p3q !so (p$q)23(p#q)2), and 0sk)1, which re-
duces the imaginary part of Eq. !21" to

(NL3! d2k
kx
2ky
2

2!1#k2"2
(

vgy
2 ' $

-&Nk'

-kx
2 ( . !23"

The ratio among (ZF , (L , and (NL can be obtained by
using the growth rate of linear Kelvin–Helmholtz instability
(L3pvZF ,8 ("5* , and the mixing-length estimate &Nk'
31/(k0Ln)2 (k0 is the characteristic wave number of drift
waves" as

(ZF
(NL

3' vgyq
( ( 23' p

k05
( 2, !24"

(NL
(L

3
k0
q

cs
vZF

0s
Ln

5 , !25"

(ZF
(L

3
p

5k0
cs

vZF

0s
Ln
. !26"

Finally, the substitution of estimates vZF)10$2cs !e.g., see
Ref. 20" and 0s /Ln30.01 in Eqs. !24"–!26" leads us to the
following conclusion: !1" the nonlinear generation of zonal

flow can be more effective than both nonlinear and linear
generation of GKH !i.e., (ZF((NL ,(L) near marginality,
with 5&q/k0, and !2" the nonlinear generation rate of GKH
can be comparable to its linear generation rate !i.e., (NL
3(L) away from marginality 5'p/k0. Therefore, near mar-
ginal stability, the linear analysis of GKH, which treats a
zonal flow as an equilibrium background for the evolution of
GKH, is invalid, with no clear distinction between secondary
!zonal flow" and tertiary mode !GKH" possible !cf. Ref. 18".
Furthermore, far away from marginality, the nonlinear exci-
tation of GKH modes, with the amplitude comparable to
zonal flow, provides an effective damping of zonal flows
since the former draws the energy from drift waves. This
then effectively enhances the radial transport !e.g., 9 i) by
reducing shearing. In addition, GKH modes, with finite ra-
dial flows, may directly contribute to 9 i . Therefore, the non-
linear excitation of GKH modes offers an alternative route to
damping zonal flows and increasing transport.

V. CONCLUSIONS

One of the most interesting questions in the prediction of
anomalous transport is the interplay among turbulence and
the various structures it generates. While small scale turbu-
lence, such as drift waves, causes anomalous transport, large-
scale structure can either enhance or reduce transport, de-
pending on its spatial structure. Two of the important
structures, which regulate turbulent transport, are mean shear
flows and zonal flows. Despite this common effect on turbu-
lent transport, they differ in the mechanism for their genera-
tion as well as their spatial and temporal behavior. Another
structure that is potentially important to transport is the GKH
mode, which is poloidally nonaxisymmetric with small m.
This can be excited not only linearly by shear !Kelvin–
Helmholtz" instability of zonal flows !or mean shear flows",
but also nonlinearly, through modulational instability. The
purpose of this paper was to study the dynamics of, and
interplay among, these large-scale structures and drift waves.

We first investigate the effect of mean shear flows on
zonal flows, by incorporating the mean shearing effect in the
modulational instability of zonal flows. By focusing on the
weak shear case, we found that mean flows reduce the
growth rate of zonal flows by decorrelating the propagation
of drift waves during modulation.

Based on this result, we proposed a minimal model for
L→H transition which consists of the evolution of drift wave
amplitude, zonal flows, and density profile, together with a
momentum balance relation. This model differs from those
previously studied13 in that it includes the self-consistent
evolution of the zonal flows. Our results revealed the differ-
ent role of mean shear flows and zonal flows: zonal flows
‘‘trigger’’ or ‘‘help’’ the transition by damping drift waves
until the shearing by mean shear flows is sufficiently strong
so as to damp both drift waves and zonal flows. The initial
transition stage is marked by oscillatory behavior !because of
self-regulation of drift waves and zonal flows" until the tran-
sition to a steep profile !quiescent H mode" sets in. This
result may provide a simple theoretical explanation for the
periodic bursts which were observed before the transition to
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quiet H mode in a recent tokamak experiment.14 Our result
also implies that the critical input power for the transition is
likely to be lowered by zonal flows. The inhibition of zonal
flow growth is found to prolong the initial oscillatory transi-
tion phase as it effectively reduces the drift wave damping.

The last part of the paper was devoted to the study of the
nonlinear excitation of GKH mode !yet another structure" by
modulational instability, in view of its ‘‘weak’’ linear insta-
bility. We found that nonlinear excitation can be as important
as linear excitation away from marginality. The nonlinearly
excited GKH mode enhances the radial transport directly by
its finite radial flow and indirectly by damping !collisionless"
zonal flows. Thus, the former may serve as another structure
that plays an important role in transport. In experiments, the
distinction between the linear and nonlinear origin of GKH
mode may be determined by bicoherence analysis.5
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