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Abstract

Two examples of non-perturbative models of intermittency in drift wave tur-
bulence are presented. One is a calculation of the probability distribution
function (PDF) of ion heat flux due to structures in ion temperature gradi-
ent turbulence. The instanton calculus predicts the PDF to be a stretched
exponential. The second is a derivation of a bi-variate Burgers equation for
the evolution of the drift wave population density in the presence of radially
extended streamer flows. The PDF of fluctuation intensity avalanches is deter-
mined. The relation of this to turbulence spreading, observed in simulations,

is discussed.
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1. INTRODUCTION

There is now a plethora of evidence from simulation and experiment that plasma tur-
bulence is highly intermittent, and that turbulent transport has a fundamentally “bursty”
character [1-3]. It is thus necessary to develop a probabilistic theory of plasma transport,
focusing on calculating the probability distribution function (PDF) of flux, rather than
anomalous transport coefficients. This follows from, say, the need to understand the fre-
quency of large heat discharges from the plasma, which in turn affects the distribution of
peak heat loads on the confinement vessel. Interestingly, intermittent transport often re-
sults from rare, large events which are accompanied by coherent structures such as zonal
flows, streamers, blobs, and vortices. These structures are well known to play a crucial
role in transport dynamics [4,5]. For instance, zonal flows (mainly poloidal flows that are
radially localized) inhibit the radial transport by shearing eddies making up turbulence,
while streamers (radially elongated and poloidally localized flows) enhance it. Therefore,
two of the most fundamentally important questions in the prediction of transport are (i)
the formation of coherent structures and (ii) the effects of these structures on transport.
Of particular interest is the question of how ‘non-locality’ or fast transport phenomena are
linked to structures and intermittency.

Most of the works dealing with the first issue (the formation of structures) has so far
adopted a mean field theoretical view on the basis of quasi-linear closure and ray chaos
(see TABLE 1) [4,5]. Although much insight has been gained in this approach, the for-
mation of structure may be a strongly nonlinear phenomenon, whose description requires
a non-perturbative method. Indeed, renormalized perturbation theory can easily make an
exponentially large error in predicting PDFs in cases where structure formation is crucial.
In particular, the formation of structure can be triggered by noise, in which case the PDF
of the formation of structure itself is a quantity of ultimate interest. (For instance, an inter-
esting issue is the prediction of the PDF of L—H transition [6].) On the other hand, these

coherent structures, once formed, can cause intermittent and bursty transport. Especially,



intermittent transport leads to non-Gaussian PDF of flux. The deviation from Gaussian
statistics manifests the failure of random phase approximation, underscoring the need for a
non-perturbative method. Note that rare events contributing to PDF tails can play a major
role in transport when PDF tails are significantly enhanced over those of a Gaussian PDF.

In this paper, we discuss two examples of non-perturbative theoretical models of inter-
mittency in drift wave turbulence. First, in Section 2, we study the effects of coherent
structures in shaping the tail of the PDF of heat flux H due to curvature driven ion tem-
perature gradient (ITG) modes using the instanton calculus. The essence of the instanton
calculus is that it treats the calculation of the probability for a structure to emerge from the
vacuum (laminar) state in the presence of forcing via a steepest descent approximation of
the path integral which determines the transition probability. Thus, the instanton calculus
recovers effects from all orders in perturbation theory (see TABLE 1), unlike quasi-Gaussian
closures which retain effects to O(¢*). The ‘product’ of this calculation is an expression for
the tail of heat flux PDF, which is found to scale as exp [~cH??]. Here, ¢ is a constant. In
Section 3, we present a simple model of turbulence propagation and spreading and its impact
on intermittency in the drift wave intensity. The key non-perturbative element here is the
use of general symmetry principles, rather than quasi-linear iteration, to derive an equation
for evolution about the self-organized fluctuation intensity profile. The principal ‘products’
of this analysis are a bi-variate Burgers-type equation which describes the evolution in z
and ky of N, and an estimate of the PDF of spatial avalanches of fluctuation intensity and

the resulting spreading. Section 4 consists of a discussion and concluding remarks.

2. NON-PERTURBATIVE COMPUTATION OF PDF FLUX

Coherent structures often accompany bursty and intermittent transport, leading to a
non-Gaussian PDF of flux. In particular, this means that heat and particle loads may be
concentrated in “large events”, the frequency of which should be determined. This effect of

coherent structure on the PDF of flux is investigated in the following. A non-perturbative



method that is utilized in our analysis is called the instanton method. Before proceeding
with the computation of PDF by using this method, we provide some explanation for the
physical meaning of instantons.

In a classical dynamical system, instantons give the transition probability amplitude
between two (stationary) states which have different nonlinear structures (e.g., see [7]).
This may be understood intuitively as follows. Associated with each coherent structure is
a (nonlinear) solution which takes certain value of an ideal (topological) invariant such as
the number of vortices (or + vacua in ¢* model). In the presence of dissipation and an
external noise, the ideal invariant is broken, and thus there is a finite probability that a
system evolves from one state to another with different solutions. Instantons capture the
probability of the transition between two nonlinear solutions (or structures). Since this
transition occurs rapidly in time, instantons are temporally localized (as its name indicates)
and can thus naturally be related to the burstiness of events (see Figure 1).

To exploit this idea in the prediction of PDF of flux in an analytically tractable manner,
we take one structure to be the vacuum and the other to be a non-trivial entity. That
is, we assume that a system is initially in a quiet state with no energy when an external
random forcing is turned on. As the forcing injects energy into the system, there is a
finite probability of the formation of coherent structures in the long time limit. Instantons
capture the creation process of these structures. Once these structures are formed, they
participate in transport, thereby contributing to the tails of the PDF of flux. As may be
clear from this argument, the PDF tails of flux will then be determined once the transition
probability amplitude to various structures is available. Unfortunately, the latter requires
the knowledge of a complete set of coherent structures in a system, which is surely an un-
obtainable goal. Therefore, to utilize an instanton method, some insight is necessary as to
what kind of structure is likely to be excited by a given forcing. One possible candidate
for this nonlinear structure, which we are going to use, is an exact nonlinear solution of the
dynamical equation in the absence of dissipation and forcing. Once their spatial form is fixed,

instantons then give the probability of transition to different amplitude of this solution. For
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instance, an instanton for a dynamical variable u takes the form of u(x,t) = F(t)ug(x) with
F(t - —o0) = 0. Here, uy(x) denotes the spatial form of a coherent structure and F'(t)
is a temporally localized amplitude, representing its creation process (see Figure 1). The
distribution of F'(t) determines the PDF of any flux which is a function of « in the long time
limit (see Figure 2).

In the following, we utilize instantons to compute the PDF of the heat flux in a curvature
driven ITG turbulence. For simplicity, we take a simple two-dimensional slab model where
kj ~ 0 is assumed besides ensuring the adiabaticity of electrons for drift waves (DW). In
this model, the instability of DW originates from the bad curvature where Vp- VB > 0.
By keeping FLR effect for electric potential ¢ to first order in (p?k?) < 1, we employ the

following governing equations for ¢ and pressure perturbation p [8]

o1 = V)¢ — [6+7p, V2 0] + 7 [0:9, Oipl

+u, {1 = 2¢, + 7(1+7;)V?} 0y — 2eqv.70,p = f, (1)

Op + [0, p] + 0. (1 + 1:)0,¢ = 0. (2)
Here, the notation is standard; z and y denote the local radial and poloidal directions,
respectively; 7 = Ty /Te, €n = Ly/R, 7; = Ly/ Ly, L, = —(0;1Inng)™t, R = — (9, In By) ™!,
Lr = —(0;InTy)™!, and v, = p,/Ly,; square brackets denote Poisson brackets, i.e., [4, B] =
0;A0yB — 0,A0,B; f is an external random forcing for electric potential ¢. Egs. (1) and

(2) are non-dimensionalized by measuring the length, velocity, ¢, and p in units of py, cs,

and T, /e, and p;p. Note that the linear instability condition for Egs. (1) and (2) is [§]
(1 — 26, — 7(1 +m)k?)? < 87(1 + m)en (1 + £?), (3)

which can be satisfied only when €, o« Vp - VB > 0. The external forcing f introduces
a random noise in the system and thus leads to the formation of a coherent structure
(instanton). To simplify analysis, we assume the Gaussian statistics for the forcing with

white noise in time as follows:

(fx ) f (1)) =6(t —t)r(x —x'), (4)
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and (f) = 0. Note that the use of Gaussian forcing here is for convenience to formulate the
PDFs in terms of path integral as shall be clear below and that other statistics for the forcing
should be explored [9]. We further assume & in Eq. (4) is roughly parabolic for |x —x'| < L,

with the form
k(x —x') = koJo(kyslx —x'[), (5)

and vanish for |x —x'| > L. Thus, L may be considered the coherence length of the forcing.
Here L S ag1/ks with ag; being the first zero of Jy. This particular form of x was chosen
for computational convenience.

The Gaussian statistics of the forcing [10] allows us to formally express the probability

for the heat flux pv, at x = x¢ to take value H in terms of a path integral [10-15]:
P(H;xo) = (8(pvals, — H)) = [ eI, (6)
where
I, = / DEDFDpDpe S .

In Eq. (6), the angular brackets denote the average over the random forcing f, and S, is

the effective action given by

Sy = =i [ dadt{3{ (1= V)20 = [6+ 75, V6] + 7010, 0
+, (1 — 2, +7(1+ m)VQ) Oy — Qenv*Tayp} + Tﬂ{@tp + [6,p] + vpayqb}}

+% /d%d%'dt@(x)m(x — x)B(x') + i\ / d*zdt(pug )6 ()6 (x — xq) . (7)

Here, v, = v,(1+7;); ¢ and p are conjugate variables, playing the role of Lagrange multipliers.
Since we are interested in PDF tails, we can calculate the path integral in Eq. (6) by a
saddle-point method for large H (and \). Saddle-point solutions for ¢, p which minimize
the effective action with the initial condition ¢(t — —o0) = p(t — —o0) = 0, constitute
instantons. Once instanton solutions are found, the effective action, and consequently the

PDF tails, can be straightforwardly computed to leading order.
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As discussed previously, the spatial form of instantons can be linked to coherent struc-
tures which are exact nonlinear solutions of a dynamical system. In the absence of external
forcing and dissipation, the coupled equations (1) and (2) support such exact nonlinear so-
lutions p = a¢ and ¢(x,t) = P(x,t) with o = v, /U [16,17]. Here, ¢¥(x,t) = ¢(z,y—Ut) is a
modon solution [18], which is a bipolar vortex soliton, propagating at speed U perpendicular

to both the density gradient and toroidal magnetic field;

Y = [erJi(kr) + Br/k* cos,

s = oKy (sr) cosb. (8)

Here . = ¢(r < a) and s = ¥(r > a); r = /22 +y7?, tanf = '/z, y = y — Ut,
B=U(k?+ 5, s> =[U —v,(1 — 2¢,) + 2€,v,7a] /(U + 7(1 + n;)vy); 1 = —s?Ua/k?Ji(ka),
ce = Ua/K:(sa), and J|(ka)/Ji(ka) = (1 + k?/s*)/ka — kK;(sa)/sKi(sa); U is the velocity
of a modon; a is the size of the core region; J; and K; are the first Bessel and the second
modified Bessel functions.

This modon solution has two free parameters ¢ and U. In order for a localized modon

solution to exist (s > 0), the following should be satisfied [17]
(1 —2¢,)? < 8e,7(1+mi), 9)

and U > v, or U < —7(1 + n;)v.. Interestingly, Eq. (9) is the very condition for linear
instability (see Eq. (3)) as pik — 0. That is, on large scales (> p;), a vortex solution
(modon) can exist only while linear waves are unstable. Note that in the presence of magnetic
shear, the size of a modon should be smaller than the characteristic scale of magnetic shear.

In the following analysis, we take the two parameters U and a for a modon to be fixed
parameters, with U satisfying the aforementioned localization conditions. We then assume
that an instanton, causing bursty transport, has the spatial form given by a modon with

unknown time-dependent amplitude. That is,

p=ag, (}5(X, t) = F(tW(Xa t) . (10)



As may be clear from Eq. (8), the modon solution is symmetric in the poloidal direction (y)
with no global heat flux. This is why the PDF of the local heat flux is under consideration.
Note that the use of the special modon solution here is motivated mainly by convenience.
In general, the instanton procedure could be implemented for any empirical eigenfunction
®. The time variation of ¢, i.e., F'(t) in Eq. (10), representing the excitation of a modon
by an external forcing, can be associated with the degree of burstiness of an event. This
temporal evolution F'(t) is to be computed by saddle-point approximation once the spatial
integral in Eq. (7) is performed. To this end, we expand the conjugate variable ¢ in terms

of Bessel and Fourier series:

a

b = Z I (am” r) [@mn (t) SN MO + by, (t) cOs M) |

by = Kp (¢mnT) [&mn(t) sin m@ + by (t) cos m@] , (11)

where ¢ = ¢(r < a,0,t) and ¢ = ¢(r > a,0,t); amn(t), bumn(t), Gmn(t), and by, (t) are
unknown functions of time, which are to be determined by solving saddle-point equations.
By using Egs. (5) and (10)—(11) in (7), we reduce S to an integral with respect to time

only:

Sy = —i / dt S E(Abin + Anbin) + F(F — 1) Byas]

Frg / dt S [(Dubin + Dibin) (Dunbim + Dobim) + Eom Bz i) + iX / dLF2%6,6(t) . (12)

Here, & = pv,(x¢) = —ap0,¥(xo) is local heat flux associated with the modon solution.
Apfm=ci(1+k*+ a) g drrdy(kr)Jy(z10) + (1 + )8 [ drr2 Ty (210) /K%, B/m = —c1 k(1 +
at) [ drrdo(kr)Jo(2en)/2, Dp/m =[5 drrdi(ker)Ji(zin), En/m = [ drrda(ker)Ja(zen),
A fm = co(1 — 8% + ) [Fdrr K (qunr) K1 (s7), and Dy, /7 = [FdrrK (qunr)Jy(kfr); 21n =
ainr/a and ze, = aour/a; i, is nth zero of J; (i.e. Ji(ain) = 0); g, is a constant. It is
interesting to note that the coefficients A,, A,, and B, involve the projection of the conju-
gate variable onto the modon, while D,,, D,,, and E, contain the projection of the forcing

onto the conjugate variable. Thus, the (spatial) ‘overlap’ between the forcing and modon,



represented by non-vanishing projection of the forcing onto modon, is necessary for the ex-
istence of a non-trivial solution for F'. This projection is likely to be to be maximized when
the characteristic scale of the forcing is comparable to that of the modon. Even though
the instanton calculus, formulated on the basis of a known nonlinear solution as a coherent
structure, cannot address the question of which structures are formed by a given forcing,
these coeflicients do contain the information on how efficiently a given coherent structure
is excited by the forcing. In more general terms, which coherent structure is likely to be
generated is determined by the nature of the forcing, with different forcings giving rise to
different manifestations of intermittency.

By minimizing Sy (7) with respect to independent variables F(t), ag,(t), bin(t), @on(t),

and by, (t), we obtain the following saddle-point equations:

~i A0 F + 20 > (Dimbim + Dinbim) Dy = 0, (13)
—iB,F(F —1) +m2n0 > EnEmas, =0, (14)
—i A, 0 F + 2kq Z(D,:;nm + Dpbi)D, =0, (15)
> [Andibin + Andibin — Ba(2F — 1)agy| = —2AF(£)6()& - (16)

n
Eq. (16) implies that by, and by, have a discontinuity at ¢t = 0, since the physical quantity
F(t) is a smoothly varying function of time. Furthermore, as conjugate variables propagate
backwards in time in the presence of dissipation [12,13], b1, = 0, by, = 0, and ay, = 0 for
t > 0. We thus integrate Eq. (16) for a small time interval ¢t € [—¢,0] (¢ < 1) to obtain the
relation at ¢t = —e,

Z [Anbln + anln] = 2)‘F‘OEO ) (17)

n

where Fy, = F(t = 0). Note that the discontinuities in by, and b1, at t = 0 are directly
related to the non-vanishing value of F,. For ¢ < 0, the coupled equations (13)—(16) yield

an equation for F' as

OuF —y(F? = F)(2F —1) =0, (18)



where Y= Zm BmBm/Q Zn EnEn and Q = Zm AmAm/ Zn DnDn = Zm Zmzm/ Zn Enbn
The solution to Eq. (18), with the boundary conditions F'(t = 0) = Fy and F(t - —o0) = 0,
is easily found to be:

1
1 — At exp {—/7t}
while the value of Fj is determined by Egs. (13), (15), and (17) as

F(t) =

(19)

’1:4K,()/\

V1@
As can be seen from Eq. (19), the instanton is localized within a time interval proportional
to 1/,/7.

The instanton solution (19), with the help of Eqgs. (13)—(16), then gives us the saddle—

F0:1+

€o -

point action to leading order in A, as Sx(0) ~ —£hA® where h = &l¢? and ¢ = |4ko/\/7Q)|-
Finally, the PDF tails for local heat flux H can easily be computed by performing the

remaining \ integral in Eq. (6), with the result

P(H; %) ~ exp {—3% (?)/} , (20)

for H/&, > 0. Eq. (20) is the probability of finding heat flux H, normalized by &, at x = X,.
This can be viewed as a transition probability amplitude from an initial vacuum state to
final states with different values of H due to the presence of a modon in the long time limit.
Interestingly, it is a stretched exponential, exhibiting non-Gaussian statistics and thus a
non-trivial intermittency in the heat flux. The stretched exponential PDF tail implies that
a coherent structure enhances heat transport over Gaussian prediction. This is consistent
with the expectation that a coherent structure is efficient in transport owing to its coherent
behavior. Note that in the absence of forcing (i.e., ko — 0), P — 0, simply because the
instanton cannot form without the forcing. Note also that Eq. (20) should be thought of as
the PDF of local heat flux in the saturated state, as the physics of linear growth and the
dynamics of structure formation are not addressed in its derivation.

It is interesting that the 3/2 exponent in Eq. (20), which follows from Sy ~ A3, is

due to the quadratic nonlinearity as shown by simple dimensional estimate in [19]. In
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our case, this can be seen by balancing various terms in S) in the limit as A — oo as
2?2 ~ 6B ~ Tdd? ~ TH’, from which it follows: ¢ ~ X\, & ~ A2, T ~ A1, and Sy ~ N3
Here, T is the typical time scale of the instanton. Note that a similar stretched exponential
PDF tail for local Reynolds stress was obtained in a simple drift wave turbulence [14,15].
Nevertheless the coefficient ¢ in the exponent of the PDF in Eq. (20) does contain the
information about coherent structures, which is model dependent. It is also possible that
the exponent may be different in the case where there are multiple coherent structures in
the system. Furthermore, if the PDF for cross correlation between ¢ and p can be found
in ITG, it may lead to the PDF of heat flux which is different from the PDF of Reynolds
stress in Hasagawa-Mima turbulence.

In summary, we have demonstrated, by using a non-perturbative method (instanton
calculus), that a coherent structure can lead to intermittent heat flux, with enhanced PDF
tail over Gaussian prediction. Although our result (stretched exponential PDF tail) does
indicate the important role that a coherent structure plays in transport, it also reveals some
of weaknesses of the instanton method. First, it naturally tends to predict an exponential
form for PDF as it is computed by a steepest descent approximation to the functional
integral. Second, the exponent 3/2 follows from the quadratic nonlinearity in the system.
Third, to utilize the instanton method, we had to assume a priori the spatial form of a
coherent structure to be an exact solution of the system with fixed parameter values. That
is, the mechanism of formation of the structure itself was not addressed in this framework.
Therefore, the extension of the instanton method to overcome these limitations and/or the

exploration of other non-perturbative calculation of PDF of flux will be desirable.

3. A SIMPLE MODEL OF INTERMITTENT TURBULENCE PROPAGATION IN

DRIFT WAVE TURBULENCE

As noted previously, recent theoretical, computational and experimental advances have

revealed that transport is a bursty, intermittent process, comprised of a gas of avalanches.
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In simple terms, avalanches may be thought of as intermittent secondary cells, which extend
many ‘average’ correlation lengths of the underlying turbulence [20]. Radially extended,
poloidally localized secondary cells are called streamers. Streamers are generated by mod-
ulational interaction processes, as are zonal flows, and regulated by shearing feedback on
the basic instabilities (here ‘shearing’ refers to distortion by poloidally sheared radial flows
which generates large ky) and by subscale instability [21-23]. This mechanism, together with
the consequent evolution of the underlying drift wave population, has been described by a
multi-component ‘predator-prey’ type system. The tendency of the system to form extended
avalanche structures (albeit intermittent ones) has also been associated with deviations from
gyro-Bohm scaling [24] and other “nonlocality” phenomena.

Recently, however, large scale gyrokinetic simulations have indicated that the turbulence
may spread, or propagate, to regimes where the basic drift-ITG modes are linearly stable
[25]. This phenomenon is hereafter referred to as turbulence spreading and can contribute
to perceived ‘intermittency’ by:

a) introducing fast time scale variation in the fluctuation intensity profiles. Here, the ‘fast’
time scale is the nonlinear interaction or mixing rate.

b) introducing non-locality to the fluctuation energy balance. Here non-locality refers to
the fact that the local fluctuation intensity in a linearly stable region must necessarily be
determined by a balance between spatial flux of energy from the unstable region with local
energy dissipation via coupling to small scales. In this regard it is worthwhile to note
that virtually all existing models of turbulent transport tacitly presume a local balance of
excitation (i.e., growth) and dissipation. Since streamers naturally produce radial flows
which can advect the local drift wave population, it is only natural to explore the effect of
the streamers on turbulence spreading.

In this section, we present a simple model for the intermittent propagation of fluctuation
intensity via secondary radial lows. We emphasize that the “stuff” being propagated is fluc-
tuation energy, not heat or particles. However, it is obvious that the latter must necessarily

follow the former so that turbulence spreading certainly plays a role in avalanche dynamics.
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Also, this model should be viewed as complementary to that presented in [25] which treats
the spreading as a diffusion process.

The local fluctuation population density is N(z, kg, t), which satisfies the wave kinetic
equation

ON ON ON 0 ON
E"‘Uga—y‘Fva—x—a—y(W‘f'krV)a—ka—

C(N). (21)
Here, V is purely radial (corresponding to a streamer), so that only the ky,-dependence
of N need be considered, v, is the poloidal direction group velocity (i.e., v, = v, (1 —
k2p?) /(1 + k% p?)? for drift waves), and C'(NN) represents a collision integral which accounts
for linear processes as well as non-action-conserving wave interactions. In general: C(N) =
YN — Awg N?/Ny. The effect of the streamer flow is manifested in the advection term V3, N
and in the streamer shearing term 0,(w + k,V)0, V. Thus, the effect of the streamer flow
is to drive both a spatial flux in x and a wave-number flux in ky. The spatial flux produces
turbulent spreading by relaxing intensity gradients, while the wavenumber flux generates
large ky by shearing. Note that the shearing-induced spreading in ky is the self-regulation
mechanism for the streamer flow. Thus, the drift-wave population necessarily evolves via
dual-fluxes in = and kg, due to intensity transport events and shearing events, respectively.

The obvious self-regulation of the system suggests the conjecture that the profiles of
N(z,t) and N (kg,t) hover near self-organized critical (SOC) profiles in z and kg. Thus, Eq.
(21) implies that N = N — N,,, evolves according to:

ON ON 0 . 0 N N
_ = N). 22
T 3 + axrm(z\f)Jr akaFkg(N) C(N) (22)

Here, T, is the flux in z, and Ty, is the flux in ky. By definition of the SOC state, I',(N) — 0
and I'y, (]\7 ) — 0 as N = 0, as there should be no flux when the system adopts precisely the
SOC configuration.

In the usual approach, Eq. (22) is now closed using a Fokker-Planck calculation, so that

I'; and I'y, are represented as diffusion in position and wave-number space, respectively, i.e.

I, =—D,—, (23)



Z q‘qu (24)

q
ON
[y, = —Dy,— 2
ko k0 Dty (25)
Dy, =Y k2q;|V4/*R(k,q), (26)
q

where R(k, q) is a resonance function determining the effective correlation time [26]. How-
ever, noting that the streamer flow is driven by N, it is possible to use symmetry constraints
to determine the forms of I'; and I'y, without recourse to perturbation theory. In particular,
the (assumed) existence of a SOC profile suggests that local excesses of N (i.e., N > 0)
should run downhill while local deficits of N (i.e., N < 0) should run uphill. In this ‘dual-
SOC’ system,  and ky evolution evolve independently, so for each kj, there is a SOC profile
Nyoc(, ky, t) and for each ', there is a SOC profile Ny,.(2', kg, t). Thus, both I'; and I,
must each satisfy the joint reflection symmetry constraint [27]. Thus, for each kg, N — —N
and x — —x must leave I['; invariant, while for each xz, kg — —ky must leave I'y, invariant.
Thus, I'y(N) must have the form
T, = %: (aw,mﬂﬂm + Boym <%—]§> + - ) : (27)
Similarly, I'y,(N) must have the form
Ty = (ake,gmﬂﬂm + Brgm (%—];[) + - ) : (28)

In lowest order, then

m=? 52 (29)
(6773 N

Iy = —2N

ke 9 /Bks kg (30)

where o’s and ’s are coefficients which follow from the underlying model. The determination

of e, 8 is discussed in Appendix. N then evolves according to

ON ON ~ON - ON 92N 92N L
E‘F’l}ga—y-f-&xN%‘{'a/nga—ka_ﬁw 012 _ﬂka ak% __7N+f (31)
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Here, we have used the linearized form of C'(N) and have imposed C(N) — 0 for N — Njqe.
f represents noise. It is important to note that this model cannot actually predict Ny, but
only can describe the dynamics of deviations from it.

Eq. (31) is a bivariate noisy Burgers equation for the evolution of the drift wave popu-
lation in = and ky. Its bivariate structure is due to the fact that turbulence spreading (due
to streamer flows) is necessarily accompanied by wave-packet evolution due to straining by
the same streamer flow. The physical significance of the various terms in Eq. (31) is clear.
The ﬁwazN is spatial diffusion of turbulence intensity, while (3, ak is diffusion in ky space,
much like the familiar induced diffusion process for the evolution of wave-packets in the
presence of larger scale strain fields. The term a,NO,N refers to self-advection of drift
waves by the streamer flow fields they produce. Similarly %N akGN may be thought of as
nonlinear self-refraction of drift waves by the streamer flow fields they drive. The absence of
cross-terms in Eq. (31) is consistent with the vanishing of cross-terms in the corresponding
quasi-linear calculation. Note that Eq. (31) may be viewed as a limiting case of a more
general system of the form:

ON ON ON ON 02N 02N L
5 +vy— 9 + o,V — 5 —|—ak6V' —ﬂw 5~ B o2 =—yN+f, (32)

<aat+zw+ )V ZN (33)

This has the form of a generic prey-predator system, with the flow V' as the predator and

the population fluctuation N as the prey. In the limit of quasi-stationary flow, V ~ 7N, Eq.
(31) can be recovered. We consider this limit, as it constitutes the simplest possible model.

A central question here is concerned with the nature of the self-organized criticality in
x and ky. The basic idea of spectral shape as an SOC is discussed in [28]. N(kg,t)soc
can be viewed as the spectrum formed by shearing events (i.e., jumps in ky) in response
to noise stimulus. Indeed, the familiar Kolmogorov spectrum of fluid turbulence is, in
essence, a particularly simple form of a SOC, where the cellular automata rule (ala’ sandpiles)
is replaced by the requirement of constant dissipation at all scales. Here, it is also very

important to note that the spectra shown as products of computer simulations are invariably
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heavily time-averaged, so that it is very likely that the instantaneous spectrum exhibits
complex structure, consistent with experience from sandpiles.

The question of the validity of presuming SOC in configuration space (i.e. z) is consider-
ably more subtle. Certainly, it is a generic property of drift-wave interaction that nonlinear
couplings necessarily involve spatial transport of fluctuation energy, since the couplings in-
volve radial derivatives of fluctuations. This may also be seen by noting that using standard
closure theory, the nonlinear damping of fluctuation energy can be written as a sum of radial

diffusion and radially local decorrelation, i.e.:

—Zk k' x )’ B\ S(K)2R(k, X' )&x

Tck
___ ’QC ! 2 ! 0 a¢( ) !
~ Zke £ 00 R 6+ Sk | P e+
)
0 0&x
= _%Dr,k(g)g =+ ngg,k(g)gk 4+ -, (34)

Thus, nonlinear interaction must necessarily work to relax fluctuation intensity gradients,
resulting in amplitude dependent transport (i.e., diffusion) of fluctuation energy. The com-
petition between nonlinear diffusion (D = D(£)) and noisy excitation then is very similar
to the competition between deposition and toppling which characterizes a sandpile SOC.
It is less clear what sets the local “critical gradient” for relaxation. One likely possibility
is when £ and 0,€ are sufficiently large enough so that turbulent spreading exceeds local
damping. The physics underlying this is discussed below. It should also be noted that the
simple scenario discussed here is limited to cases of modest fluctuation intensity gradients.
Should 0,& become very large, the Reynolds stress drive of poloidal flows, itself proportional
to —04(U,0g) ~ 0,E, will become large enough to overcome frictional damping, resulting in
the generation of a shear layer which reduces £ and the associated transport. This suggests
that the fluctuation intensity flux is necessarily bi-stable, and so the simple model discussed
here applies to only the first (modest 9,€) branch.

As Eq. (31) is a noisy, bivariate Burgers equations, it necessarily implies that the drift

wave population dynamics consists of shocks in z and ky. The physics of shocks in k-space
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is discussed in [28]. Shocks in kg represent coherent shearing phenomena, with kg ~ ¢. These
correspond to strong but brief shearing events with shearing time 7, less than the shearing
field auto-correlation time 7,. (i.e., 7s < 74¢). Thus, shocks in ks correspond to bursts of
straining where poloidally sheared radial flows ballistically produce large k. This is a class
of shearing process not captured by quasilinear closures of the wave kinetic equation.

The physics of shocks in z-space is both more familiar and more germane to the problem
of understanding turbulent spreading. To focus on spatial dynamics, we integrate Eq. (31)

over ky and y, yielding

N

ON 02 .
ﬁmﬁ =—yN+f. (35)

or

88—];[ -+ ozzN
Note this is just a noisy Burgers equation, with an additional linear damping term (which
follows from C'(N) and the requirement that C'(N) — 0 for N — N;,)! Thus, a number of
results follow directly from the enormous body of knowledge available concerning Burgers
equation, the favorite laboratory animal of turbulence theorists. First, Eq. (35) suggests
that turbulence spreading will be “fast” (i.e., will occur super-diffusively), with z ~ ¢, as
in Burgers shocks. Second, fast turbulence spreading will be most virulent near marginality
of the underlying drift waves. This follows from a familiar text-book example [29], which
states that in the limit of small 3, and f — 0, a finite time singularity (i.e., shock) in N will
form if |0, N| > 7 — i.e., the initial (negative) slope must be sufficient for steepening to
overcome dissipation. As dissipation here is linked to linear growth via the constraints on
C(N), this is equivalent to requiring that the underlying drift waves be ‘near’ marginality.
Note also that |awN | > v/ay is the effective “toppling condition” for the onset of turbulence
spreading, and thus defines the effective critical spatial gradient in N.

A third result concerns the PDF of N, denoted by P(N). P(N) is of obvious interest, as it
gives the PDF of shocks, which may be thought of spreading events. The most fundamental
aspect of Burgers dynamics is the asymmetry between shock regions with 9, N < 0 and
ramp regions with 9, N > 0. Thus, the natural dependence of P is on 9, N, or equivalently,

AN; the local jump in N. P(AN) is asymmetric, as the system tends to amplify negative
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slopes (i.e. form shock fronts) and to flatten positive slopes (i.e. smooth ramps). In
the case of white noise forcing (and v — 0), application of the instanton calculus yields
P(AN) ~ exp[—cAN3/r] for AN > 0 [12]. Here AN ~ N'r. This is in good agreement
with numerical calculations. For AN < 0, the arguments of Chekhlov and Yakhot [30]
imply that for white noise and AN <« 0, P(AN) ~ AN™*, also in good agreement with
simulations.

While these observations suggest that noisy Burgers turbulence may be good paradigm
for the dynamics of turbulence spreading, the reader is cautioned that the true dynamics are
governed by a bivariate Burgers equation. Thus, propagation in z is necessarily accompanied
by shearing, generation of large ky and thus coupling to high ky damping. Hence, turbulence
spreading and k-space energy transfer are intertwined, so that coupling to damped kg will
act to limit the range of turbulence propagation in space! Obviously, then, the inclusion of
the precise value of /oy, is critical to predicting the actual range of turbulent spreading

in a concrete example.

4. CONCLUSIONS

In this paper we have presented two non-perturbative models of intermittency in drift
wave turbulence. In the first example, the instanton calculus was used to analytically cal-
culate the tail of the local PDF of ion heat flux due to structure in a curvature driven ITG
turbulence. The result P(H) ~ exp [—cH?%/?], a non-Gaussian PDF, was obtained. Note that
the instanton calculation can, in principle, be implemented for any ‘empirical eigenfunction’
which is a stationary solution of the underlying nonlinear equation. Thus, this methodology
could be used to compute PDFs from numerical or experimental data, provided one had a
good understanding of the underlying plasma model. In the second example, concepts from
SOC-theory and symmetry constraints on the spatial and momentum flux were used to de-
rive a bi-variate Burgers equation for the evolution of N(z, kg, t), the fluctuation in the drift

wave density about the SOC state induced by radially extended streamer flows. The PDF

18



of N (P(N)) associated with spatial avalanching was obtained. For N < 0, P(N) ~ N4,
while P(N) decays faster than Gaussian for N > 0. The relation of spatial avalanching
to turbulence spreading, which is observed in simulations, was discussed. Future work here
should focus on quantitative comparisons of theory with simulation results for concrete cases,
including specially designed numerical experiments.

While the two calculations considered here are quite different in assumptions, structure,
and methodology, it is interesting to note that both end in the prediction of a PDF for
fluctuation properties. The PDF is, indeed, the common element of the two lines presented
here. Future work will focus on alternative approaches to calculating turbulence PDF's, and

on critical comparisons of existing approaches with simulations and experiments.
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APPENDIX A: DETERMINATION OF a AND g COEFFICIENTS

Here, in interest of brevity, we discuss only the determination of «, 3 for zonal flow strain
case — a similar method will be applied to the streamer case. The coefficients «, 3 enter the
parameterization of the self-refraction of drift wave packets, via its nonlinear (o« NON/0k,)
and linear diffusive (—30%2N/0k?) pieces, respectively. These coefficients can be determined
in (at least!) two ways, namely via scaling analyses ala’ Connor and Taylor [31] or by
(substantially equivalent) physically motivated estimates. For example, the coefficient g3
accounts for the (minimal) linear induced diffusion in k&, due to random shearing. The

induced diffusion coefficient [32] is:

Dy, = Zkg|v¢1"27'cq-
q
Here ¢ is the radial wave-vector of the zonal flow strain field. As § is to account for the

minimal diffusion, one can take kj ~ k2 (a typical mean-square turbulence wave-vector),
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Teq ~ 7 (from the triad resonance) and ¥4 |V/|? 2 (¢(E;)'/B,)? (taking the mean field
shear as having scale on which the electric field is smoothest). Note the last approxima-

tion is not appropriate in transport barrier regimes, where turbulence and zonal flows are

extinguished. Thus, 8 ~ k2v, '(c(E,)'/By)? appears as a reasonable estimate. As to a, it is

the coefficient for nonlinear refraction by self-driven zonal flows. This can be estimated by

considering the balance of flow damping with generation by Reynolds stresses. Specifically,

0 a . .
(a + 7d> Vi = —5<UErUE0>q

where the brackets denote an average over a scale smaller than ¢ !. At stationarity,

where v, is the flow damping, C(q, k) is a Kernel determined by modulational stability anal-
ysis [26] and N (k) is the wave spectrum. The bar denotes an average over k. Noting that
the refractive nonlinearity in wave kinetics is —kgV,/ON/0k,, breaking the average straight-

kgC(q,k)

forwardly yields the estimate o ~ . Obviously, the regime where v, — 0 presents

special complications. These are discussed in [33].
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TABLE 1

Contrast Formation of structure (conventionally)|Effect of structure on PDF flux
Method Mean field theory (quasi-linear closure) |Instantons (non-perturbative)
Assumption| Ray chaos, random coupling, etc Spatial form of coherent structure
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Figure Captions
Fig. 1. The time evolution of F', showing the temporal localization of instanton. The latter
can be interpreted as a ‘burst’.
Fig. 2. The uncertainty in an external forcing determines the PDF for F', which in turn

determines the PDF of the flux.
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