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We present a theory for relaxation and transport in phase space for gyrokinetic drift wave turbulence
with zonal flow. The interaction between phase space eddys and zonal flows is considered in two
different limits, namely for K ! 1 and K ^ 1 where K is the Kubo number. For K ! 1, the growth
of an isolated coherent phase space structure is calculated, including the associated zonal flow
dynamics. For K ^ 1, mean field relaxation dynamics is considered in the presence of phase space
granulations and zonal flows. In both limits, it is shown that the evolution equations for phase space
structures are structurally similar to a corresponding Charney-Drazin theorem for zonal momentum
balance in a potential vorticity conserving, quasi-geostrophic system. The transport flux in phase
space is calculated in the presence of phase space density granulations and zonal flows. The zonal
flow exerts a dynamical friction on ion phase space density evolution, which is a fundamentally new
zonal flow effect.VC 2011 American Institute of Physics. [doi:10.1063/1.3662428]

I. INTRODUCTION

Turbulent relaxation and transport are important issues
for fusion plasmas. Conventionally, the relaxation process is
thought to begin with free energy stored in plasma inhomo-
geneity being released by linear instability of drift waves.
Transport or mean field evolution due to the instability is
usually described via a quasilinear calculation,1 which
assumes a spectrum of eigenmodes only, and thus treats tur-
bulence as an ensemble of waves.2 In terms of dimensionless
numbers, this conventional approach is valid for Kubo num-
ber K " ~vsc=Dc # 1 where ~v is the typical velocity, sc is the
correlation time, Dc is the correlation length. Despite usual
practice, the conventional approach is not compatible with
the mixing length theory2 predictions—which are standard
estimates for saturation levels—since in the saturated state
we expect from mixing length theory that ~v $ Dc=sc, so tur-
bulence is characterized by K$ 1. Moreover, K& 1 can
result for turbulence with non-mode like fluctuations such as
vortices, eddys, blobs, etc., with sL & scir (Fig. 1), where
sL$ sc is a life time of field pattern and scir $ Dc=~v is an
eddy circulation time. Thus, since turbulence is often in a
state with K> 1 or at least K$ 1, turbulence driven relaxa-
tion and transport should be analyzed in such regimes. There
exist attempts3,4 to characterize transport in such a case;
however, they usually study transport for a given, fixed spec-
trum of turbulence, without linking the structures inherent to
K& 1 with the turbulence dynamics. Since transport neces-
sarily evolves profiles which in turn evolves turbulence, we
need a self-consistent model of turbulent transport for K& 1.

For K& 1, kinetic plasma turbulence models, such as 1D
Vlasov or gyrokinetic (GK) models used heavily in the fusion
community, exhibit the existence of phase space structures. In

the 1D Vlasov plasmas, K& 1 corresponds to the state where
the effect of particle trapping is important, since the Kubo
number can be recast as K ¼ ~vsc=Dc $ sac=sb where
s&1ac ¼ jdx=dk & x=kjDk is the auto-correlation time of a
packet and s&1b $ ~v=Dc $ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq/=mÞ

p
is bounce frequency of

particles trapped in potential trough (for 1D Vlasov models).
Particle trapping leads to formation of phase space structures,
such as Bernstein-Green-Kruskal (BGK) eddys,5 phase space
holes,6–8 clumps or granulations,7–9 etc, which can be impor-
tant players for relaxation and transport. As argued by
Dupree10 and Kadomtsev,11 phase space structures can emit a
wake of waves via Cerenkov emission, an effect which neces-
sarily appears as dynamical friction in the phase space density
evolution equation (Fig. 2). In this view, the emission is
treated much like that from a test particle12 and the emitting
structure is viewed as a kind of macro particles, albeit one
with a finite lifetime. Thus, turbulence driven mean field evo-
lution equation is altered from a pure diffusive type to a
Lenard-Balescu type, with both diffusion and dynamical fric-
tion entering the evolution of hfi (Table I). The mean field
evolution has been applied to current carrying Vlasov plasma,
and the origin of anomalous resistivity has been linked to mo-
mentum exchange mediated by structures,10 in addition to the
conventional approach based on waves.13

The formation of structures7,8,14 and its effect on trans-
port15,16 are also discussed for inhomogeneous phase space
turbulence, which is relevant to the problems in confined
plasma transport. The ideas of phase space density granulation
and dynamical friction are applied to collisionless ion-temper-
ature-gradient (ITG) turbulence.16 In that analysis, the authors
argued that the relaxation process inherently produces ion
phase space density granulations, which then experience dy-
namical friction via the wake effect due to Cerenkov emission.
The dynamical friction due to dissipative electrons is found to
cause anomalous transport of ion energy and particles. On thea)Electronic mail: yukosuga@physics.ucsd.edu.
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other hand, the dynamical friction due to polarization charge is
not included in that analysis, as the authors naively thought that
the mixing of ion guiding center phase space is not coupled to

polarization charge mixing; h~vrdfii $ h~vr~nGC;ii $ h~vrr2
?
~/i

and h~vrr2
?
~/i $ Re

P
k ikhk

2
?j ~/j

2
k ! 0.

However, we do know that the polarization charge flux
is tied to Reynolds force via the identity,17,18 h~vrr2

?
~/i

¼ @rh~vr~vhi, which usually is non-zero. The analysis of the
reference16 overlooked the envelope and zonal flow scale.
The issue may be clarified by noting that there are several
spatial scales inherent to drift wave turbulence (Fig. 3),
which are as follows:

• Mode fluctuation scale lc $ k&1r , where lc is the typical cor-
relation scale and kr is the mode wave number.

• Fluctuation spatial envelope scale of fluctuation Denv,
where Denv $ ðj ~/kj

20=j ~/kj
2Þ&1.

• Avalanche size Dava, where Dava> lc. An avalanche
involves intermittent interaction of several neighboring
fluctuation envelopes.

• Profile scale, Lf where Lf: (hfi0/hfi)&1.

Usually k&1r < Denv .Dava < Lf . Since the wake has a finite
spatial extent (Fig. 2), it naturally introduces an effective en-
velope scale to the fluctuation dynamics. The envelope scale
can also be set by mode propagation and absorption points,
the excitation profile, plasma profile curvature, etc. The enve-
lope dependence alters the radial variation of the fluctuations
from @r ~/ $ ikr/ke

ikrr to @r ~/ $ ðikr þ @RÞ/k ðRÞeikrr, where
ikrj j ! @Rj j and r, R are associated with fast fluctuation varia-
tion and slow envelope variation, respectively. Hence the en-
velope dependence replaces kr ! kr& i@R, which effectively
can be thought of as an Imkr. This leads to Imk2? 6¼ 0 and thus
h~vrr2

?
~/i 6¼ 0. This is plausible since the envelope variation

also implies a non-zero Reynolds force, @rh~vr~vhi. Thus, by

accounting for the slow envelope variation, dynamical friction
appears from the polarization charge, which induces direct
zonal flow coupling to relaxation and transport by phase space
density granulation. We note that Dava could also be a relevant
scale for zonal flow variation;19 however, we do not further
consider avalanching here.

In this paper, we discuss relaxation and transport in in-
homogeneous phase space turbulence with zonal flow in the
limit K& 1. We consider a simple model20 for GK drift
wave turbulence,

@t f þ vd@y f þ f/; fg ¼ Cðf Þ; (1a)

aeð/& h/iyÞ & q2r2
?/ ¼

2

neq
ffiffiffi
p

p
ð1

0

dE
ffiffiffi
E

p
f & 1; (1b)

with heat flux Q matched according to

Q ¼ &vcollhTi
0 þ 2ffiffiffi

p
p

ð
dE

ffiffiffi
E

p
Eh ~Vrdf i; (1c)

where vcoll is a collisional thermal conductivity. The model
describes basically 2D drift wave dynamics, with a trapped
particle precession resonance. Parallel acceleration is annihi-
lated by bounce averaging, which enables us to focus on
pure spatial mixing due to E*B drift. Equation (1a) is
bounce averaged kinetic equation for trapped ions.
vd¼ vd,0E/Ti is an energy dependent magnetic precession
drift velocity.21 The Poisson bracket accounts for E*B con-
vection. Equation (1b) is GK Poisson equation,22,23 which
accounts for polarization charge. Although the model is very
simplified as compared to the full GK description, it does
contain a minimal representation of all the relevant effects
we need here. Namely, polarization charge introduces zonal
flow coupling to the model, since any mixing of f leads to
the mixing of r2/, which in turn leads to Reynolds forcing
via the Taylor identity;17 h~vrdfii $ h~vr~nGC;ii $ h~vrr2

?/i
¼ @rh~vr~vhi. Also, K& 1 is easily possible in the model, since
the correlation time for particle and spectra can become
long, i.e., since

Dðx& xdÞ ffi Dkh
dx
dkh

& x
kh

####

####; (2)

then sac$ (jdx/dkh&x/khjDkh)&1. Given the weakly disper-
sive nature of long wavelength drift wave turbulence, it
is very easy to have long sac and thus Kubo number
K ¼ sac~v=Dc & 1 is possible. Hence phase space structure for-
mation can be expected in this model.

FIG. 1. K ! 1 and K ’ 1.

FIG. 2. Cerenkov emission and wake.

TABLE I. Turbulence with waves vs turbulence with structures.

Turbulence with waves Turbulence with structures

Fluctuations Eigenmode Non-mode like

Drift wave,… BGK eddy, clump, hole,…

Instability Growth of mode Growth of structure

Mean
evolution

Quasilinear diffusion DiffusionþDynamical friction,
drag
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In the remainder of the paper, we consider the two dif-
ferent limits of the model described above, K ! 1 and
K$ 1. First we consider the strong resonant limit for K ! 1,
which is applicable when a single structure can form
(Fig. 1). In this strongly resonant limit, we show that a phase
space structure, as well as a wave, carries a pseudomomen-
tum,24 and can exchange it with the zonal flow. To see this,
we consider the growth of a single structure in the ion phase
space density, in the presence of electrons and polarization
charges. There, based on the invariance of the total dipole
moment, we show that a single ion phase space density struc-
ture cannot avoid zonal flow coupling. The pseudomomen-
tum associated with structures is identified as the negative of
the kinetic wave activity density, &

Ð
dE

ffiffiffi
E

p
hdf 2i i=hf i

0j0. The
structure growth equation with zonal flow is shown to be
closely related to the Charney-Drazin, (C-D) theorem18,25,26

for potential vorticity (PV) conserving quasigeostrophic
(QG) system, which is the fundamental momentum con-
straint for a system with turbulence and zonal flows. This is
due to the fact that even single structure dynamics is neces-
sarily tightly coupled to zonal flows.

Then we move to the limit K$ 1, where structures can
form but also break up (Fig. 1), thus forming a statistical en-
semble of granulations.9,12,15,16 Granulations are similar to
fluid eddys, albeit in phase space, and constitute an incoher-
ent part of fluctuations which enters relaxation and transport
process as dynamical friction. We consider the dynamics of
granulation and its effect on transport, in the presence of
zonal flow coupling. The dynamics is described by a statisti-
cal theory based on the 2 point correlation,

@

@t
þ Tð1; 2Þ

% &
df ð1Þdf ð2Þh i ¼ Pð1; 2Þ: (3a)

Here hdf(1)df(2)i is phase space density correlation function,
called the “phasetrophy,”12 since it is analogous to enstrophy
in QG turbulence. T(1,2) determines the life time of correla-
tion due to relative streaming, ~vE*B scattering, and collisions.
Pð1; 2Þ $ &h~vrdf ihf i0 is the production of phasetrophy due
to the relaxation process. In the following analysis, we show
that production due to polarization charge introduces zonal
flow coupling to the statistical granulation dynamics. The
granulation evolution with zonal flow is compared to the C-
D theorem for the QG system. We argue that the granulation
evolution equation with zonal flow takes the form of the prey
equation in the general predator-prey system. Thus, as other
drift wave-zonal flow (DW-ZF) turbulence systems, granula-
tions and zonal flows also form a self-regulating system in
phase space. We also derive the transport flux associated
with the granulation induced relaxation process. The mean
field evolution is extracted from P(1,2) by noting that df/
dt¼ 0 and d/dthdf2i¼& @thfi2. For drift turbulence,

@thf i ¼ &@rh~vrdf i ¼ &@r½&D@rhf i þ Fhf i-: (3b)

Here D is analogous to the familiar quasilinear diffusion
term, and F is the dynamical friction term, which arises from
granulation. We show that dynamical friction due to zonal
flow is non-zero. Specifically, dynamical friction accounts

for the contribution to P(1,2) from the fluctuation Reynolds
work on the zonal flow.

The remainder of the paper is organized as follows. In
Sec. II, single structure growth is formulated with zonal flow
and linked to the C-D momentum theorem. Section III treats
the case of multiple structures, using statistical theory. Phase
space density granulation evolution is formulated in the pres-
ence of zonal flow. The connection of the result to C-D mo-
mentum theorems, as well as the implications for transport,
is discussed. Section IV presents conclusions and discussion.

II. SINGLE PHASE SPACE STRUCTURE AND ZONAL
FLOW

In this section, we discuss the interaction between a
single phase space structure and zonal flows, a situation
which corresponds to the limit K ! 1. In this limit, particle
trapping becomes important and a coherent structure, such
as a hole or a blob, emerges. Such a structure can grow
when the background distribution has a gradient due to
inhomogeneity, since total f must be conserved along a tra-
jectory; for example, a hole in phase space can grow when
propagating up a background mean gradient (Fig. 4). In the
following, we consider the structure growth dynamics6,14

and show that a structure is dynamically coupled to zonal
flow since radial transport and thus growth of a structure
necessitates a flux of polarization charge, so as to maintain
charge balance.

Here, we consider the structure dynamics in the model20

described above

ð@t þ vD@yÞf þ
n c

B
/; f
o
¼ Cðf Þ; (4a)

dni
n0
þ q2sr

2
?
q/
Te
¼ dne

n0
: (4b)

The first equation is a bounce kinetic equation for the guiding
center ion distribution, with an energy dependent drift veloc-
ity21 vD ¼ !vD !E where !E " E=Ti and the Poisson bracket
{/, f}:@x/@y f& @y/@x f. Note that magnetic trapping does
not allow correlated particles to disperse in the parallel direc-
tion. The second equation is the Gyrokinetic Poisson equa-
tion,22,23 which includes polarization charge. Given the weakly
dispersive character of long wave length drift waves in the
model, the correlation time sac$ (jdx/dkh&x/khjDkh)&1 can
become long. For example, if x ¼

ffiffi
!

p
x.=ð1þ q2s k

2
?Þ,

we have

FIG. 3. Envelope modulation.
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sac $
2

ffiffi
!

p
k2hq

2
s

ð1þ k2?q2s Þ
2
v.Dkh

 !&1
: (5)

Then we easily see that sac can be long for drift waves with
khq< 1, even if the k spectrum is broad, i.e., Dkhq$ 1.
Hence, the Kubo number can be large K ¼ sac~v=Dc ! 1 for
this model. In this limit with strongly coherent resonances, it
seems likely that a coherent structure, such as hole, blob or
clump, can form7,8 (Fig. 1).

Given the possibility of structure formation, we consider
the dynamics of a fluctuation df((x& x0)/Dx, (E&E0)/DE),
which is localized in a phase space point (x0, E0) with an
extent Dx and DE, Fig. 4. Here x0 is the location of a struc-
ture we are considering and E0 is the energy at resonance,
i.e., x& !xd

!E0 ¼ 0. Dx$Dc is the size of a structure in ra-
dial direction and the width in velocity space DE is estimated
from !xdD !E $ s&1circ $ ~vE=Dc, so D !E $ ~vE=ð !xdDcÞ.

A structure in phase space can grow as depicted in
Fig. 4, whose dynamics is described by df 2 evolution.6,14

Since Eq. (4a) can be written as df/dt¼C(f), it implies df 2/dt
¼ 2fC(f). Writing f¼ f0þ df and assuming @tdf=df
! @tf0=f0, the df

2 evolution is obtained as

@t

ð
d3vhdf 2i i ¼ &2

d

dt

ð
d3vhdfifi;0i þ 2hfCðf Þi: (6a)

Here, f0 includes the background mean distribution hfi as
well as the depletion due to the structure. df is a perturbation.
h…i denotes an ensemble average, which corresponds to the
zonal average in y direction here. As in Fig. 4, the distortion
df((x& x0)/Dx, (E&E0)/DE) is localized around a phase
space point. Then we expand f0 about that point as

fi;0 ¼ fi;0ðx0;E0Þ þ ðx& x0Þ
@h fii
@x

####
ðx0;E0Þ

þ / / / : (6b)

Note that the expansion is only carried out in x here. This
reflects the fact that in Eq. (4a) energy is not scattered by
turbulence, since the bounce averaged vk ~Ek vanishes,
i.e., dE=dt ¼ ðe=miÞhvk ~Ekib ¼ 0 where h…ib ¼

Ð
dl=vkð…Þ=Ð

dl=vk is a bounce average. Using the expansion, the struc-
ture evolution equation now becomes

@t

ð
d3v

hdf 2i i
2

¼ &h~vr~nii
@hf i
@x

####
0

þhfCðf Þi; (6c)

where the subscript 0 denotes a location of the structure in
phase space (x0, E0), dðx& x0Þ=dt ¼ ~vr and

Ð
d3vdfi ¼ ~ni

Eq. (6c) relates the distortion of the mean distribution to
the growth of the perturbation. Note that the structure
growth, Eq. (6c), differs from the drift hole growth
derived in an earlier study14 in that: (i) structure growth
here is decoupled from velocity space scattering and (ii)
structure growth here is coupled to zonal flow generation.
The first difference is trivial, since we are dealing with a
bounce kinetic equation here, so there is no parallel accel-
eration. The second, more physically relevant difference
arises since the net dipole moment of the structure, includ-
ing polarization charge, is conserved,6

Ð
dx
P

a qanaðxÞx. In

other words, since quasi-neutrality including polarization
charge is maintained h~vr~nii ¼ h~vr~nei & h~vr~npoli and h~vr~npoli
$ h~vrr2

?
~/i $ @rh~vr~vhi via the Taylor identity,17 ion struc-

ture growth is intrinsically coupled to zonal flow growth
via flux of polarization charge. This gives

@t

ð
d3v

hdf 2i i
2@hfii=@xj0

¼ &h~vr~nei þ
n0
xc;i

@rh~vr~vhi þ
hfCðf Þi

@hfii=@xj0
;

(6d)

which clearly states that the single structure growth cannot
decouple from zonal flow evolution. Note that zonal flow
coupling here appears through polarization charge flux, for
the same reason as zonal flow coupling in QG turbulence
appears through vorticity flux.17

In Eq. (6d), the particle flux appears in the right hand
side. Then, one may ask how we reconcile Eq. (6d) with heat
flux drive. This may be resolved by going back to Eq. (6a)
and by taking E moment of df 2. This leads to

@t

ð
d3vEhdf 2i i ¼ &2h~vr ~Tii

@hf i
@x

####
0

þ2
ð
d3vEhfCðf Þi; (7)

where h~vr ~Tii "
Ð
d3vEh~vrdfii. Equation (7), together with

heat balance equation Q0 ¼ &vneohTii
0 þ

Ð
d3vEh~vrdfii,

describes energetics of the system.
The structure evolution, Eq. (6d), reveals a momentum

constraint for the interaction between a single phase space
structure and zonal flow. Using the momentum balance
@thvhi þ @rh~vr~vhi ¼ &"hvhi gives

@

@t

n0
xc;i

hvhi þ
ð
d3v

hdf 2i i
2hfii0j0

% &
¼ &h~vr~nei & n0

"

xc
hvhi

þ hfCðf Þi
@hfii=@xj0

: (8)

Hence, we see that up to constant factors
Ð
d3vhdf 2i i=

ð@hfii=@xÞj0 can be thought of as a generalized momentum
associated with fluctuation, namely the pseudomomentum of
a single phase space structure which accounts for the zonal
momentum of the structure. Equation (8) states that a struc-
ture growth in phase space is dynamically coupled to zonal
flow to conserve zonal momentum. At stationary state, elec-
tron flux can sustain a flow against collisional drag, hvhi
¼ &ðxc="Þh~vr~nei=n0; localized ion structure scatters elec-
trons and can pump zonal flow growth. The statement that a
single localized structure in phase space can drive zonal
flow should be regarded as interesting, in light of the total ab-
sence of the familiar wave interaction-based mechanisms of
zonal flow generation, such as inverse cascade,27 the Rhines
mechanism,28 modulational instability,29 etc. Indeed, Eq. (8)
supports the notion that PV transport or mixing and one
direction of symmetry are all that is required for zonal flow
generation.30

At this point, it is interesting to compare Eq. (8) to the
Charney-Drazin momentum theorem for a potential vorticity
conserving, quasigeostrophic turbulence. The theorem18 is
proved for the Hasegawa-Wakatani system31
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@

@t

hdq2i
2hqi0

þ hvhi
' (

¼ &h~vr~nei & "hvhi

& 1

hqi0
@

@r
~vr
dq2

2

) *
þ D0hðrdqÞ2i

% &
:

(9)

Here q ¼ n& q2sr2
?ðe/=TeÞ; hdq2i=hqi

0 is the wave activity
density or the negative of pseudomomentum,24 D0 is a diffu-
sivity of potential vorticity, and v is a collisional drag on

flow. Pr¼ 1 was assumed. As hdq2i=hqi0 $ &jv.j&1
P

k

ð1þ q2s k
2
?Þ

2j/̂j2k $ &
P

k khðEk=xkÞ, which is recognizable
as the negative of the wave momentum density, the theorem
states a momentum constraint for self-regulating DW-ZF tur-
bulence system. Now each term in Eq. (8) has its counterpart
in Eq. (9). The kinetic analogue of wave activity density,

hdf 2i i=hf i
0j0, can be contrasted to wave activity density hdq2i/

hqi0. The both terms are related to the momentum of fluctua-

tions, although &hdf 2i i=hfii
0j0 is the momentum of a phase

space structure in the presence of strong wave-particle interac-
tion. Particle flux and zonal flow drag appear in both equa-
tions. The underlying physics which unifies the two different
systems is the conservation of “potential vorticity,” which
consists of generalized or extended fluid vorticity; for QG sys-
tem PV consists of fluid vorticity plus the “planetary” part
related to b or v*; for GK system it consists of polarization
charge plus electron density. This ultimately follows from the
Kelvin’s theorem32 for the conservation of total circulation,
which underpins the Charney-Drazin theorem for flow mo-
mentum and a generalized pseudomomentum. See Table II
for the comparison.

We note, though, Eq. (8) defines the pseudomomentum
of phase space structure and is not a mere mathematical tran-
scription of the Charney-Drazin theorem for QG system to
another structurally similar system, i.e., the GK system. The
extension of the theorem to the kinetic system is subtle, since
kinetic system has a singularity from wave-particle reso-
nance, with no counterpart in the QG system. The subtlety
becomes apparent when we try to physically interpret the ki-
netic wave activity density, hdf2i/hfi0. Of course, in the non-
resonant limit, the kinetic wave activity density corresponds
to the negative of pseudomomentum associated with

waves, as dfk ’ ð&~vr;khf i0Þ=ð&ixkÞ and
Ð ffiffiffi

E
p

dEhdf 2i=hf i0

$
Ð ffiffiffi

E
p

dE
P

khf i
0ðk2hj ~/j

2
kÞ=x2

k $ &
P

kðEk=xkÞkh where Ek

is the wave energy density. In the resonant limit, however,
we cannot physically interpret the kinetic wave activity den-

sity based on the comparison between GK and QG turbu-
lence. The above discussion of the ion structure growth

reveals &
Ð ffiffiffi

E
p

dEhdf 2i i=hfii
0j0 as the pseudomomentum asso-

ciated with phase space structure, and extends the interpreta-

tion of the kinetic wave activity density
Ð ffiffiffi

E
p

dEhdf 2i=hf i0 to
the case of resonant particles. This also suggests the robust-
ness of the C-D momentum theorem: the momentum theo-
rem holds, in both QG and GK systems, in the both non-
resonant and resonant limit.

III. MULTI-STRUCTURES IN PHASE SPACE AND
ZONAL FLOW

In this section, we move from the problem of a single
structure to the problem of multi-structures and discuss aspects
of relaxation and transport in phase space turbulence for K$ 1,
where structures can form but also break, leading to formation
of incoherent granular fluctuations in phase space. To formulate
transport with such fluctuation, we first consider a model to
characterize granularity of phase space density, which leads us
to the calculation of phase space density correlation9,16

hdf(1)df(2)i. Note that h…i is defined as the average over
xþ¼ (x1þ x2)/2 in this section. As discussed in Sec. II, a single
structure in phase space interacts with zonal flow; hence it is
plausible to expect multi-structure or granulation to also inter-
acts with the zonal flow. In the following, we derive the time
evolution of phase space density granulation and show that
granulation is dynamically coupled to zonal flow via produc-
tion. This coupling is due to zonal momentum exchange in the
df 2 production process and is not simply due to usual effects of
shear suppression, cross phase modification, etc. Then we turn
to transport calculation due to phase space density granulation.
Since phase space density granulation interacts with zonal flow,
the zonal flow leaves a footprint in granulation driven transport.
In the following, we argue that zonal flow introduces a novel
effect in transport via dynamical friction.

A. Model and its dielectric function

The model we utilize here16 consists of bounce averaged
kinetic equations for ions and electrons (r¼ i,e),

@

@t
þ vDðEÞ

@

@y
þ vE / r þ "reff

% &
dhr

¼ @

@t

qr ~/
Tr

hfri & evExB / rhfri (10a)

and the Gyrokinetic Poisson equation,22,23

TABLE II. Comparison of quasi-geostrophic system and gyrokinetic system.

QG system GK system

"Potential Vorticity" PV; q ¼ r2
?f þ Fðf ; nÞ GK Poisson, pol charge

Ð
d3vf þ q2sr2

?/ ¼ gð/; ne;…Þ
Conservation of PV dq/dt¼ @tqþ {q,/}¼ 0 df/dt¼ @tfþ {f,H}¼ 0

Circulation C ¼ V þ 2Xasinhð Þdl C ¼ v / dx
Kelvin’s Theorem Yes Yes (Lynden-Bell,’67)

C-D Theorem Yes Yes for non-resonant limit

Yes for resonant limit
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dne
n0
¼ dni

n0
þ q2ir

2
?
q ~/
Ti

: (10b)

Here dh is the non-adiabatic part of distribution function

fluctuation, dfr ¼ &ðqr ~/=TrÞhfri þ dhr, vDðEÞ ¼ !vD !E
where !E ¼ E=Ti is the drift due to magnetic field curvature
and inhomogeneity, and a Krook operator was used,
CðdfrÞ ¼ &"reff dhr. Electrons are assumed to be dissipative

with the energy dependent collision frequency21 "eff ðEÞ
¼ ðve=!0ÞEe

&3=2
where !Ee " E=Te. !0 is the inverse aspect

ratio. We note that a singularity associated with the electron

collision frequency at !E ¼ 0 does not cause any problem in
the calculation performed in the manuscript, as its inverse,

i.e., !E3=2ð"e=!0Þ&1 appears as the relevant quantity, and is
manifestly non-singular. Specifically, the electron frequency

appears in Im!e /
Ð ffiffiffi

!E
p

d !E !E3=2e& !Eð"e=!0Þ&1ð…Þ which can
be integrated analytically. See Appendix A for the calcula-
tion. We also note that the strong electron collisions
"e=!0 ! x.e; 1=scð Þ smears out electron granulation forma-
tion, as the propagator for trapped electron becomes

gkx ¼ iðx& xD;e
!Ee þ i=sc þ i"e=!0 !E&3=2e Þ&1 ’ ð"e=!0Þ !E3=2

e .
Thus the electrons are laminar in this model and we focus on
the ion granulation dynamics. The model we use here is quite
general—2D ion guiding center advection, polarization
charge in GK Poisson equation, and precession drift reso-
nance. It is arguably the simplest model of GK drift wave
turbulence with wave-particle resonance effects.

In the later calculation, we need the plasma response
function, or plasma dielectric for the model. This is given by
(See Appendix A for the derivation.)

!̂ðk;xÞ ¼ Ti
Te
þ q2i k

2
? þ 1& P

ð
d3v

x& xi
.ðEÞ

x& !xD
!E& khhvEiðrÞ

hfii

þ iIm!i þ iIm!e þ iIm!pol; (11a)

where xr
.ðEÞ " ðkhcTrhfrðEÞi

0Þ=ðqrBhfrðEÞiÞ ¼ khvr.ð1þ gr
ð !E& 3=2ÞÞ, vi. " &ðqi=jLnjÞvthi, ve. ¼ ðqs=jLnjÞcs, and P
denotes the principle part of the integral. The first term is
from adiabatic electrons. The second term is from polariza-
tion charge. The second line includes ion contribution from
adiabatic passing and trapped populations. The imaginary
part of the dielectric is

Im!i ¼
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p
ffiffiffiffiffiffiffiffi
!Eres

p
p
x& xi

.ð !EresÞ
j !xDj

e&
!Eres ; (11b)

Im!e ¼
4ffiffiffi
p

p
ffiffiffiffiffiffiffi
2!0

p

"e=!0

Ti
Te

%
x& xe

.

%
1þ 3

2
ge

&&
; (11c)

Im!pol ¼ &2q2i kr@r; (11d)

where !Eres " ðx& khhvhi0ðr & r0ÞÞ= !xD. Im!i arises from the
resonance between waves and toroidal ion precession. Note
that shear flow alters the resonant frequency !xD

!E ! !xD
!E

þkhhvhi0ðr & r0Þ. Im!e comes from collisional dissipation in
electrons. Im!pol originates from an envelope coupling via
modulation, i.e., kr ! kr& i@r, where @r captures the envelope
variation of the fluctuation spectrum, which is slow compared
to kr (Fig. 3). As in Fig. 2, granulations produce a wake with a
spatial extent, which contributes to the slow envelope varia-
tion. This envelope introduces two different scales in the fluc-
tuation; a micro-scale which is characterized by mode wave
number kr and an envelope variation which is captured by the
derivative acting on the slow scale envelope, @r. The conflu-
ence of the two different radial scales leads to kr ! kr& i@r
and !pol $ k2? $ k2r & 2ikr@r, so Im!pol $ &2kr@r. Noting the
role of polarization charge in single structure dynamics and
the dynamical friction F / Im!, we will see that the envelope
coupling term Im!pol introduces zonal flow coupling to the
mean field evolution via F $ Im!pol. Note also that the plasma
dielectric is now an operator, since Im!pol / @r. Also, here-
after it is understood that r& r0¼ x.

B. Derivation of phasetrophy evolution

In this section, we derive the time evolution equation for
phase space density correlation9 hdh(1)dh(2)i. Phase space
density correlation can be compared to several physical
quantities, Fig. 5. Phase space density correlation hdh2i can
be thought of as “potential enstrophy” in phase space or
“phasetrophy,”12 since phase space density f in the GK sys-
tem is similar to the potential vorticity q in the QG system
(Table II). Following the analogue between the QG and the

FIG. 4. The growth of hole. Since df/dt¼ 0, a hole can grow by moving
against background gradient. Here we consider a localized hole around (x0,
E0), with the extent Dx and DE.

FIG. 5. Relation of “phasetrophy”
hdf(1)df(2)i to other physical quantities.
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GK system, the phasetrophy gives the kinetic wave activity
density, which is closely related to the fluctuation pseudomo-
mentum. Alternatively, phase space density correlation evo-
lution hdf(1)df(2)i is also related to the fluctuation entropy in
kinetics, i.e., s ¼

Ð ffiffiffi
E

p
dEhdf 2i=hf i.

hdh(1)dh(2)i evolution is derived as follows.9,12,16 Upon
multiplying dh(2), adding the equation with 1 and 2
exchanged, introducing the relative coordinate y_: y1& y2,
and averaging over xþ¼ (x1þ x2)/2, Eq. (10a) for ions gives

@

@t
dhð1Þdhð2Þh i þ vrel

@

@y&
dhð1Þdhð2Þh i þ Tð1; 2Þ þ Cð1; 2Þ

¼ Pð1; 2Þ: (12)

Here the terms in the left-hand side are

vrel " !vDð !E1 & !E2Þ þ hvEi0ðx1 & x2Þ; (13a)

Tð1; 2Þ " dhð2ÞevE*Bð1Þ / rdhð1Þh i þ ð1 $ 2Þ; (13b)

Cð1; 2Þ " hdhð2Þ"eff ð1Þdhð1Þi þ ð1 $ 2Þ; (13c)

(1$ 2) denotes the term with the arguments 1 and 2
exchanged. vrel is the relative velocity of particles at two dif-
ferent points in phase space. T(1,2) is the triplet term which
describes the decorrelation process due to nonlinear ~vE*B
scattering. C(1,2) is the collisional cut-off. After a closure
calculation16 of the triplet term, the left-hand side of Eq. (12)
reduces to

@

@t
þ !vDE&

@

@y&
þ hvEi0x&

@

@y&
& @

@x&
/ Drel /

@

@x&

% &

* dhð1Þdhð2Þh i þ Cð1; 2Þ; (14)

where Drel is the relative diffusion matrix

Drel ¼
X

kx

f1& cosðk / x&ÞghevE*BevE*Bikx

* Re
i

x& kh!vD !E& khhvEi0xþ i=sc
: (15)

The relative streaming of the magnetic drift, zonal flow
shear, the relative diffusion, and C(1,2) together determine
an effective life time of correlation. In the limit of 1 ! 2,
since vrel ! 0 and Drel / k2?x

2
& ! 0, the lifetime is deter-

mined by the collisional cut-off.
The right-hand side of Eq. (12) is

Pð1; 2Þ " & ~vrE*Bð1Þdhð2Þ
+ ,

hfið1Þi0

þ dhð2Þ@t
q ~/ð1Þ
Ti

* +

hfið1Þi þ ð1 $ 2Þ: (16a)

P(1,2) is the production of phasetrophy due to transport and
relaxation. Note that the first term in the production P(1,2)
has a generic form expected for production, namely flux
h~vrdf i times gradient h fi0. In terms of Fourier components,
we have

Pð1; 2Þ ¼ Re
X

kx

ð&ixþ ixi
.ð1ÞÞ

q ~/ð1Þ
Ti

dh.ð2Þ

* +

kx

* eik/x&hfið1Þi þ ð1 $ 2Þ;
(16b)

where x&: x1& x2, xi
.ð1Þ " ðkhcTihfið1Þi

0Þ=ðqBhfið1ÞiÞ
¼ khvi.ð1þ gið !E& 3=2ÞÞ, vi. " &ðqi=jLnjÞvthi and h…ikx
is the Fourier spectrum of a correlation function, i.e.,

hf ðx1; t1Þgðx2; t2Þi ¼
P

kxhfgikxeik/x&&ixt& . As dh ¼ dhc

þfdh, the production term consists of two parts, namely coher-
ent and incoherent production10–12 (Fig. 6). The coherent part
originates from a response of phase space density fluctuation

to potential fluctuation ~/, namely dhckx $ Rðk;xÞ ~/kx. The

incoherent part originates from granulation fdh. While moving
through plasmas, granulations, or macro-particles in phase
space can emit wave wakes via Cerenkov processes (Fig. 2).
These wakes are in turn absorbed by plasma. This process
effectively produces a macro-particle wake and induces dy-
namical friction on ion phase space density granulations. This

in turn produces incoherent production, ~P / Im!. We calcu-
late both coherent and incoherent production in the following
(Fig. 6).

To calculate the production term due to the coherent
response, we need dhckx, the part of dh phase-coherent with
fluctuation potential. dhckx can be calculated as a response to
~/kx from Eq. (10a) as

dhckx ¼ gkxð&ixþ ixi
.Þ

q ~/
Ti

 !

kx

hfii; (17)

where gkx " ð&ixþ i !xD
!Eþ ikhhvEi0xþ 1=scÞ&1 is a propa-

gator, and 1/sc comes from resonance broadening33 due to
the nonlinear E*B scattering, so s&1c $ k2?D? and
D? ¼

P
kx Regkxðc=BÞ2h ~/2ikx. Note that in the weak turbu-

lence limit of 1/sc<x, Regkx ! pdðx& !xD
!E& khhvEi0xÞ,

which is the expression we use later to obtain the net ion
phasetrophy production, Eq. (28). This is essentially the lin-
ear response. Then using the expression for dhckx gives

FIG. 6. List of terms to be calculated.
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Pcð1; 2Þ " Re
X

kx

ð&ixþ ixi
.ð1ÞÞ

q ~/ð1Þ
Ti

dhc.ð2Þ

* +

kx

* hfið1Þieik/x& þ ð1 $ 2Þ; (18a)

¼
X

kx

ðx&xi
.ð1ÞÞðx&xi

.ð2ÞÞRegkxð2Þ

* q ~/ð1Þ
Ti

q ~/.ð2Þ
Ti

* +

kx

hfið1Þihfið2Þieik/x& þ ð1$ 2Þ;

(18b)

!2
X

kx

ðx&xi
.ðEÞÞ

2hfii2Regkx lim
1!2

)
q ~/ð1Þ
Ti

q ~/.ð2Þ
Ti

*

kx
;

(18c)

where in the last line we took the limit of 1! 2. This term
corresponds to the production due to diffusive flux of phase
space density by ~vE*B scattering. This can be checked, for
x& xi

. $ khqivthihf i
0=hf i,

Pc $ 2
X

kx

v2thiRegkxk
2
hq

2
i

q ~/
Ti

 !2* +

kx

hfii02 ¼ 2Dhfii02:

(18d)

Here D "
P

kx v2thiRegkxk
2
hq

2
i

D
ðq ~/=TiÞ2

E

kx
is the diffusion

coefficient due to E*B scattering. Eq. (18d) is the familiar
quasi-linear result.

Note that the spectrum h ~/2ikx is not arbitrary here; h ~/2ikx
is produced by granulation hfdh2ikx via Cerenkov emission.
The potential fluctuation is self-consistently calculated9 by solv-
ing the quasi-neutrality condition via the GK Poisson equation,

!̂ðk;xÞ q
~/kx

Ti
¼

fdni
n0

 !

kx

; (19)

where ðfdni=n0Þkx ¼
Ð
d3vfdhkx may be thought of as the emis-

sion by incoherent granulation. The quasi-neutrality condition
can be solved with the help of Green’s function defined by

!̂ðxÞGðx; x0Þ ¼ dðx& x0Þ; (20)

which yields

q ~/kxðxÞ
Ti

¼
ð
dx0Gðx; x0Þ

fdnkxðx0Þ
n0

¼
ð
dx0d3vGðx; x0Þfdhkxðv; x0Þ: (21)

Note that Eq. (21) is only valid for nearly steady state with satu-
rated waves, since in that case the homogeneous or eigenvalue
solution of the quasi-neutrality condition, i.e., !ðk;xkÞ ¼ 0
with ~/k $ e&ixkt, is damped so only the inhomogeneous solu-
tion due to the incoherent emission remains in Eq. (21). Given
that caveat, the self-consistent spectrum is obtained as

q ~/ð1Þ
Ti

q ~/.ð2Þ
Ti

* +

kx

¼
ð
dx01dx

0
2d

3v1d3v2Gðx1; x01ÞG
.ðx2; x02Þ

* hfdhðx01; v1Þfdh
.ðx02; v2Þikx:

Equation (22) suggests that the self-consistent spectrum at x
depends on the granulation fluctuations at different locations

x01, x02. Note that in the local limit Gðx; x0Þ ¼ !&1

ðk;xÞdðx& x0Þ and Eq. (22) reduces to a familiar form

h ~/2ikx $ hfdn2ikx=j!ðk;xÞj
2.

With the self-consistent spectrum, the coherent produc-
tion can be rewritten as

lim
1!2

Pcð1; 2Þ ¼ 2
X

kx

ðx& xi
.ðEÞÞ

2hfii2Regkx

*
ð
dx01dx

0
2d

3v1d3v2Gðx1; x01ÞG
.ðx2; x02Þ

* hfdhðx01; v1Þfdh
.ðx02; v2Þikx: (22)

A form which is more useful for the later calculation is
obtained by relating k,x spectrum to k spectrum via the orbit
propagator9,12,16

hfdhð1Þfdh.ð2Þikx ffi 2pdðx& !xD
!E2

& khhvEix2Þhfdhð1Þfdh.ð2Þik: (23)

Upon integrating over energy, we obtain

lim
1!2

Pcð1;2Þ ¼2
X

kx

ðx&xi
.ðEÞÞ

2hfiiRegkx

*
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p 2p
j !xDj

e&
!E

ð
dx01dx

0
2Gðx;x

0
1ÞG

.ðx;x02Þ

*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!Eresðx02Þ

q fdnðx01Þ
n0

fdh.ðx02; !Eresðx02ÞÞ

* +

k

:

(24)

Note that Eq. (24) is not as simple as its local limit,

lim
1!2

Pcð1; 2Þ ¼ 2
X

kx

ðx& xi
.ðEÞÞ

2hfiiRegkx
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p 2p
j !xDj

* e&
!E

ffiffiffiffiffiffiffiffi
!Eres

p

j!ðk;xÞj2
fdn
n0
fdh.ð !EresÞ

* +

k

: (25)

The difference arises from zonal flow coupling. In the pres-
ence of zonal flows, the plasma dielectric becomes an opera-
tor via envelope coupling Im!pol / @r and the resonance is
altered from dðx& !xD

!EÞ to dðx& !xD
!E& khhvEi0xÞ. The

modified resonance functions introduce a spatial integral (via
inversion of the operator using a Green’s function) and space
dependent velocity integral Jacobian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!EresðxÞ

p
. These, then,

form a “non-local” influence kernel.
Now we turn to the calculation of the production term

due to incoherent, granular fluctuations,

~Pð1; 2Þ " Re
X

kx

ð&ixþ ixi
.ð1ÞÞ

q ~/ð1Þ
Ti

fdh.ð2Þ
* +

kx

* hfið1Þieik/x& þ ð1 $ 2Þ:
(26a)

Expressing the potential fluctuation in terms of the incoher-
ent fluctuation and inserting a unit operator !̂.ðxÞ

Ð
dx0G.

ðx; x0Þ ¼ 1 gives
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~Pð1; 2Þ ¼ Re
X

kx

ð&ixþ ixi
.ð1ÞÞhfið1Þie

ik/x&

*
ð
dx01dx

0
2Gðx1; x

0
1Þ!̂

.ðx2ÞG.ðx2; x02Þ

*
fdnðx01Þ
n0

fdh.ðx2Þ

* +

kx

þð1 $ 2Þ

! &2
X

kx

ðx& xi
.ðEÞÞhfiðEÞi

ð
dx01dx

0
2Gðx; x

0
1Þ

* Im!̂ðxÞG.ðx; x02Þ
fdnðx01Þ
n0

fdh.ðxÞ

* +

kx

: (26b)

As noted above, ~Pð1; 2Þ is directly proportional to Im!. As
Im! ¼ Im!i þ Im!e þ Im!pol, ~Pð1; 2Þ consists of pieces from
ions, electrons, and polarization charges. We calculate each
piece in the following (Fig. 6).

We start by calculating ion induced incoherent produc-
tion. This term is related to drag on phase space density
exerted by ions—i.e., granulations emit waves via Cerenkov
emission, while waves are in turn absorbed by ions, / Im!i.
This leads to a drag on ion phase space density granulations,
and incoherent production. Using the expression for Im!i and
noting,16

fdnð1Þ
n0

fdh.ð2Þ

* +

kx

¼
fdnð1Þ
n0

fdh.ð2Þ

* +

k

* 2pdðx& !xD
!E2 & khhvEi0x2Þ (27a)

gives

~Pi ¼& 2
X

kx

ðx& xi
.ðEÞÞ

2hfiðEÞi
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p
ffiffiffiffiffiffiffiffi
!Eres

p p
jxDj

* e&
!Eres2pdðx& !xD

!E& khhvEi0xÞ

*
ð
dx01dx

0
2Gðx; x

0
1ÞG

.ðx; x02Þ
fdnðx01Þ
n0

fdh.ðxÞ

* +

k

:

(27b)

In the local limit we have

~Pi ¼& 2
X

kx

ðx& xi
.ðEÞÞ

2hfiðEÞi
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p
ffiffiffiffiffiffiffiffi
!Eres

p p
jxDj

* e&
!Eres2pdðx& !xD

!EÞ 1

j!ðk;xÞj2
fdn
n0
fdh.

* +

k

:

(27c)

The incoherent production by ions Eq. (27b) and the coher-
ent production Eq. (24) adds to give an effective coherent
production Pi;i " Pc þ ~Pi,

Pi;i ¼ 2
X

kx

ðx& xi
.ðEÞÞ

2hfiðEÞi2RegkxSkx; (28)

where

Skx "
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p 2p
j !xDj

2pTi
mi

% &3=2ð
dx01dx

0
2Gðx; x

0
1ÞG

.ðx; x02Þ

*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!Eresðx02Þ

q fdnðx01Þ
n0

fdh.ðx02; !Eresðx02ÞÞ
* +

k

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!EresðxÞ

q fdnðx01Þ
n0

fdh.ðxÞ
* +

k

( )
: (29)

Here Skx is the effective fluctuation spectrum, shifted by the
incoherent production contribution, as can be seen in the sub-
traction in the curly bracket. In the absence of the incoherent

production contribution, Skx ! hðq ~/=TiÞ2ikx. The net pro-
duction Eq. (28) takes the form of coherent production - the
incoherent contribution is rescaled into the coherent part.
This may be viewed as a renormalization of coherent produc-
tion due to self-feedback from ion incoherent production

(Fig. 7), i.e., “bare” coherent production Pc produces fdh2
which acts back through the incoherent ion production term
~Pi. Physically speaking, we may understand this as a self-
field due to phase space density; while a test ion phase space
density is scattered by ~vE*B, it also produces a self-field
~/self $ !&1ðk;xÞ

Ð
d3vfdhtest. The self-field, in turn, is coupled

to other ions, which leads to absorption / Im!i. Through the
coupling, the test ion phase space density feels the effect of
the other ions as dynamical friction due to Cerenkov emis-

sion, thus leading to the renormalization of the ~vE*B scatter-
ing of test phase space density. This can be expressed as a net

“renormalized” production Pi;i $ 2 !Dhf i02 where

!D "
X

kx

v2thiRegkxk
2
hq

2
i Skx (30)

FIG. 7. Renormalization of coherent production.
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is a “renormalized” diffusion coefficient. Of course, if we turn

off the self-feedback from the incoherent production, !D
reduces to a “bare” diffusion coefficient !D !

P
kx v2thi

Regkxk2hq
2
i ðq ~/=TiÞ

2
D E

kx
.

Note that we do not have the cancelation between the
coherent and incoherent parts as found in analyses with
effectively 1D resonance dynamics,16 dðx& !xD

!EÞ. Here,
the resonance function is dðx& !xD

!E& khhvEi0xÞ and thus
2D with (E,x). In 2D, E and x can change their value while
!xD

!Eþ khhvEi0x unchanged, as in a (E,x) ! (E0, x0) scattering
event. In contrast, in 1D, !E cannot change its value while
!xD

!E is unchanged. This leaves initial state¼ final state, so
relaxation is impossible and thus the like-species production
must vanish. Indeed, by turning off zonal flow in the reso-
nance dynamics in Eq. (28), we can recover the 1D result,

Pc þ ~Pi / dðx& !xD
!E& khhvEi0xÞSkx

! dð !Eres & !EÞ e&
!E
fdn
n0
fdh.ð !EresÞ

* +

k

(

&e& !Eres
fdn
n0
fdh.ðEÞ

* +

k

)

! 0: (31)

Thus the cancellation is a special case and an artifact of the
1D resonance dynamics.

Now we consider the calculation of other components in
the incoherent production term (Fig. 6). The incoherent pro-
duction due to electrons arises from the coupling of ion
phase space density to electrons via Im!e (i.e., drag). Here,
ion phase space granulation emits waves via Cerenkov emis-
sion, while waves are, in turn, collisionally dissipated by
electrons, Im!e / "&1e . This leads to drag on phase space
density and incoherent production by electrons,

~Pe ¼& 2
X

kx

ðx& xi
.ðEÞÞhfiðEÞiIm!e

*
ð
dx01dx

0
2Gðx; x

0
1ÞG

.ðx; x02Þ
fdnðx01Þ
n0

fdh.ðxÞ

* +

kx

:

(32a)

This term reduces to the result which was derived earlier16

by going to the local limit Gðx& x0Þ ¼ !&1ðk;xÞdðx& x0Þ,
relating the k, x spectrum to the k spectrum via the orbit
propagator, and utilizing the frequency ordering xi

. > x,

~Pe¼4p
X

k

xi
.

%
gi

gi;crð !EÞ
&1

&
hfiðEÞi

Im!e

j!ðk; !xD
!EÞj2

fdn
n0
fdh.

* +

k

;

(32b)

where gi;cr " ð3=2& !EÞ&1 is an energy dependent threshold
for the onset of the ion transport driven by granulations. This
term was utilized to calculate anomalous transport of ion
heat and particles.16

Incoherent production also arises from polarization charge.
While moving through phase space, an ion granulation leaves a
wake with a spatial extent (Fig. 2). The resulting spatial enve-
lope of the fluctuation spectrum necessarily is coupled to the

polarization charge via Im!pol / @r. This leads to a wake drag
on the phase space macro-particle and thus incoherent produc-
tion by the polarization charge coupling,

~Ppol ¼& 2
X

kx

ðx& xi
.ðEÞÞhfiðEÞi

ð
dx01dx

0
2Gðx; x

0
1Þ

* ð&2q2i kr@rÞG
.ðx; x02Þ

fdnðx01Þ
n0

fdh.ðxÞ

* +

kx

: (33a)

Noting that polarization charges correspond to fluid vorticity
and introduces zonal flow coupling in the single structure
growth, we expect that ~Ppol induces zonal flow coupling in
the multi-structure case. To see the connection to zonal flow,
we go to the local limit,

~Ppol ’ &2
X

kx

ðx& xi
.ðEÞÞhfiðEÞið&2q

2
i krÞ

* 1

j!ðk;xÞj2
fdn
n0

@rfdh.
* +

kx

: (33b)

Since it contains khkr weighed by spectrum via xi
. ’ khvi.,

Eq. (33b) resembles the Reynolds stress. To show the Reyn-
olds stress connection explicitly, and for the sake of simplic-
ity, we take x& xi

.ðEÞ ’ &khvi., divide ~Ppol by hfi, and
integrate ~Ppol over velocity space, which yields

ð
d3v

~Ppol

2hfii
’ &

X

kx

vi.khq
2
i kr

j!ðk;xÞj2
@r

fdn
n0

ð
d3vfdh.

* +

kx

¼ &
X

kx

vi.khq
2
i kr@r

q ~/
Ti

q ~/.

Ti

* +

kx

¼ vi.
v2thi

@rh~vr~vhi: (33c)

Hence, we see that the incoherent production via polarization
charge induces zonal flow coupling to the granulation dy-
namics, and clearly links production to the Reynolds force.

Relative magnitude of ~Ppol, for example to ~Pe (the latter
leads to anomalous ion heat and particle transport16), can be
evaluated as

~Ppol

~Pe
$ krkh

k2h

ge
1þ 3ge=2

"e

!3=20 xc;i

LTe
Lenv

: (34)

Here the bar denotes spectral average, i.e., ð…Þ
"
P

kxð…Þh ~/
2ikx=

P
kxh ~/

2ikx, Lenv is the scale length of
envelope variation. Setting Lenv $

ffiffiffiffiffiffiffiffiffiffi
qiLTe

p
, typical of meso-

scales, we have

~Ppol

~Pe
$ krkh

k2h

ge
1þ 3ge=2

"e=!0
vthi=LTe

1

!1=20

ffiffiffiffiffiffiffi
qi
LTe

r
: (35)

Here typically krkh=k2h $ ge=ð1þ 3ge=2Þ $ Oð1Þ. While
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqi=LTeÞ

p
is small, it is multiplied by !&1=20 > 1 and

ð"e=!0Þ=ðvthi=LTeÞ > 1 (by the frequency ordering for elec-

tron collisions). Then we can see that ~Ppol= ~Pe can easily be
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order unity and thus ~Ppol should be included in the analysis.
This is especially true around the ion barrier region where
the gradients are steep.

In summary, we obtained the evolution equation for
phasetrophy as

@

@t
þ s&1L

% &
lim
1!2

dhð1Þdhð2Þh i ¼ lim
1!2

Pð1; 2Þ; (36)

where s&1L is

s&1L lim
1!2

hdhð1Þdhð2Þi ¼ lim
1!2

vrel
@

@y&
dhð1Þdhð2Þh i

%

þTð1; 2Þ þ Cð1; 2Þ
&
; (37)

where vrel ¼ !vD !E& þ hvEi0x&, T(1,2) is the triplet term
defined by Eq. (13b) and C(1,2) is the collision term defined
by Eq. (13c). The key difference between s&1L and P(1,2) is
their small scale behavior. As 1 ! 2, s&1L approaches to a
small value which is determined by collisions, s&1L
! 2"eff hdh2i where a Krook operator C(1,2)¼ "effhdh(1)
dh(2)i is used for the purposes of estimation. As 1 ! 2,
P(1,2) remains finite and the total production is

lim
1!2

Pð1; 2Þ " Pi;i þ Pi;e þ Pi;pol; (38a)

Pi;i ¼ 2
X

kx

ðx& xi
.ðEÞÞ

2hfii2RegkxSkx; (38b)

Pi;e ¼ &2
X

kx

ðx& xi
.ðEÞÞhfii

Im!e

j!ðk;xÞj2
fdn
n0
fdh.

* +

kx

;

(38c)

Pi;pol ¼ &2
X

kx

hfii
2vi.q

2
i krkh

j!ðk;xÞj2
fdn
n0

@rfdh.
* +

kx

; (38d)

where Skx is the spectrum defined by Eq. (29). Pi,i is renor-
malized coherent production. Pi,e is due to the coupling of
the ion wake to electron dissipation. Pi,pol is from the cou-
pling of the ion wake to polarization charge. This term intro-
duces a novel zonal flow effect into granulation dynamics.
This new effect is different from the conventional zonal flow
effects such as shearing suppression of turbulence or cross-
phase modification.34 Indeed, this effect is akin to a reduc-
tion of the production term by scattering of momentum (and
energy) to the zonal flow.

C. Phase space density granulation and zonal flows:
Connection to the momentum theorem in
quasigeostrophic system and its consequences

The phasetrophy evolution derived in the above can be
put in a form where zonal flow coupling is more apparent. In
doing so, we divide phasetrophy evolution by hfi and inte-
grate over velocity space to obtain

@

@t
þ s&1L

% &ð
d3v

hdh2i
2hf i

¼
ð
d3v

Pi;i þ Pi;e þ Pi;pol

2hf i
; (39)

where hdh2i: lim1!2hdh(1)dh(2)i. Pi,pol term introduces
zonal flow coupling as discussed above. Utilizing the expres-
sion for Pi,pol gives

@

@t

ð
d3v

hdh2i
2hf i

¼
ð
d3v

Pi;i þ Pi;e

2hf i
þ vi.
v2thi

@rh~vr~vhi

& s&1L

ð
d3v

hdh2i
2hf i

: (40)

Thus, as in the single structure limit, phase space density
granulation evolution is also dynamically coupled to zonal
flows.

Equation (40) has the same structure as the fundamental
momentum constraint in QG system, namely the C-D mo-
mentum theorem. For comparison, below we re-write the C-
D theorem for the Hasegawa-Wakatani system in a similar
form,

@

@t

hdq2i
2hqi0

¼ &h~vr~nei þ @rh~vr~vhi

& 1

hqi0
@

@r
~vr
dq2

2

) *
þ D0hðrdqÞ2i

% &
; (41)

@

@t

ð
d3v

hdh2i
2hf i

¼
ð
d3v

Pi;i þ Pi;e

2hf i
þ vi.
v2thi

@rh~vr~vhi

& s&1L

ð
d3v

hdh2i
2hf i

: (42)

Each term in Eq. (41) has a clear counterpart in Eq. (42).
The phasetrophy hdh2i is the counterpart of potential enstro-
phy hdq2i. Pi,i and Pi,e represent the effect of relaxation, thus
leading to flux of both particles and heat. This clearly corre-
sponds to the particle flux in the momentum theorem for the
Hasegawa-Wakatani system. The lifetime of phasetrophy sL
is analogous to the lifetime of enstrophy via turbulence
spreading35 and viscous dissipation of hdq2i.

As a consequence, a similar statement as the Charney-
Drazin non-acceleration theorem25 follows: in the absence of
production and dissipation of phase space density granula-
tion, stationary granulation cannot accelerate flow against
frictional drag. This in turn implies that if we have any pro-
duction or dissipation of phase space density granulation, we
must have a corresponding adjustment of the flow, and vice
versa.

The coupled system of phase space density granulation
and zonal flow shows a self-regulating behavior, as Eq. (40)
and the momentum balance equation for zonal flow form a
type of predator-prey system,

@

@t

ð
d3v

hdh2i
2h f i

¼
ð
d3v

Pi;i þ Pi;e

2h f i
þ vi.
v2thi

@rh~vr~vhi

& s&1L

ð
d3v

hdh2i
2h f i

; (43a)
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@

@t
hvhi ¼ &@rh~vr~vhi & "hvhi; (43b)

which clearly has the same structure as the familiar predator-
prey model,29,36

@te ¼ cLe& aV02e& DxðeÞe; (44a)

@tV
02 ¼ aV02e& "colV

02; (44b)

where e is the turbulence intensity, V02 is flow shear, cL is lin-
ear growth rate of a mode, a represents a coupling between
flow and fluctuations, Dx is a decorrelation rate, "col is the
collisional drag on the flow. Then, by comparison, Eq. (43a)
can be viewed as the equation for prey, which here is the
phasetrophy. The prey are produced by mean field relaxation
due to Pi,i and Pi,e. Death of prey occurs due to the granula-
tion dispersion s&1L and due to coupling to the predator,
namely the zonal flow @rh~vr~vhi. Eq. (43b) is the equation for
the predator. The predator is pumped by consuming the prey,
such as phase space density granulations which drive the
Reynolds stress. The predator-prey system here may be com-
pared to the kinetic predator-prey system derived based on
entropy balance.37 Ultimately, the both systems are derived
from the dynamics of the same quantity, namely phase space
density correlation df2, which is the fundamental quantity.

The coupled system of granulations and zonal flows can
lead to non-trivial, finite intensity state with zonal flow cou-
pling, namely the zero production state. In a weakly colli-
sional system, zonal flows allow a stationary state with zero
total production,

0 ffi
ð
d3v

Pi;i þ Pi;e

2hf i
þ vi.
v2thi

@rh~vr~vhi: (45)

The zero production state is of practical interest, since mean
field evolution is also vanishes, @thf i $ Ptot ’ 0. Access to
the zero production state requires the balance of the relaxa-
tion drive Pi,iþPi,e with the zonal flow drive
Pi;pol $ @rh~vr~vhi. In turn, in the zero net production state a
stationary zonal flow can be sustained against collisional
drag,

hvhi ¼
1

"

v2thi
vi.

ð
d3v

Pi;i þ Pi;e

2hf i

’ &xc;i

"

h~vr~nei
n0

þ 1

"

v2thi
vi.

ð
d3v

Pi;i

2h f i
; (46)

where we used

ð
d3v

Pi;e

2hf i
’

ð
d3v
X

kx

khvi.
Im!e

j!ðk;xÞj2
fdn
n0
fdh.

* +

kx

¼ & vi.
vthi

1

qi

h~vr~nei
n0

: (47)

Equation (46) can be compared to the stationary zonal flows
in the Hasegawa-Wakatani system and GK system in the sin-
gle structure limit. The close correspondence is evident. In

each system, electron flux can support stationary zonal flow
against collisional drag.

D. Transport

Since 2P ¼ @thdf 2i ’ &@thf i2, the production term is
related to the mean field evolution and transport. The trans-
port flux can be extracted from the phasetrophy production
term, lim1!2 Pð1; 2Þ $ &h~vrdf ihf i0, as

JðrÞ " h~vrdf i ¼ Ji;i þ Ji;e þ Ji;pol; (48a)

Ji;i ¼
X

kx

ðx& xi
.ðEÞÞhfiðEÞikhqivthiRegkxSkx; (48b)

Ji;e ¼ &
X

kx

khqivthi
Im!e

j!ðk;xÞj2
fdn
n0
fdh.

* +

kx

; (48c)

Ji;pol ¼ &
X

kx

khqivthi
ð&2q2i krÞ
j!ðk;xÞj2

fdn
n0

@rfdh.
* +

kx

; (48d)

where Skx is the spectrum defined by Eq. (29). Ji,i is the flux
which arises from the net ion production Pi,i. Ji,i is the diffu-
sive part of the total flux, as Ji;i ’ & !Dhfii0 for x<x*. Here
!D ¼

P
kx v2thiRegkxk

2
hq

2
i Skx is the renormalized diffusivity.

Ji,i simplifies in certain limits. If we neglect the effect of
incoherent fluctuations and retain the spectrum only due to
eigenmodes, Ji,i reduces to the quasilinear flux,

Ji;i ’ &
X

k

q2s k
2
hc

2
sRegk

q ~/
Te

#####

#####

2

k

hf i0: (49)

If we go to the local limit, we have Ji,i ! 0 corresponding to
Pi,i ! 0. The net Ji;i / !D / Pi;i arises from the non-
cancelation between the coherent and the ion incoherent
productions.

Ji,e is the dynamical friction which originates from the
ion wake drag on the electrons. Here dissipative non-
adiabatic electrons are assumed, Im!e / "&1e . Ji,e is utilized
to explain the anomalous transport of ion heat and particles
due to ion clumps.16

Ji,pol is the novel piece here, which originates from
polarization charge and describes zonal flow coupling. Ji,pol
may be understood as a zonal flow induced collisionless fric-
tion38 exerted on the ion phase space density. Note that Ji,pol
algebraically competes against other fluxes. The competition
can lead to a saturated state with the zero total flux
JðrÞ ¼ h~vrdf i ¼ Ji;i þ Ji;e þ Ji;pol ’ 0, which corresponds to
the zero net production state discussed above. Here, transport
suppression is achieved by the competition between relaxa-
tion and Reynolds work, i.e., Eq. (45). This is different from
the conventional view of transport suppression by zonal flow
shearing. Moreover, retaining dynamical friction is essential
to the recovery of this effect.

IV. CONCLUSIONS

In this paper, we present a theory for relaxation and
transport in collisionless GK turbulence with zonal flow.

122305-12 Y. Kosuga and P. H. Diamond Phys. Plasmas 18, 122305 (2011)



This theory treats the effects of both phase space structures
and zonal flows. The principal results of the paper are

1. In the strongly resonant limit for K ! 1, the growth of
even a single localized structure in phase space is seen to
be strongly coupled to zonal flows. &

Ð ffiffiffi
E

p
dEhdf 2i=hf ij0

is identified as the zonal pseudomomentum carried by the
phase space structure. The net invariance of total dipole
moment was used to reveal the zonal flow coupling in the
structure growth equation. The foundation of this is the
conservation of zonal momentum between phase space
fluid and zonal flow. The resultant expression, Eq. (8), is
shown to be closely related and very similar to the
Charney-Drazin theorem for the Hasegawa-Wakatani sys-
tem, a fundamental momentum constraint in quasigeo-
strophic systems.

2. For K$ 1, a statistical theory of granulation evolution and
mean field (hfi) evolution was formulated in the presence
of zonal flows. In particular,

(a) Zonal flow coupling in the granulation dynamics is
introduced by the production due to polarization
charge mixing. The production due to polarization
charge arises due to envelope coupling, which can be
introduced by the spatial variation intrinsic to the
wake emitted by granulation. Other processes, such as
mode propagation and absorption, etc., can contribute
to the envelope structure. The production due to the
polarization charge, necessarily coupled via the GK
Poisson equation, is explicitly related to Reynolds
force, Eq. (33c).

(b) The coupled system of granulations and zonal flow
form a type of self-regulating, kinetic predator-prey
system, Eqs. (43a) and (43b). The coupling allows the
system to achieve a finite amplitude state of vanishing
production, by balancing granulation induced produc-
tion due to rT relaxation with the Reynolds work
which produces the zonal flow.

(c) The mean field evolution is calculated and various
contributions to the transport fluxes are given,
including the diffusive flux as well as dynamical fric-
tion. Dynamical friction arises from the zonal flow,
Eq. (48d). The dynamical friction competes against
other fluxes algebraically, which is similar to the
effect of zonal flow in the predator-prey system and
is different from the conventionally invoked zonal
flow effects on transport, namely cross phase modifi-
cation and simple amplitude suppression.

Throughout the paper, the quantity which plays the cen-
tral role is the phase space density correlation hdf(1)df(2)i.
hdf(1)df(2)i is the fundamental correlation, as we can easily
translate or relate hdf(1)df(2)i to other physical quantities,
including the pseudomomentum of phase space turbulence,
the fluctuation entropy, and the fluctuation phasetrophy hdf2i
which is similar to potential enstrophy, Fig. 8.

As hdf2i is closely related to different quantities, its time
evolution can also be interpreted in several ways. The evolu-
tion of hdf2i can be related to the momentum conservation

constraint for phase space turbulence, which is similar to the
Charney-Drazin momentum theorem for QG turbulence.
Alternatively, the evolution of hdf2i can be related to the en-
tropy balance equation with production from relaxation
drive, destruction from Reynolds work, and hdf2i coupling to
small scale dissipation. See Table III. In either case, GK tur-
bulence and zonal flows are coupled via dynamical friction
due to polarization charge and so form a self-regulating
system.

The coupled system derived in this paper for describing
GK turbulence and zonal flow conserves energy and zonal
momentum. The momentum conservation is via dynamical
friction due to zonal flow and sets a fundamental constraint
on the modeling of GK turbulence and zonal flow generation.
Thus, any GK model which includes zonal flow generation
must also include dynamical friction, otherwise momentum
and energy are not conserved between fluctuation and flows.
Then, for example, we see that the usual quasilinear descrip-
tion of GK turbulence production and transport is not com-
patible with a proper description of zonal flow generation.

A similar behavior to the predator-prey type system
described here is observed in the recent computational
work39 on the entropy transfer between ITG/ETG and zonal
flow. The non-local transfer of entropy between drift wave
and zonal flow described in the work can be then understood
as a simple variant of the well known zonal flow shearing
feedback in the predator-prey system. Indeed, it has long
been known that large scale shears produces non-local poten-
tial enstrophy transfer to small scales in QG systems.28

Then, it is no surprise that large scale shear produces non-
local entropy (closely related to phasetrophy, akin to poten-
tial enstrophy) transfer to small scales in GK systems.

In the related vein, nonlocality in physical space or
transport is an important unresolved issue. The most clear
physical process which underpins nonlocality is avalanching,
process akin to coupled topplings of neighboring cites in a
sandpile, which has also been observed in GK simulations.
This paper does not treat avalanching. We note, however,
that the response to phase space density granulations is
intrinsically non-local, i.e., Eq. (21), and so can serve as a
seed in granulation formation.

This paper sets forth the basic theory of relaxation in a
system with granulations which also couple to zonal flows.
The next step in this program is to solve the coupled phase
space density correlation and zonal flow equations, i.e., Eqs.

FIG. 8. Relation of “phasetrophy” hdf(1)df(2) i to other relevant physical
quantities.
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(36) and (43b). This forthcoming work will examine possible
wave and/or granulation driven relaxation processes, and the
zonal flow effects on each of these. Special attention is
focused on subcritical processes.

Finally, we point out that the paradigm considered here,
namely relaxation and transport in the presence of phase
space structures and zonal flows, is not only applicable to
collisionless ITG turbulence but is also of interest in the con-
text of energetic particle mode (EPM). Indeed, formation of
structures in EPM is likely.40 A key physical point here is
that EPM excitation is due to precession resonance, which is
rather coherent.41 As a consequence, the mode localizes
where the drive is strongest. Thus, a description in terms of
screened macro-particles seems quite natural. Also, zonal
flow generation in energetic particle induced Alfven turbu-
lence has also been reported.42 Thus, the framework pre-
sented here should be applicable to a self-consistent
description of transport in EPM turbulence as well. This will
be pursued in the near future.
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APPENDIX A: DERIVATION OF PLASMA DIELECTRIC

Here we derive the plasma dielectric for the trapped ion
mode model used in Sec. III. The derivation is standard; we
linearize the kinetic equation and require a quasi-neutrality.
The frequency ordering of interest here is

xti; xbi > xi
. > x $ xDi > vieff ;

xte; xbe > veeff > xe
. > x;

where xt is the transit frequency, xb is the bounce fre-
quency, x* is the diamagnetic frequency, xD is a frequency
due to magnetic drift, veff¼ vc/!0 is effective collision fre-
quency, and !0 is the inverse aspect ratio. In the above fre-
quency ordering, the linear calculation yields density
perturbation as

dni
n0

% &

kx
¼& q ~/kx

Ti
þ
ð
d3v

x& xi
.ðEÞ

x& !xD
!Eþ khhvEiðrÞ

q ~/kx

Ti
hfii

þ
fdni
n0

 !

kx

; (A1)

dne
n0

% &

kx
¼ q ~/kx

Te
þ i

ð
d3v

x& xe
.ðEÞ

ve=!0
!E3=2 q

~/kx

Te
hfei; (A2)

where xr
.ðEÞ " ðkhcTrh frðEÞi

0Þ=ðqrBh frðEÞiÞ ¼ khvr.ð1þ gr
ð !E& 3=2ÞÞ, vi. " &ðqi=jLnjÞvthi, and ve. ¼ ðqs=jLnjÞcs. The
ion density perturbation consists of two parts, as phase space

density dh consists of two pieces, dh ¼ dhc þ fdh. dhc is a
phase-coherent response to fluctuation potential, /. This
term, upon velocity integral, gives the ion density perturba-

tion which is proportional to fluctuation potential. fdh is an
incoherent part which describes granulation effect. This
leads to the last term in the ion density perturbation,

ðfdni=n0Þkx "
Ð
d3vfdhkx. For electrons, the non-adiabatic

response is retained from a phase shift due to collisions. On
substituting the density perturbations into the Gyrokinetic
Poisson equation, we have

!̂ðk;xÞ q
~/kx

Ti
¼

fdni
n0

 !

kx

; (A3)

where

!̂ðk;xÞ ¼ Ti
Te
þ q2i k

2
? þ 1& P

ð
d3v

x& xi
.ðEÞ

x& !xD
!E& khhvEiðrÞ

hfii

þ iIm!i þ iIm!e þ iIm!pol: (A4)

P denotes the principle part of the integral. The imaginary
part of the dielectric is defined as

Im!i "
ð
d3vðx& xi

.ðEÞÞpdðx& !xD
!E& khhvEiðrÞÞhfii

¼
ffiffiffiffiffiffiffi
2!0

p 2ffiffiffi
p

p
ffiffiffiffiffiffiffiffi
!Eres

p
p
x& xi

.ð !EresÞ
j !xDj

e&
!Eres ; (A5)

Im!e "
ð
d3v

x& xe
.ðEÞ

ve=!0
!E3=2 Ti

Te
hfei

¼ 4ffiffiffi
p

p
ffiffiffiffiffiffiffi
2!0

p

ve=!0

Ti
Te

%
x& xe

.

%
1þ 3

2
ge

&&
; (A6)

TABLE III. Comparison of phase space density correlation evolution to other drift wave-zonal flow system.

Fluctuation intensity
in fluid DWT models, !

Potential enstrophy in
QG system, hdq2i

Entropy
Ð
d3vhdf 2i=h f i Phase space density

correlation hdh(1)dh(2)i

Drive Linear instability cLj/̂j
2 Forcing,… Production by heattransport

&h~vr ~TiihTii0
Production by relaxation
Pi,iþPi,e

Modulational
Instability&ajûj2V02

Vorticity flux
h~vrr2ui ¼ @rh~vr~vhi

Entropy destruction by flow
organization
&h~vr~vhihvhi0 ! &cZFhvhi

02

Dynamical friction by
polarization charge
Pi;pol ! v.@rh~vr~vhi

Zonal flow coupling

Coupled equation for

turbulence and flow

Predator-prey Charney-Drazinor

predator-prey

Kinetic predator-preyÐ
d3vhdf 2i=h f i and hvhi

Kinetic predator-prey

or kinetic Charney-Drazinsystem, ! and V
0
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Im!pol " &2q2i kr@r; (A7)

where !Eres " ðx& khhvEiðxÞÞ= !xD.
The dispersion relation is obtained by setting

Re! k;xð Þ ¼ 0,

Ti
Te
þ q2i k

2
? þ 1& P

ð
d3v

x& xi
.ðEÞ

x& !xD
!E& khhvEiðrÞ

hfii ¼ 0:

(A8)

For x > !xD
!E, we have

Ti
Te
þ q2i k

2
? þ 1&

ffiffiffiffiffiffiffi
2!0

p
1& xi

.
x

% &
¼ 0 (A9)

and thus

x ¼ xk ¼ &
ffiffiffiffiffiffiffi
2!0

p
xi
.

1þ q2i k
2
? þ Ti=Te &

ffiffiffiffiffiffiffi
2!0

p : (A10)

APPENDIX B: DERIVATION OF ZONAL FLOW
EVOLUTION EQUATION

The mean vorticity evolution is obtained by taking time
derivative of mean quasi-neutrality (here h…i is the zonal
average),
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e/
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) *% &
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% &
(B1)

¼
ð
d3vð@th fei & @th fiiÞ: (B2)

The evolution of mean fr is

@thfri ¼ &@rh~vrdfri: (B3)

Combining these, we obtain
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Using quasi-neutrality, we have
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The right-hand side contains the flux of vorticity, which is
Reynolds forcing via the identity17,18 h~vr/r2

?
~/i ¼ @rh~vr~vhi.

By integrating radially once, we obtain

@thvhi ¼ &@rh~vr~vhi: (B6)

As shown by Hinton and Rosenbluth,43 zonal flow is damped
by collisions in the time scale s$ !0sii where sii$ 1/vii. We
model the effect by adding a collisional drag on the flow,

@thvhi ¼ &@rh~vr~vhi & vhvhi; (B7)

where v ¼ vii=!0. We note that v is different from the colli-
sional damping of fluctuation used in the text, namely
C(dhi)¼& vidhi and CðdheÞ ¼ &ðve=!0Þ !E&3=2dhe.

We also note that here the collisional drag was added in
an ad hoc manner in the zonal flow evolution Eq. (B7). This
effect may be recovered systematically by retaining a bounce
averaged collision operator in Eq. (B3). Explicitly, by retain-
ing the collision term in Eq. (B3), we see that the vorticity
evolution equation (for zonal flow) becomes
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tr
d3vfCeðhfeiÞ & CiðhfiiÞg; (B8)

where ð…Þ is the bounce average and the velocity integrals
are limited to trapped electron and ions, respectively. Fol-
lowing the argument by Hinton,43 we replace the ion colli-
sion integral by a collisional frictional damping v¼ vii/!0 of
the axisymmetric (n¼m¼ 0) zonal potential,
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(B9)

which leads to Eq. (B7). Electron collisional effects are neg-
ligible, as that species is nearly Maxwellian for zonal modes.
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