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Abstract. Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their sub-
sequent propagation through the random magnetic field of the Galaxy are deemed to result in an
almost isotropic CR spectrum. Yet the MILAGRO TeV observatory and the IceCube discovered
sharp (∼ 10◦) arrival anisotropies of CR nuclei. We suggest a mechanism for producing such a CR
beam which operates en route to the observer. The key assumption is that CRs are scattered by a
strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field
direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along
the field line. Partly because this direction is also the direction of minimum of the large scale CR an-
gular distribution, the enhanced scattering results in a weak but narrow particle excess. The width,
the fractional excess and the maximum momentum of the beam are calculated from a systematic
transport theory depending on a single scale l which can be associated with the longest Alfven
wave, efficiently scattering the beam. The best match to all the three characteristics of the beam is
achieved at l ∼ 1pc. The distance to a possible source of the beam is estimated to be within a few
100pc. Possible approaches to determination of the scale l from the characteristics of the source are
discussed. The beam related large scale anisotropic CR component is found to be energy indepen-
dent which is also consistent with the observations. The beam splitting mechanism to explain the
combined Milagro and IceCube observations is suggested.

Keywords: acceleration of particles — cosmic rays — shock waves — ISM: supernova remnants
— magnetohydrodynamics (MHD) — magnetic fields
PACS: 96.50.Pw

INTRODUCTION

The MILAGRO TeV observatory and the IceCube discovered collimated beams domi-
nated by hadronic cosmic rays (CR) with a narrow (∼ 10◦) angular distribution in the
10 TeV energy range [1, 2]. This is surprising, since most of the CR acceleration and
propagation models predict only a weak, large scale anisotropy.

In this paper we suggest a novel mechanism [3] for producing a narrow CR beam. It
is based on the strong anisotropy of the MHD turbulence in the ISM. Such anisotropy
is expected when the turbulence is driven at a long (outer) scale, but unlike the isotropic
Kolmogorov cascade, the incompressible MHD cascade is directed perpendicularly
to the magnetic field in the wave vector space. This was shown by [4] (GS). The
cascade proceeds to k⊥rg (p)� 1 in the perpendicular wave number direction for the

Physics of the Heliosphere: A 10 Year Retrospective
AIP Conf. Proc. 1436, 190-198 (2012); doi: 10.1063/1.4723607

©   2012 American Institute of Physics 978-0-7354-1026-8/$30.00

190



protons with the gyro-radii rg ∼ 1016cm, typical for the particles of the beam energies
pc ∼ 10TeV and the ISM magnetic field of a few µG. Contrary to the k⊥ direction the
spectrum spreading in k‖ is suppressed, so that k‖ ∼ k2/3

⊥ l−1/3� k⊥, where l is the outer
scale. Note that there are also alternative suggestions regarding the origin of Milagro
beam [5, 6, 7].

The CR scattering by the GS anisotropic spectrum was investigated in e.g., [8]. The
pitch-angle scattering rate is peaked at |µ|= |cosϑ | ≈ 1, i.e., for particles moving along
the field line, since for these particles k⊥rg (p⊥) <∼ 1. Only particles with such small p⊥,
i.e., with pitch angles within sin2

ϑ <∼ ε � 1 are scattered efficiently.

ANGULAR DISTRIBUTION OF PARTICLES

For the purposes of this paper we need the angular profile of the pitch-angle scattering
coefficient near |µ| = 1, which we evaluate below. Assuming the GS spectrum for the
spectral wave density I,

I =
1

6π
k−10/3
⊥ l−1/3g

(
k‖l1/3

k2/3
⊥

)
e−τ/τk , (1)

the pitch-angle scattering coefficient can be represented as follows e.g., [8]

Dµµ =
π

3
l−1/3

Ω
2 (1−µ

2) ∞∫
0

k−7/3
⊥ dk⊥

∞

∑
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× n2J2
n (ξ )
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∞∫
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g

(
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)
δ
(
k‖v‖−nΩ

)
dk‖

Here, g(x) = H (1−|x|), where H is the Heaviside function and τk = (l/VA)(k⊥l)−2/3 is
the turbulence correlation time. For a small δ ,ε� 1 (where δ =VA/v≈VA/c, ε = v/lΩ,
Ω = eB0/p and v≈ c is the particle velocity) one obtains

Dµµ '
1
6

v
l
δ

[
ln
(

1
ε

)
− 1

2
ln
(
1−µ

2)](1−µ
2) (2)

Now we concentrate on the particular region, 1− µ2 <∼ ε , for which we obtain the
following expression for the scattering coefficient [3]

Dµµ =
π

2
v
l

(
1−µ

2)[J2
1 (y)
y2 + ry4/3

]
(3)

where r ∼ 10−2 and y =
√

(1−µ2)/ε . Clearly, we can neglect the small second term
in the brackets altogether, and switch to the expression given by eq.(2) for y >∼ j1, where
j1 ≈ 3.8 being the first root of J1. The most important part of the scattering coefficient

191



Dµµ (y) is its sharp peak near |µ| = 1 where it behaves as Dµµ ∝ J2
1 (y). As y grows

and approaches y = j1, Dµµ/
(
1−µ2) falls down to ∼ δ of its peak value at |µ| = 1

and remains approximately constant, eq.(2). The other peak occurs at µ ≈ 0 but it is not
important for our purposes.

PARTICLE PROPAGATION

Suppose that a source of CRs is within the same magnetic flux tube with the Earth.
We calculate the CR propagation to the Earth below. Obviously, the degree of CR
anisotropy near the source may be significantly higher than that observed at the Earth.
The propagation problem may be considered being one dimensional and stationary with
the only spatial coordinate z, directed along the flux tube from the source to the Earth.

The particle momentum is conserved and the transport problem is in only two
variables, the coordinate z and the pitch angle ϑ (or µ ≡ cosϑ ). The characteristic
(ϑ -independent) pitch-angle scattering frequency νϑ (typical for µ not too close to
µ = 0,±1) can be written as:

Dµµ

1−µ2 ≈ νϑ ≡
v
l

(
δ ln
(

1
ε

)
+ ε

3/2
)

/6 (4)

The equation for the CR distribution thus reads

(u+ µ)
∂ f
∂ z

=
∂

∂ µ

(
1−µ

2)D(µ)
∂ f
∂ µ

(5)

Here u is the bulk flow (scattering centers) velocity along z in units of the speed of light,
u� 1, µ = cosϑ . The coordinate z is normalized to the pitch-angle scattering length
c/νϑ ≈ v/νϑ , so that D(µ) = ν

−1
ϑ

Dµµ/
(
1−µ2) being normalized to νϑ , is close to

unity except for the narrow peaks. Our purpose is to find a narrow feature (which may
be a bump or a hole) on the otherwise almost isotropic angular spectrum f (µ). Clearly,
this feature must be pinned to one of the peaks of D(µ), Fig.1.

Let us consider the particle scattering problem given by eq.(5) in a half space z ≥ 0
and assume that at z = 0 (source) the distribution function is f (0,µ) = f0 (µ). It is clear
that if there are no particle sources at z = ∞, then f (∞,µ) = f∞ = const, apart from the
dependence of f on the particle momentum as a parameter. It is convenient to subtract
f∞ from f , Ψ(z,µ, p) = f (z,µ, p)− f∞ (p), so that the new function Ψ satisfies the same
equation (5) as f and the following boundary conditions

Ψ =
{

φ (µ) = f0 (µ)− f∞, z = 0
0, z = ∞

It is natural to expand the solution into the series of eigenfunctions Ψλ

Ψ = ∑
λ

Cλ Ψλ (µ)e−λ z (6)
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FIGURE 1. Schematic representation of initial and final pitch-angle distributions and that of the diffu-
sion coefficient Dµµ (µ).

to be found from the following spectral problem

d
dµ

(
1−µ

2)D(µ)
dΨλ

dµ
+λ (u+ µ)Ψλ = 0 (7)

As is well known (9, see also 10), there exists a complete set of orthogonal eigenfunc-
tions {Ψλ}

λi=∞

λi=−∞
with the discrete spectrum λi having no limiting points other than

at ±∞. If we consider the formal solution given by eq.(6) at such a distance z where
(λ2−λ1)z >∼ 1, with λ1,2 being the first (smallest) positive eigenvalues, the solution will
be dominated by the first eigenfunction Ψλ1. We know that the anisotropy at the Earth
is very small (∼ 10−3) and, assuming it being not so small at the source, we deduce that
λ1z� 1 so that the inequality (λ2−λ1)z� 1 should satisfy as well and we can limit our
treatment of the spectral problem given by eq.(7) to the determination of only the first
positive eigenvalue with the corresponding eigenfunction. Although the function D(µ)
has a strong peak at µ ≈ 1, this peak is very narrow (∼ ε) and a perturbation theory
applies.

Outside of the peak region we assume D = 1 as an exact value for D. Therefore, for(
1−µ2)>∼ ε , the zeroth order approximation of the outer expansion reads

d
dµ

(
1−µ

2) dΨ
(0)
λ

dµ
+λ

(0)
µΨ

(0)
λ

= 0 (8)

To find λ (0) we require the solution to be regular at the both singular points µ =±1. It
is easy to find the required single eigenvalue λ1 and the corresponding eigenfunction by
a direct numerical integration of the above equation. The result is shown in Fig.2 and
λ1 ≈ 14.54.

Since D ≡ 1 in the outer region, the perturbation can be associated only with the
perturbation of λ . Therefore, we expand λ and Ψλ as λ = λ (0) + δλ + . . ., Ψλ =
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FIGURE 2. Unperturbed eigenfunction Φ(µ) ≡ Ψ
(0)
λ1

(numerical solution of eq.[8], dashed line). Per-
turbed solution (solid line). The insert shows the solution behavior at the end point, including the loga-
rithmic term of the outer solution.

Ψ
(0)
λ

+ δλΨ
(1)
λ

+ . . .. Here λ can be an arbitrary point of the spectrum λ = λi > 0, but

we are primarily interested in λ = λ1. The equation for Ψ
(1)
λ

takes the following form

d
dµ

(
1−µ

2) dΨ
(1)
λ

dµ
+λ

(0)
µΨ

(1)
λ

=−µΨ
(0)
λ

(9)

We can write the solution of the last equation as follows

Ψ
(1)
λ

=−Φ

µ∫
−1

U (µ ′)dµ ′

Φ2 (µ ′)(1−µ ′2)
(10)

where we have denoted Φ(µ)≡Ψ
(0)
λ

(µ), and U (µ)≡
∫ µ

−1 µ ′Φ2 (µ ′)dµ ′.
Turning to the inner expansion of the solution of eq.(7), it is convenient to stretch the

variable µ at µ = 1 as follows w = (1−µ)/b. Note that b = ε j2
1/2 is chosen in such a

way that D(w = 1)≈ 1. Therefore, we represent D as D(w) = a−1F (w)+1, w≤ 1 and
D(w) = 1, w > 1, where F (w) =

(
π/2 j2

1w
)

J2
1 ( j1
√

w). Here a = νϑ l/v� 1 and Eq.(7)
can be written as follows

d
dw

[F (w)+a] (2−bw)w
dΨi

λ

dw
+baλ (1−bw)Ψ

i
λ

= 0 (11)

where the index i stands for the ’inner’ solution. In contrast to the outer problem we
must impose the regularity condition at µ = 1 (w = 0).

Working up to the second order in b � 1, and integrating eq.(11) by parts, we
transform it into the following first order equation

dΨi
λ

dw
+

λb
2

g′
[

1− λb
2

(
h
w
−g
)]

Ψ
i
λ

= 0
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Comparing with the outer solution yields Ψi
λ
(0) ≈ Φ(1)/(1+λb/2) and δλ =

b2λ 2Φ2 (1)/4U (1). Using the matching procedure we determined the initially un-
known arbitrary constant of the inner solution Ψi

λ
(0) and the perturbation of the eigen-

value λ by matching the terms in both equations that are independent of w and pro-
portional to lnw, respectively. The linear and quadratic terms in w match automati-
cally to the appropriate accuracy ∼ b2. This follows from the two further relations
Φ′ (1) = λΦ(1)/2, Φ′′ (1) = λΦ′ (1)/4, which can be obtained from the Frobenius
series of eq.(8) at the singular end point µ = 1 with Ψ

(0)
λ
≡Φ.

BEAM CHARACTERISTICS

After we have determined the angular distribution of the beam, let us compare this
distribution with the most prominent MILAGRO hot spot A [1] and consider the multiple
beam phenomenon later. Two major beam parameters were calculated in terms of the
small parameter of the theory, ε = rg (p)/l, where rg is the particle gyro-radius and l
is maximum wave length beyond which particles interact with waves adiabatically. The
first parameter of the beam is its angular width (in terms of µ = cosϑ ) b = j2

1ε/2≈ 7.3ε

and the second is its strength, which can be conveniently expressed as the ratio of the
beam excess to the amplitude of the first eigenfunction, δΦ(1)/Φ(1)≈ λ1b/2≈ 53.4ε .
Since ε ∝ p, the spectrum of the beam should be one power harder than the CR large
scale anisotropic component inside the flux tube. This is consistent with the Milagro
beam spectrum, provided that Φ scales with momentum similarly to the galactic CR
background.

According to the MILAGRO Region A observations, the beam width is about ∆ϑ ∼
10◦, where ∆ϑ ≈ cos−1 (1−b) ≈

√
2b = j1

√
ε so that we obtain for ε the following

constraint from the observed MILAGRO Spot A: ε ≈∆ϑ 2/ j1≈ 2.1 ·10−3. This estimate
yields the strength of the beam at the level of ≈ 0.1 which is also consistent with the
MILAGRO fractional excess of the beams A and B measured with respect to the large
scale anisotropy.

BEAM SUSTAINABILITY

Now that we have calculated the pitch-angle distribution of a narrow CR beam formed
from a wide-angle anisotropic CR flux by its interaction with the background ISM
turbulence, we need to check whether the beam will survive the pitch-angle scattering
by self-generated waves. Assuming a power-law momentum scaling for the background
CRs, FC (p) ∝ p−qc (with qc = 4.6− 4.7) we can obtain an expression for the beam
instability threshold distribution Fth

(
p‖
)
≡ δ ·FC

(
p‖
)
/(qc−2), so that if FB

(
p‖
)
≤

Fth
(

p‖
)
, the beam can sustain its angular distribution. Otherwise, it will be spread in

pitch angle to satisfy the last inequality. Using the expressions for the width of the beam
and for its amplitude relative to Φ(µ, p), we can represent FB

(
p‖
)

as follows

FB
(

p‖
)

=
λ1b2

2
F0
(

p‖
)

=
1
8

λ1 j4
1ε

2F0
(

p‖
)

(12)
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where we have denoted F0 (p)≡Φ(µ = 1, p). Then, our constraint FB
(

p‖
)
≤Fth

(
p‖
)

can be represented in the following way

F0 (p)≤ A
VA

c
l2

r2
g (p)

FC (p) (13)

where rg = pc/eB0 is the particle gyro-radius. We denoted by A the following numerical
factor A = 8/λ1 j4

1 (qc−2)≈ 10−3. Due to the factor r−2
g in the relation given by eq.(13),

the function F0 (p) is constrained at high momenta. Assuming that F0 is not much steeper
than the background distribution FC, we infer from eq.(13) that there exists maximum
momentum pBmax, beyond which the beam would spread in pitch-angle and dissolve in
the CR background,

pBmax

mc
' 1

K

√
VA

c
A
α

(14)

where we have introduced the following parameter which is the major small parameter
of the theory K ≡ c/lωc = εmc/p. Here ωc is the proton cyclotron (non-relativistic)
frequency and l is the maximum turbulence scale beyond which the particles response
becomes adiabatic. Based on the two independent MILAGRO measurements of the
width and the fractional excess of the Beam A, we inferred the parameter ε ∼ 10−3.
Assuming that this value of ε relates to the 1TeV beam median energy, we obtain
K ∼ 10−6. Taking VA/c ∼ 10−4 and α ∼ A ∼ 10−3, we obtain pBmax ∼ 10 TeV. This
is encouragingly close to the MILAGRO estimates of the beam cut-off energy.

ARRIVAL DIRECTIONS OF THE CR BEAM

Up to now, we focused on the formation and propagation along the ISM magnetic field
of a single CR beam. However, the Milagro data [1] indicate that there are two beams
separated by∼ 50◦, that may be related. To make matters more complicated, the IceCube
collaboration [11, 2, 12] recently discovered the third beam at a similar angular distance
from the two, but in the southern hemisphere, Fig.3. In fact, it is not difficult, albeit
speculatively, to explain how a single, tightly collimated beam may split into three. The
idea is illustrated in Fig.4 where the heliospheric bubble is considered as a magnetic
lens of a radius RHS. Suppose a narrow (in angle but spatially broad enough) beam
enters the heliosphere from its tail direction. Even though the gyroradius of a 10-TeV
beam particle outside of the heliosphere is about ten times larger, rg ' 10RHS, when it
moves in a stronger field inside, above or below the heliospheric current sheet (HCS),
the deflection is ∆ϑ '±(RHS/rg)(B̄HS/BISM)'±0.1B̄HS/BISM. For the focusing field
polarity, the total angular separation of the split beams is 2∆ϑ which may reach the
required ∼ 50◦ even for 10-TeV-particles. For the reverse magnetic polarity (after 11-
year flip) the beam would be defocused away from the ecliptic plane, which may become
observable after the upcoming solar flip. As for the third beam, it may be formed by
particles that move closer to the ecliptic plane, so that they pass through the alternating
HSC field and are not deflected significantly. The structure of the heliospheric magnetic
field is complicated and variable (e.g. 13), so that more accurate prediction of the angular
width and separation of the three beams is hardly possible at this point.
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FIGURE 3. Combined Milagro/IceCube (north/south maps). Figure adopted from [11]. Northern
hemisphere shows the Milagro results from [1].

FIGURE 4. Possible splitting mechanism of one CR-beam into three.

SUMMARY

The principal results of this paper are as follows. Assuming only a large scale anisotropic
distribution of CRs (generated, for example by a nearby accelerator, such as a SNR) and
a [4] (GS) cascade of Alfvenic turbulence originating from some scale l, which is the
longest scale relevant for the wave-particle interactions, we calculated the propagation
of the CRs down their gradient along the interstellar magnetic field. It is found that
the CR distribution develops a characteristic angular shape consisting of a large scale
anisotropic part (first eigenfunction of the pitch-angle scattering operator) superposed
by a beam, tightly focused in the momentum space in the local field direction. The
large scale anisotropy carries the momentum dependence of the source, while both the
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beam angular width and its fractional excess (with respect to the large scale anisotropic
component) grow with momentum (as

√
p and p, respectively). Apart from the width

and the fractional excess of the beam, the theory predicts its maximum momentum on
the ground that beyond this momentum the beam destroys itself. All the three quantities
are completely determined by the turbulence scale l. Even if l is considered unknown, it
can be inferred from any of the three independent MILAGRO measurements. These
are the width, the fractional excess and the maximum energy of the beam, and all
the three consistently imply the same scale l ∼1 pc. The calculated beam maximum
momentum encouragingly agrees with that measured by MILAGRO (~10 TeV/c). The
theoretical value for the angular width of the beam is found to be ∆ϑ ' 4

√
ε , where

ε = rg (p)/l � 1. The beam fractional excess related to the large scale anisotropic
part of the CR distribution is ' 50ε . Both quantities also match the Milagro results
for E ∼ 1− 2 TeV. So, the beam has a momentum scaling that is one power shallower
than the CR carrier, it is drawn from.

The model suggested in this paper becomes devoid of free parameters, if the knee
energy at ∼ 3PeV can be associated with the maximum CR energy of the source of the
beam and thus the unknown parameter l can be associated with the gyroradius of a 3PeV
particle. Even though such an association is not proven, our propagation model predicts
the three beam characteristics: its width, fractional excess and maximum energy to be
the functions of a single quantity, the longest wave-particle interaction scale l. They all
give the correct MILAGRO values for l ' 1 pc, which is unlikely to be coincidental.

ACKNOWLEDGMENTS

MM is indebted to Simona Toscano, Paolo Desiati and other members of the IceCube
collaboration for very fruitful discussions. The work of PD and MM is supported by
NASA under the Grants NNX 07AG83G and NNX09AT94G and by the Department of
Energy, Grant No. DE-FG02-04ER54738.

REFERENCES

1. A. A. Abdo, and Milagro Collaboration Physical Review Letters 101, 221101–+ (2008).
2. R. Abbasi, Y. Abdou, T. Abu-Zayyad, J. Adams, J. A. Aguilar, M. Ahlers, D. Altmann, K. Andeen,

J. Auffenberg, and et al., ArXiv e-prints 1105.2326 (2011).
3. M. A. Malkov, P. H. Diamond, L. O’C. Drury, and R. Z. Sagdeev, Astrophys. J. 721, 750–761 (2010).
4. P. Goldreich, and S. Sridhar, Astrophys. J. 438, 763–775 (1995).
5. L. O. C. Drury, and F. A. Aharonian, Astroparticle Physics 29, 420–423 (2008).
6. M. Salvati, and B. Sacco, Astronomy and Astrophys. 485, 527–529 (2008).
7. A. Lazarian, and P. Desiati, Astrophys. J. 722, 188–196 (2010).
8. B. D. G. Chandran, Physical Review Letters 85, 4656–4659 (2000).
9. R. G. D. Richardson, American Journal of Mathematics 40, 283–316 (1918), ISSN 00029327, URL

http://www.jstor.org/stable/2370485.
10. J. G. Kirk, and P. Schneider, Astrophys. J. 315, 425–433 (1987).
11. P. Desiati, and the IceCube Collaboration, ArXiv e-prints:1007.2621 (2010).
12. S. Toscano, and The IceCube Collaboration, Nuclear Physics B Proceedings Supplements 212, 201–

206 (2011).
13. G. P. Zank, Space Sci. Rev. 89, 413–688 (1999).

198

http://www.jstor.org/stable/2370485

