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1. Introduction

Ion-acoustic turbulence is a central paradigm of plasma physics and controlled fusion.

When ion and electron temperatures are similar, linear theory predicts that ion-acoustic

waves are stable (except if the velocity drift between electrons and ions is at least

of the order of the electron thermal velocity), due to strong ion Landau damping

[1]. As a consequence, ion-acoustic turbulence does not receive much attention in the

context of magnetically confined fusion plasma. However, stability is a nonlinear issue.

Indeed, the growth process of structures in phase-space can circumvent linear theory

[2, 3, 4, 5, 6, 7], leading to nonlinear, or subcritical instability. Furthermore, ion-acoustic

waves constitute the basis for dominant fluctuations in confined plasmas. Indeed, drift-

waves arise from the ion-acoustic branch, modified by inhomogeneities and geometry

effects. In particular, collisionless trapped-ion and trapped-electron modes are driven

by wave-particle resonance, in the same way that the current-driven ion-acoustic is.

Therefore, the understanding of phase-space structures and their impact on ion-acoustic

turbulence is an important step towards the advance of the nonlinear kinetic theory of

collisionless plasmas.

One idea concerning subcritical processes follows from the properties of phase-space

structures or granulations, which are non-wave-like fluctuations. These structures can

exchange momentum and energy via channels which differ from those of familiar linear

wave-particle resonance, and so can tap free energy when wave excitation cannot [2].

A structure of particular interest is a BGK-type island of negative phase-space density

perturbation, refered to as a hole [8, 9, 2, 10, 4, 11, 12, 13, 14] or a phase-space vortex.

These coherent structures are spontaneously formed by nonlinear wave-particle resonant

interactions, which trap particles in a trough. These trapped particles in turn generate

a self-potential, leading to a self-sustained structure. Like a fluid vortex, a phase-space

hole is not attached to a wave or a mode. The mean velocity of the hole can evolve

away from the resonance, and grow by climbing up the gradient of a particle velocity

distribution.

The impact of PS holes is not limited to stability. PS holes can drive anomalous

transport [15, 16], drive anomalous resistivity [17], modify the saturation amplitude [18],

yield amplitude oscillations or chaos [19], shift the mode frequency [11], and couple with

zonal flows [20]. These impacts are relevant in the context of energetic particle-driven

activities in space and magnetic fusion plasmas [21], collisionless magnetic reconnection

[22], collisionless shock waves [23], alpha-channeling [24] and drift-waves [25].

Multiple structures can coexist and interact, leading to rich nonlinear phenomena,

which we refer to as phase-space turbulence. In phase-space turbulence theory [26],

the system is treated as an ensemble of structures in phase-space, rather than an

ensemble of waves, as in quasi-linear theory. We can contrast phase-space turbulence

with conventional approaches in terms of the Kubo number K ∼ ωbτc, which measures

the coherence of turbulence. Here, ωb is the bounce frequency of trapped particles, and

τc is the correlation time of a structure. Conventional theories that rely on linear waves
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and their nonlinear extensions (mode coupling, weak and strong turbulence theories)

require K < 1 for their validity. This condition is easily violated when wave-particle

interactions are strong. Phase-space turbulence theory concerns the ubiquitous K & 1

regime.

In this paper, we consider the ion-acoustic instability in one-dimensional (1D),

collisionless electron-ion plasmas with a velocity drift. Ion-acoustic waves are

longitudinal electrostatic waves, which are commonly observed in space and laboratory

plasmas. Theory and experiments indicate that ion-acoustic waves are key agents of

magnetic reconnection (via anomalous resistivity) [27], turbulent heating [28], particle

acceleration [29], and play important roles in the context of laser-plasma interaction [30].

Linear instability requires that the velocity drift vd exceed some finite threshold vd,cr.

However, nonlinear theory [31, 32] predicts that phase-space density holes can grow

nonlinearly, even for infinitely small drifts. In such plasmas, electron and ion structures

behave like macroparticles and scatter each other, leading to dynamical friction (in

addition to the usual quasilinear diffusion), which drives anomalous resistivity [17]. From

a momentum point-of-view, phase-space holes grow by exchanging their momentum with

other species or with the wave pseudo-momentum [33]. From an energetics point of

view, growing structures continuously emit undamped waves by the Cherenkov process,

leading to the growth of total wave energy [17, 7]. Holes can also be thought of as quasi-

particle modes of zero or negative energy [9]. The hole growth-rate was obtained far

from [32] and close to [34] linear marginal stability. In the 1980’s, particle simulations of

the nonlinear electron-ion instability, with mass ratio mi/me = 4 and temperature ratio

Ti/Te = 1, were performed [3, 10]. To the credit of the authors, these simulations were

performed three decades ago, when computing power was roughly 7 orders of magnitude

lower than today. These simulations agree qualitatively with the theory, and nonlinear

growth was observed for vd > 0.4vd,cr, that is, far from linear marginal stability. Electron

holes were reported to grow in a similar way from either a seed phase-space hole, or

from random fluctuations, even with low-amplitude initial fluctuations (eφ/T � 10−2).

However, our work suggests that these earlier particle simulations likely suffered

from numerical issues, such as noise associated with a small number of particles, leading

to spurious conclusions. In particular, nonlinear growth is found to be much more

sensitive to initial conditions than suggested in references [3, 10]. We observe that

subcritical instabilities are absent when the initial perturbation consists of an ensemble

of sine waves with random phases, except close to linear marginal stability (vd > 0.9vd,cr)

and for large initial amplitudes (eφ/T ∼ 1).

In contrast, a seed local negative perturbation (hole-like) in the electron phase-

space can grow nonlinearly, even far below marginal stability (vd = 0.38vd,cr) and for

small initial amplitudes (eφ/T ∼ 10−3). Depending on the initial conditions, a growing

hole may keep most of the phase-space relatively intact (local hole growth), or, on the

contrary, may lead to a turbulent state with significant potential energy eφ, particle

redistribution, heating and anomalous resistivity (global subcritical instability). Such

system-wide effects are observed for vd = 0.76vd,cr. However, the effects of the seed
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phase-space perturbation are indirect. A multitude of small holes emerge from the wake

of the evolving seed perturbation. It is this phase-space turbulence that drives the

subcritical instability. In other words, phase-space turbulence, rather than turbulence

in the sense of a spectrum of incoherent waves, leads to substantial nonlinear growth

(in general). In the turbulent state, we observe phase-space jets, which are elongated

structures that enhance redistribution and anomalous resistivity [35].

2. Model

2.1. Model description

The model describes the collisionless evolution of a two-species, 1D electrostatic plasma.

In addition to academic interest, a 1D model is relevant for plasma immersed in a strong,

relatively homogeneous magnetic field [36]. The evolution of each particle distribution,

fs(x, v, t), where s = i, e, is given by the Vlasov equation,

∂fs
∂t

+ v
∂fs
∂x

+
qsE

ms

∂fs
∂v

= 0, (1)

where qs and ms are the particle charge and mass, respectively. The evolution of the

electric field E satisfies a current equation,

∂E

∂t
= −

∑
s

msω
2
ps

n0qs

∫
vfs(x, v, t) dv, (2)

where ωp,s is the plasma frequency and n0 is the spatially-averaged plasma density. The

initial electric field is given by solving Poisson’s equation. We denote δfs ≡ fs−f0,s and

f̃s ≡ fs− f̄s, where f0,s(v) = f̄s(v, 0) is the initial velocity distribution, and f̄s(v, t) is the

spatial average of fs. In a one-dimensional periodic system, a spatially uniform current

drives a uniform electric field, which oscillates at a frequency ωu = ωp,e(1 +me/mi)
1/2.

This rapid oscillation of both the uniform electric field and the uniform current is of

little interest here [37]. Numerically, the average part of E is set to zero, following

common practice [10, 38, 39].

2.2. Numerical simulations

On the one hand, in Refs. [6, 40], we described, verified, validated and benchmarked

a semi-Lagrangian kinetic code COBBLES, capable of long-time simulations of 1D

plasmas. A particular feature of this code is that the surface elements of phase-space

density are locally conserved, up to the machine precision. Hereafter, we refer to

these simulations as Vlasov simulations. On the other hand, to reproduce the results

of Refs. [3, 10], we developed a simple particle-in-cell code, PICKLES (Particle-In-

Cell Kinetic Lazy Electrostatic Solver), which can be switched between full-f and δf

treatments. Hereafter, we refer to these simulations as full-f PIC simulations and δf

PIC simulations, respectively. We denote the number of marker-particles per species as

Np. The PIC code is used only in subsection 3.2. The rest of this paper is based on

Vlasov simulations.
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Figure 1. Snapshots of the velocity distributions in a Vlasov simulation of subcritical
instability. Simulation parameters are vd/vT,i = 3.8, eφ/T ≈ 0.2, and Nx × Nv =
768× 8192.

Hereafter, we adopt the physical parameters of Refs. [3, 10]. The mass ratio

is mi/me = 4 (small mass ratio improves numerical tractability and the readability

of phase-space contour plots). The system size is L = 2π/k1, where k1 =

0.2λ−1
D . The initial velocity distribution for each species is a Gaussian, f0,s(v) =

n0/[(2π)1/2vT,s] exp[−(v−v0,s)
2/2v2

T,s], with v0,i = 0. The ion and electron temperatures

are equal. Boundary conditions are periodic in real space. In COBBLES, we ensure

zero-particle flux at the velocity cut-offs vcut,s. We choose vcut,s = v0,s ± 7vT,s.

All Vlasov simulations are performed with at least Nx = 768 and Nv = 1024

grid points in configuration-space and velocity-space, respectively, and with a time-step

width at most ∆t = 0.1ω−1
p,e . The grid cell size in real space is ∆x = 0.04λD. Although

the length-scales of interest are larger than the Debye length, such a small cell size is

necessary to reduce numerical artifacts.

3. Ensemble of waves

3.1. Vlasov simulations

We run a series of Vlasov simulations for different values of initial drift vd ≡ v0,e − v0,i.

The linear stability threshold of the ion-acoustic mode is vd = vd,cr, with vd,cr/vT,i = 3.92.

The initial velocity distributions are shown in Fig. 1 for vd/vT,i = 3.8. The initial

perturbation is an ensemble of waves in the electron distribution,

fe|t=0 =

[
1 +

mmax∑
m=1

km
k1

ε cos(kmx+ φm)

]
f0,e(v), (3)

where km = mk1, mmax = 20 (kmax = 4.0λ−1
D ), φm are random phases, and ε controls the

initial electric field amplitude. We measure the electric field energy by the mean square

potential, φ = 〈ϕ2〉1/2. We define the potential energy as eφ.
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Figure 2. Time-evolution of the normalized potential energy in Vlasov simulations
for small, incoherent initial perturbation, eφ/T ≈ 2× 10−4. Linear theory is shown as
dashed lines.
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Figure 3. Time-evolution of the normalized potential energy in Vlasov simulations
for vd/vT,i = 3.8 and various levels of incoherent initial perturbation.

Table 1. Nonlinear stability. W↓ and W↑ mean decay and growth, respectively, of
an initial ensemble of wave. H↓, H∼ and H↑ mean hole decay, local hole growth and
global subcritical instability driven by an initial hole-like phase-space perturbation.

vd/vd,cr

0 0.38 0.63 0.76 0.89 0.97

eφ/T

1 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↑, H↑ W↑, H↑
10−1 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↑, H↑
10−2 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↓, H↑
10−3 W↓, H↓ W↓, H∼ W↓, H↑ W↓, H↑ W↓, H↑ W↓, H↑
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Fig. 2 shows the time-evolution of potential energy, normalized to thermal energy,

eφ/T , for three linearly stable cases, and two linearly unstable cases. For all stable

cases, we hide data for times longer than half a numerical recurrence time, TR/2 =

πNv/(10kmaxvT,e). The oscillations for vd/vT,i < 4 are due to the beating of waves

with opposite phase velocities. We observe that the solutions are consistent with linear

theory. Note that for drift velocities of 4.2 and 4.5, the growth rate increases before

saturation. This is in contrast with the conventional wave saturation, where the growth

rate decreases in time. This phenomenon was predicted and confirmed in Ref. [7]. It

appears for barely unstable cases, above a threshold amplitude, for which the nonlinear

growth rate overcomes the linear growth rate.

The important conclusion here, is that we observe no subcritical instability. This

is in contradiction with Ref. [3], where subcritical instabilities are reported for the

same parameters and vd/vT,i ≥ 1.5, even for low-amplitude initial fluctuations with

eφ/T � 10−2. We scanned the parameter space of velocity drift and initial amplitude,

and concluded that subcritical instabilities emerge only when the drift is very close to

linear marginal stability, and the initial perturbation is relatively large. Fig. 3 shows

the time-evolution of normalized potential energy, for vd/vT,i = 3.8, which is only 3%

below marginal stability, and for large initial amplitudes. We do observe a subcritical

instability when the initial amplitude is eφ/T ≈ 0.2, but not below. For vd/vT,i = 0.5,

1.5, 2.5 or 3.0, we did not obtain any subcritical instability even for initial amplitudes

as high as eφ/T ≈ 2. These results are summarized in Table 1, which shows whether an

incoherent ensemble of waves is nonlinearly stable (W↓) or unstable (W↑). From this

table, we conclude that the nonlinear stability threshold is approximately vd/vT,i = 3.5

(vd/vd,cr = 0.89).

Subcritical instabilities are in many aspects qualitatively similar to linearly unstable

cases. The saturation level of potential energy is similar, we observe wide particle

redistribution in phase-space, especially of the electrons, turbulent heating, and

significant anomalous resistivity. Fig. 1 includes snapshots of ion and electron velocity

distributions after the nonlinear growth for the subcritical simulation (vd/vT,i = 3.8)

with high initial amplitude (eφ/T ≈ 0.2). At saturation, the electron distribution is

flattened over a large range, −1 < v/vT,i < 6. The ion distribution develops a plateau

around v/vT,i = 4, which is due to accumulating ion phase-space vortices.

Phase-space redistribution is associated with anomalous resistivity. We define the

anomalous resistivity η as

n0q
2
i (pi − pe) η = qi 〈E〉 −

(
1

mi

+
1

me

)−1
d (pi − pe)

dt
, (4)

where 〈E〉 is the spatial average of the electric field (here it is zero), and ps ≡
∫
vfsdxdv

is the momentum of species s. For typical tokamak plasma conditions, n0 = 1019m−3

and Ti = Te = 1keV , the ion-electron collision frequency is of the order of νei ∼ 10−7ωp,e
(with real mass ratio). Fig. 4(a) shows the moving average (over δt = 16ω−1

p,e)

of η/ηcoll where ηcoll = meνei/(n0q
2
i ) is a typical value of the collisional resistivity.

The maximum anomalous resistivity is 4 orders of magnitude higher than typical
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Figure 4. Time-evolution of (a) anomalous resistivity, normalized to ηcoll =
10−7meωp,e/(n0q

2
i ), and (b) mean thermal energy perturbation. Three cases are

shown, the simulation of Fig. 1 (vd/vT,i = 3.8, solid curves), a linearly unstable case
(vd/vT,i = 4.2, dashed curves), and the reference case S of Fig. 16 (vd/vT,i = 3.0,
chained curves).

collisional resistivity, for both subcritical and supercritical cases. In addition, ion-

acoustic waves cause both ion and electron heating. We define the mean thermal energy

Ts ≡ (ms/2n0)
∫

(v − ps)2fsdxdv. It reduces to the temperature for spatially uniform,

Boltzmann distributions. Fig. 4(b) shows the moving average of the mean thermal

energy perturbation δTs = Ts(t)−Ts(0). Both ion and electron thermal energies roughly

double, for both subcritical and supercritical cases. These results indicate that the

saturated level of turbulence, the anomalous resistivity, the turbulent heating, etc. are

not directly affected by linear stability. In other words, essential nonlinear phenomena

do not undergo any bifurcation at the linear stability threshold.

3.2. PIC simulations

The simulations of Ref. [3], which are in disagreement with the above Vlasov simulations,

were obtained with a full-f PIC code, with a number of particles limited by the

computing power of the time. We reproduced those simulations with Np = 102400,
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Figure 5. Time-evolution of the normalized potential energy in PIC simulations for
vd/vT,i = 2.5.

Figure 6. Snapshot at ωp,et = 400 of the phase-space in the Np = 102400, full-f PIC
simulation of Fig. 5 (vd/vT,i = 2.5).



Nonlinear ion-acoustic instability 10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  1  2  3  4  5

γ 
/ ω

p,
e

vd / vT,i

Linear theory

Nonlinear clump theory

Full-f PIC, Np=102400
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simulations with Np = 102400. Solid curve: nonlinear instability theory of Ref. [41].

and indeed recovered the results of that reference, that is, subcritical growth for

vd/vT,i ≥ 1.5. Fig. 5 includes one example of subcritical instability, for vd/vT,i = 2.5

and initial amplitude eφ/T ≈ 0.03. Fig. 6 is a snapshot of both ion and electron

phase-spaces, at ωp,et = 400. We observe several electron holes, most noticeably at

(k1x, v/vT,i) = (0.9π, 3.0). We checked that particles follow trapped orbits within the

latter hole.

We ran a series of such full-f PIC simulations for different values of initial drift.

We define the nonlinear growth rate as γNL = ∂ ln f̃h,e/∂t, where f̃h,e(t) ≡ maxx,v

∣∣∣f̃e∣∣∣
is the depth of the deepest negative perturbation. Taking an alternative definition of

the nonlinear growth rate as the growth rate of the potential energy, yields similar

growth rates. This is because the potential is dominated by the largest hole, owing

to the relation ϕ ∼ ∆v2 ∼ f̃ 2
h,e [See Eq. (7)]. Since the growth rate depends on the

amplitude, we must measure it at some fixed value of f̃h,e. We choose the same value

as the reference, f̃h,e ≈ 0.1n0/vT,e. Fig. 7 shows the measured nonlinear growth rate

as a function of initial drift. The data points are in agreement with simulation results

of Ref. [3] (see Fig.4). Besides, they are in qualitative agreement with the nonlinear

instability theory of Ref. [41]. The theoretical growth rate was obtained by solving

Eq. (99) (with the plus sign) in Ref. [41], while assuming a structure velocity v+ = vT,i
(the holes have a wide range of different speeds, but v+ = vT,i is where the hole growth

is expected to be the strongest), a self-binding factor b = 3 [42], a ratio c = τ scl/τ
s = 2.9

[41], and generalized electron and ion structure lifetime as τe = 40ω−1
p,e and τi = 2τe [3].

This theory is only meant to give an estimate of the qualitative behavior. Here we only

note that the simulation data happen to agree qualitatively with the theory for this

particular set of mass ratio, temperature ratio and perturbation amplitude. A careful

validation of the theory is out of the scope of this paper.

Also shown is the linear growth rate for the most unstable wave number, taking
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Figure 8. Velocity distributions at t = 0 in full-f PIC simulations.

into account that the system size allows wave numbers that are multiples of 0.2λ−1
D

only. Given the agreement with theory, one is tempted to conclude that the observed

instability is physical, rather than a numerical phenomenon, and that it is indeed

the nonlinear electron-ion instability. However, these subcritical instabilities disappear

(except for large initial amplitude and close to linear marginality) when the number of

particles is increased or when the δf approach is adopted. Fig. 5 includes time-series of

potential energy in a full-f PIC simulation with Np = 224, and in a δf PIC simulation

with Np = 102400 with a similar initial amplitude (actually thrice larger at t = 0, but

similar at ωp,et = 30). Both cases are stable, indicating that growth in the simulations

of Ref. [3] is due to numerical noise. Indeed, we found that the initial, unperturbed

velocity distribution is so noisy that it is linearly unstable.

With a number of particles as small as 102400, the velocity distributions in full-f

PIC simulations are very noisy, and only approximately Gaussian. Fig. 8 shows, for

vd/vT,i = 2.5, the initial ion and electron distribution functions, which were obtained by

distributing the particles into 128 boxes. Substituting the distribution at Np = 102400

into the linearized model equations, and solving the corresponding eigenvalue problem,

yields a positive linear growth rate, γL/ωp,e = 0.008. Varying the number of boxes

from 32 to 512, or modeling the distribution by a spline and increasing the resolution of

the discretization yielded similar values, γL/ωp,e = 0.006 − 0.009, positive in any case.

We therefore conclude that the instabilities observed in Ref. [3] were not subcritical,

but linearly unstable, even when the drift was below the linear threshold for Gaussian

distribution.

The agreement between noisy simulations and theory can be explained as follows.

The noisy distributions are such that, in small regions of velocity space, ∂vf0,e/me +

∂vf0,i/mi > 0. This enables waves to grow linearly from small amplitudes eφ/T �
10−2, which leads to the formation of phase-space structures by particle trapping.

Subsequently, these phase-space structures grow nonlinearly, in agreement with theory,
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but the initial state is not subcritical.

To be clear, our conclusion is not that the theory is wrong. The theory applies to

the growth of a hole that is already present, not to the growth of a hole from random

perturbations. To assess the nonlinear stability, we must understand what kind of initial

conditions are unstable. In the following section, we address the stability of an artificial

seed structure.

4. Seed structure

We have shown that subcritical instabilities can grow from an ensemble of waves, but

only close to linear marginality and when the initial amplitude is large. However, it is

possible to drive subcritical instabilities from much smaller initial amplitude, and even

far from marginal stability, by preparing a self-trapped structure at t = 0.

Hereafter, we study the evolution of a local, negative phase-space density

perturbation (hole-like) in the electron distribution, and drop the subscript e in f̃h,e.

The initial electron distribution is

fe|t=0 = f0,e(v) − f̃h exp

[
−1

2

(
v − vh
∆vh

)2
][

H(x)−∆xh/L

2

]
, (5)

where f̃h(t) is the hole-like perturbation amplitude, vh(t) is its velocity, ∆xh and ∆vh(t)

are its width and velocity-width, and

H(x) = 1 + cos

[
2π

x− L/2
∆xh

]
(6)

if |x − L/2| < ∆xh/2, otherwise H(x) = 0. The initial depth f̃h(0) is chosen to satisfy

the trapping condition [2],

f̃h =
n0∆vh
6ω2

p,eλ
2

[
(1 + 2λ/∆xh)

(
1− e−∆xh/λ

)
− 2
]−1

, (7)

where λ is the shielding length, which is such that (kλ)−2 is the real part of the

linear susceptibility. The shape of this artificial hole-like seed is arbitrary and does

not correspond to maximum entropy.

Let us study in details the evolution of one case, which we label as S. It will serve

here as an example of a subcritical instability. The parameters for S are vd/vT,i = 3.0,

vh(0)/vT,i = 0.8, ∆vh/vT,i = 0.2, and ∆xh/λD = 2. Figs. 9 and 10 show snapshots

of both ion and electron distribution functions in the reference case S. A video, which

shows the evolution of the distribution functions, their spatial averages, the normalized

potential energy, and the spectrum of potential, is available as additional material.

Fig.11 shows the evolution of the depth, velocity and velocity-width of the deepest hole.

The reader should keep in mind that f̃h is defined as the depth of the deepest negative

phase-space density perturbation at each instant. In other words, we do not track one

single structure throughout its evolution, but rather switch to whichever structure is

the deepest. Such switching is taking place between ωp,et = 1000 and 3000, where the
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Figure 9. Snapshots of ion (left) and electron (right) perturbed distribution in
the reference simulation S (vd/vT,i = 3.0, vh(0)/vT,i = 0.8, ∆vh/vT,i = 0.2, and
∆xh/λD = 2). Values of ωp,et from top to bottom are 0, 200, 500, 700 and 1000. A
contour of constant fe is dashed in (i).
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Figure 10. Same as Fig. 9, but for later times. Values of ωp,et from top to bottom
are 2000, 2500, and 3000.

instantaneous maximum depth alternates between different holes. In these figures, we

observe two distinct phases. In the first phase, from ωp,et = 0 to 700, the initial artificial

seed dominates the phase-space. In the second phase, after 700, many structures coexist

and interact. Let us separate the discussion into 1. the evolution of a single hole-like

perturbation in the first phase, and 2. the impacts of many phase-space structures

(phase-space turbulence) in the second phase.

4.1. Single-structure growth

Since phase-space density is conserved along particle trajectories, the center of a hole,

where particles are deeply trapped, and which therefore follows particle orbits, must

conserve f . Therefore, an isolated hole can grow (decay) by climbing (descending)

a velocity gradient. When the gradient is positive (negative), it must accelerate

(decelerate) to grow and decelerate (accelerate) to decay. In Fig.11, we observe that the

artificial electron seed initially grows, from ωp,et = 0 to 400, by climbing the positive

velocity gradient, thereby accelerating from vh/vT,i = 0.8 to 3.0. The growth stops
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Figure 11. Time-evolution of the depth (a) and velocity (b) of the deepest negative
phase-space density perturbation in Vlasov simulations in the reference case S. The
velocity width is shown by error bars at ±∆vh.

when the structure reaches the top of the electron distribution (vh = vd). Then, from

ωp,et = 0 to 400, it decays by descending the velocity gradient, while still accelerating.

It decays until it reaches a velocity v such that f0,e(v) ≈ f0,e(vh(0))− f̃h(0). Before this

final velocity is reached, however, the diagnostic switches to other holes, which are then

deeper than the initial seed. It is these new holes that drive the nonlinear instability at

later times. This process is described in the next subsection, 4.2.

Whether an artificial hole-like seed initially grows or not depends on both its

characteristics and the plasma drift velocity. Fig. 12 shows the evolution of an electron

hole-like seed, initially located in the region of strong overlap between ion and electron

distributions, for various initial conditions. The ratio ∆xh/∆vh = 20/ωp,e is arbitrary.

For vd = 0 [Fig. 12(a)], we observe that all seeds (for the shapes and sizes we tested, as

listed in the legend of Fig. 12) are damped. This is expected since in this configuration,

there is no free-energy. Note that in this configuration, an isolated hole must accelerate

(descend the velocity gradient) to decay. Trapped particles accelerate with the hole.

Thus, a phase-space structure can drive transient velocity-space particle transport, even

as it decays.

For vd/vT,i = 3.0 [Fig. 12(c)], which is relatively close to linear threshold (vd =

0.76vd,cr), all seeds (for the shapes and sizes we tested) initially grow. The evolution is

similar to the reference case S. For vd/vT,i = 2.5, results are qualitatively similar and
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Figure 12. Time-evolution of the depth of the deepest electron phase-space
perturbation (f̃h,e) in Vlasov simulations with an initial electron seed with ∆xh/∆vh =
20/ωp,e. The initial drift vd/vT,i is (a) 0.0, (b) 1.5, and (c) 3.0. The reference simulation
is marked by S in (c).

are not shown here.

For an intermediate value of drift, vd/vT,i = 1.5 [Fig. 12(b)], which is far from

the linear threshold (vd = 0.38vd,cr), the hole growth and subsequent decay depends on

its size and location. When they are located in the velocity-region of strong overlap

between ion and electrons, holes seem to grow more easily. This is consistent with the

underlying growth mechanism (local momentum exchange between ions, electrons and

waves) and with the predicted theoretical growth rate of an isolated hole. The hole

growth is expected to be of the order of v2
T,ev

2
T,i∂vfe,0(vh)∂vfi,0(vh)ωb, where ωb is the

bounce frequency of a particle deeply trapped in the hole [32]. However, in all cases,

the hole eventually decays and no other phase-space structure is generated. Whether
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Figure 13. Time-evolution of (a) the height of the largest electron hole and (b) the
ratio ∆xh/∆vh in Vlasov simulations with an initial electron hole with ∆vh(0)/vT,i =
0.2, for vd/vT,i = 1.5 and vh(0)/vT,i = 0.4.

a hole with a different shape can or cannot trigger phase-space turbulence remains an

open question, since we have studied only six cases.

In [Fig. 12(b)], we observe that holes initially decay for a while before starting to

grow. The reason may be that the shape of the artifical initial seed is not optimal

for growth. This hypothesis is supported by the following analysis. Fig. 13 compares

two cases, where ∆vh(0) is fixed to 0.2vT,i, but ∆xh(0) differs. If ∆xh(0)/λD = 2,

which corresponds to a ratio ∆xh(0)/∆vh(0) = 20ω−1
p,e , the ratio ∆xh(t)/∆vh(t) executes

damped oscillations around a value of 200ω−1
p,e , until it stabilizes. Then the hole starts

its nonlinear growth. If ∆xh(0)/λD = 5, which corresponds to a ratio ∆xh(0)/∆vh(0) ≈
50ω−1

p,e , the hole starts to grow almost straightaway, suggesting that its shape is closer

to the optimal shape for nonlinear growth.

4.2. Phase-space turbulence

For a velocity drift vd/vT,i = 1.5, we mentioned that, although the hole initially grows,

it eventually decays and no other phase-space structure is generated. In such cases,

we observe that the electric potential does not increase. The velocity redistribution is

negligible (〈δfs〉 /fs,0 < 10%), the mean thermal energies are constants (δTs/Ts < 0.1%),

and the anomalous resistivity is small (η/ηcoll < 500). Thus, the nonlinear growth of

one isolated hole is observed without system-wide instability. We refer to this situation
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Figure 15. Time-evolution of the velocity vp of a test particle (electron) trapped in
a hole with central velocity vh(t), in the reference simulation S.

as local hole growth.

This local hole growth is in contrast with the global subcritical instability observed

e.g. for the reference case S. Fig. 14 shows snapshots of the velocity distributions in

the latter case. We observe wide particle redistribution between t = 1000ω−1
p,e and

t = 2000ω−1
p,e , which is after the initial hole has decayed, and during the growth of the new

holes. We can check that particles are indeed trapped into the self-emerging structures.

Fig. 15 shows the velocity vp of a test electron, which is deeply trapped by a hole formed

around t = 800ω−1
p,e . The central velocity of the hole vh is estimated by tracking the

local minimum of f . The velocity of the test electron in the framework of the hole,

vp − vh, is shown to oscillate around zero, which indicate that particles follow trapped

orbits in phase-space, in the reference-frame of the structure. The bounce-frequency is

measured from the time-trace of vp− vh as ωb ≈ 0.15ωp,e. An other way to estimate the
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varying hole velocity-width. The reference simulation is marked by S.

bounce-frequency is to measure the local maximum ϕ0 of the electric potential, and the

spatial extent ∆xh of the negative perturbation. The bounce frequency is then given

by ω2
b = |qe|k2

hϕ0/me, with kh = 2π/∆xh. This method also yields ωb ≈ 0.15ωp,e for the

same hole. The oscillation is quasi-periodic from t1 = 850ω−1
p,e to t2 = 1280ω−1

p,e . At t2,

the hole appears to be sheared by the tidal forces exerted by a neighboring, larger hole.

The lifetime of the hole is thus estimated as τc = t2 − t1 = 430. The Kubo number

in the region of phase-space within this hole is K = ωbτc/(2π) ≈ 10. Repeating this

analysis for other holes among the largest ones, we found Kubo numbers in the range

K ≈ 3−20. This confirms that the simulation is in a regime of large Kubo number. The

merging of holes reduces their lifetime. However, merging is rare enough that particles

bounce many times during the life of most large holes.

Fig. 16 shows the moving average (over δt = 16ω−1
p,e) of the potential energy time-

series in three cases, including the reference case S, for vh/vT,i = 0.8. We observe that

the potential energy grows to eφ/T ∼ 0.3, which is of the same order as the saturated

potential in linearly unstable cases. In the reference case S, we see a clear difference

between the first phase (t = 0−700) and the second phase (t = 700−2000). In the first

phase, a single hole develops [as seen in Fig. 9(c) ,(e) and (g)], and although the field

energy grows, it is only transiently. The field energy then decays back to a value close

to the initial perturbation. In the second phase, where multiple holes develop [as seen in

Fig. 9(i) and (b)], the field energy grows to eφ/T ∼ 0.3 before relaxing to eφ/T ∼ 0.1,

thereby driving a global subcritical instability. Therefore, for a given initial field energy,

phase-space turbulence (multiple interacting holes) is more efficient than a single hole

to drive the instability.

Fig. 4 includes the time-evolution of anomalous resistivity and perturbed mean

thermal energies for the reference case S. We observe large anomalous resistivity and
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turbulent heating, qualitatively similar to the cases with an initial ensemble of waves.

These subcritical instabilities occur relatively far from marginal stability, even when the

initial potential energy is as low as eφ/T ∼ 10−2. This is in sharp contrast with the

case where the initial perturbation is a collection of waves. In other words, phase-space

structures, even with non-optimal shapes, are much more efficient than coherent waves

for driving nonlinear instabilities.

To summarize, we observe that many holes, even small, but when scattered in

phase-space, can drive global subcritical instabilities. In contrast, one single hole, even

a large one, can evolve while leaving most of the phase-space intact, without system-

wide instability (without significant potential energy growth, redistribution, heating

or anomalous resistivity). One single hole can drive instabilities indirectly though, by

triggering the formation of many smaller holes in its wake. This process is detailed as

follows. As can be seen in Fig. 9, as the initial, artificial hole accelerates within the

region vh < vd, its depth increases (along with its width in velocity). This increase

in depth is due to the trapping of additional particles. This leaves a trail of negative

phase-space density perturbations in the region vh < vd [See Fig. 9(c) or (e)]. Then,

as the hole enters the region vh > vd, its width in velocity decreases, and de-trapping

occurs. This, in turn, leaves a trail of positive phase-space density perturbation in

the region vh > vd [See Fig. 9(g)]. In analogy to self-gravitating matter organizing

into hierarchical structures via the mechanism of Jeans collapse, negative phase-space

density perturbations have a natural propensity to coallesce [8, 43]. The negative trail

bunches into a collection of small holes, scattered in phase-space [See Fig. 9(g) and (i)].

The turbulent interaction of these many holes (phase-space turbulence), is shown in

Fig. 10. From our analysis, we conclude that phase-space turbulence is a very efficient

source of particle-transport in velocity space (or redistribution), turbulent heating and

anomalous resistivity.

The above nonlinear stability analysis of phase-space holes is summarized in Table

1, which shows whether a hole decays (W↓), grows but then decays without triggering

system-wide electron redistribution (local growth, W∼) or grows and trigger such

redistribution (global subcritical instability, W↑). From this table, we conclude that

the nonlinear stability threshold with an initial hole in terms of vd/vT,i is between 1.5

and 2.5.

To study the effect of larger wave-lengths, we ran many of the simulations above

with a quadrupled system size, allowing wave-numbers as small as 0.05λ−1
D . We did not

find any qualitative difference in the results.

Recently, we have discovered a new kind of self-organized structure, called a phase-

space jet [35]. In Fig. 9(i), we superimposed a dashed curve of constant fe (not constant

f̃e), which spans a velocity range 3vT,i = 1.5vT,e. This structure is highly anisotropic. It

has a lifetime τjet ≈ 20ω−1
p,e , which is comparable to the average time it takes a particle

to change its velocity by vT,e, τtravel ≈ 25ω−1
p,e . Thus it is a phase-space jet, which can

facilitate electron redistribution. We conclude that phase-space jets are spontaneously

created in subcritical (as well as linearly unstable) conditions.
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5. Discussion

We now turn to a discussion of experimental scenarios, the effect of collisions, of a

magnetic field and of the mass ratio. The purpose of this section is not only to clarify

caveats, but also to stimulate further studies, and is more of a speculative flavor.

5.1. Experimental scenarios

Our numerical analysis clarify the process of phase-space structures formation. If the

system is linearly unstable, a turbulent state can be reached, in which particles are

randomly scattered, leading to fine-grain structures that act as seeds. If the system

is linearly stable, we can speculate that at least four routes to instability are possible.

The first route was demonstrated in Fig. 3. It corresponds to the growth from random

fluctuations. This route is limited to an initial barely stable equilibrium and requires

large amplitude perturbations. The initial perturbation (e.g. thermal noise) can be seen

as an ensemble of waves, which will trap particles and form seed structures that can grow

nonlinearly. The second route was demonstrated in Fig. 12(c). It corresponds to the

growth of a single hole. Such holes may be externally driven by the experimental setup

or by physical processes that are not included in this model. As we have seen, a single

hole may or may not lead to phase-space turbulence. We speculate the existence of a

third route, which would be a transition from supercritical to subcritical instability on

a fluid time-scale. Fluid parameters of the background plasma such as fluid velocities or

temperatures may evolve, on a slow time-scale, due to processes that are not included

in this model, such as an applied electric field, external heating, or other magneto-

hydrodynamic instabilities. This may lead to a transition from a linearly unstable

system to a linearly stable state. Phase-space turbulence that originates from linearly-

driven seeds should be able to survive this transition. A fourth route was demonstrated

by NGuyen [44, 45]. It is a transition from supercritical to metastable (subcritical

steady-state) on a kinetic time-scale. As the wave grows linearly, the ion resonance

width increases. Eventually, trapped ions absorb wave energy at a rate for which the

total nonlinear growth rate vanishes. Such process can result in a metastable steady-

state, where phase-space structures may be continuously created and dissipated. These

scenarios are summarized in Table 2.

5.2. Effect of collisions

This work is concerned with collisionless plasma, but even small collisions can have

qualitative effects on the nonlinear evolution of wave-particle interactions [12, 46]. If a

collision operator that tries to recover a Gaussian distribution is introduced, we expect

to find regimes of intermittent, rather than transient, turbulence. This is a speculation,

based on the known effects of collisions on phase-space structures in the bump-on-tail

instability.
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Table 2. Scenarios that may lead to a turbulent state with phase-space granulation.
Here, IP is short for initial perturbation, and transition refers to transition from
supercritical to subcritical conditions.

Scenario Linearly
stable

Seed PS
structure(s)

Requires high-
amplitude IP

Sensitive to
details of IP

Supercritical
instability

No Trapping is-
lands

No No

Marginal
stability

Barely Thermal
noise

Yes Yes

External
drive

Yes Externally-
driven hole

Yes No

Fluid
transition

Yes Pre-existing
structures

No No

Kinetic
transition

Yes Pre-existing
structures

No No

5.3. Effect of the mass ratio

Phase-space holes in pair plasmas with small mass ratios are ubiquitous in

semiconductors and space [47]. However, the small mass ratio mi/me = 4 adopted

in this work brings the question of applicability of our findings to the most common

hydrogen-ion plasma. In the opposite limit of an electron-oxygen-ion plasma with mass

ratio mi/me = 29500, a single electron hole remains stationary for a hundred ω−1
p,e , until

an ion density cavity is formed [48]. Whether phase-space turbulence and subcritical

instabilities develop or not on a ion kinetic timescale (ω−1
p,i ) in large mass-ratio plasma

remains an open question. Moreover for larger mass ratio, the phase-space turbulence

will probably not affect the ion distribution and its mean thermal energy.

5.4. Effect of a magnetic field

While in this work we focused on current-driven ion-acoustic instability in unmagnetized

plasmas, similar scenarios can be developed for magnetized plasmas. Formation of a

single phase-space structure is reported in Ref. [25]. In that paper, it was shown that a

drift-hole extracts free energy more efficiently than linear waves do. The turbulent case

with many structures is discussed in Ref. [15]. In this work it was shown that in trapped-

ion resonance driven, ion temperature gradient instability, transport is determined,

not by quasi-linear turbulent diffusion, but rather by dynamical frictions exerted on

turbulent trapped-ion granulations. More recently, it was shown that both a coherent

drift-hole and an ensemble of granulations can interact with zonal flows [20, 49, 50]. The

impact of zonal flows on transport driven by trapped ion granulations was formulated as

a part of dynamical friction [51]. In magnetized space plasmas, phase-space turbulence

and jets are promising candidates mediators of magnetic reconnection via anomalous

resistivity.
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6. Summary

Accurate Vlasov simulations of subcritical two-species plasma have shown that

subcritical excitation of the ion-acoustic instability is much more sensitive to initial

perturbation than was reported in the existing literature. If, on the one hand, the

initial perturbation is an ensemble of wave, a system with finite ion-electron relative

drift does not evolve if it is linearly stable. However, if it is close to marginal stability,

and the initial perturbation is very large, the system absorbs the wave energy to form

phase-space structures. These structures allow the system to relax by transporting

trapped particles throughout the phase-space. In the final stage, a velocity plateau is

formed in the electron distribution. If, on the other hand, the system has an initial

coherent structure, then it evolves even for small drift velocities. The stability of the

initial structure is much more akin to the BGK stability problem. When the initial

structure is unstable, the system may or may not ultimately relax into a velocity plateau,

depending on the drift velocity and the parameters of the initial structure.

Table 1 summarizes our nonlinear stability analysis, showing, in the parameter

space of initial velocity-drift and potential energy, where we have observed global

subcritical instability (↑), from either an ensemble of waves (W) or an artificial hole

(H). These results are in disagreement with earlier numerical works. In fact, earlier

simulations were so noisy that the initial distribution was linearly unstable. Thus, this

paper reports the first simulation of subcritical ion-acoustic instability.

When the velocity drift is finite, a single electron phase-space hole can grow

nonlinearly by climbing the velocity gradient. After it reaches the top of the electron

distribution v0,e, it decays while still accelerating. This process leaves a trail of negative

fe perturbations in the v < v0,e half of the phase-space, and a trail of positive

perturbation in the other, v > v0,e, half. Negative perturbations have a natural

propensity to coalesce, and form many holes. This process can overcome ion Landau

damping when vd > 0.5vd,cr (roughly). When many holes are formed, a large region of

phase-space becomes turbulent, and individual holes lose their identity, and so resemble

granulations [52]. Phase-space turbulence is very effective in flattening the electron

distribution, heating both ions and electrons, and driving anomalous resistivity [17].

We have shown the existence of phase-space jets in states resulting from subcritical

instabilities. Jets are studied in a separate paper [35]. They are elongated closed

contours of constant f , which coexist with holes. These jets facilitate particle

redistribution and drive anomalous resistivity.
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