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Outline

Motivations

Mesoscale temperature profile corrugation and nonlinear drive

Bistable spreading of the turbulence intensity:

—subcritical excitation

—propagation



Motivations

How turbulent fluctuations penetrates stable domains?

% Anomalous transport

% Collapse of H-mode

Most previous works treat turbulence spreading as a Fisher front.



Conventional wisdom: Fisher front with a nonlinear diffusivity

Generic structure of Fisher spreading equation: — a T
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Nontrivial solution requires:
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Suffering from two serious drawbacks:

*Insufficient near marginal state

**can be strongly damped in subcritical region
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Motivations

The turbulence intensity is unistable in the Fisher model. However:

A hysteretic relation between turbulence intensity and temperature gradient
also observed:
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—> An indication of bistability of the turbulence intensity!

5



We missed something here??
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In this talk, we propose the missed piece is the nonlinear drive induced by
the corrugation of the temperature field.



The key for nonlinear turbulence excitation:

temperature corrugation by inhomogeneous turbulent mixing.

Inevitable consequence of potential enstrophy conservation

A consistent treatment of
multi-scale, multi-field couplings is required...



An example from Rayleigh-Bernard convection

Toppaladodi et al 2017

Roughened temperature profile enhances turbulent heat flux.
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How mesoscale fields impact evolution of turbulence intensity?

Drive: (VT)

meso

/4 /4

Dissipation: <V> . local force balance <V> o (VZT)

S Generally, drive&dissipation act in different regions.

How the turbulence intensity is excited and spreads in the presence of a
corrugated temperature profile?
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The Model: bistable turbulence Intensity

The basic structure of I's evolution is
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T nonlinear drive

For a mean field approximation, ©(4,)4, =(6(4,)4,)+6(4,)A, = (6(4,)A,)
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Relation between
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Strength of Mesoscopic VT Fluctuations
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T = <T>+f = <T>+Tm +fs , Q, =T, T . : meso scale: T :micro scale

Define two types of average:

(..). —micro timescale; (..) —meso timescale

=((T),), =(T), =(T)

m

Multiplying 7' on both sides of (*) and carrying out a double average <<>s> yields

Entropy balance of the turbulence:

A(0r), +((A,T) ) = 0 (A) o

/'

entropy production due
to turbulent mixing of the
mean temperature field

N\

m

m | entropy dissipation due
to neoclassical diffusion

triple coupling between
micro and meso scales

The essential process
— for subcritical
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turbulence excitation



A closure on the triple coupling: ‘negative’ thermal conductivity

<Am\7T~>S =A <\7T~>S

l

up gradient heat flux on mesoscale <17T>S = ;(mAm = —‘Zm‘;&m

X, <0 the negative diffusivity.

The underlying physics: roll-over of Qm VS ax Tm duo to ZF shear.

: Zeldovich relation in multi-cale coupling system:

Do(A)?
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T’s profile gets corrugated by the inhomogeneous turbulent mixing.
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The closed loop

Inhomogeneous mixing

‘negative’ heat flux

on mesoscale

A

» | T's corrugation

l enhancing
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local excitation of turbulence




Bistable spreading of the turbulence intensity: subcritical excitation

I's evolution with subcritical drive(Fitzhugh-Nagumo type, not Fisher!)
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On the subcritical excitation
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Two stable solutions; { =0 and [ =14

One unstable solution: [ =1
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How the bistable spreading happens?

Looking for wave-like solution: I(x,t)=I(z)with z=x—c't
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Propagation speed of the bistable front:
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How the bistable spreading happens?

inhomogeneous mixing of
the temperature gradient

an initial turbulence pulse turbulence pulse driven
by temperature corrugation
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Summary&future work

Mesoscale temperature profile corrugations provide a natural way for
subcritical turbulence excitation, and the following spreading.

Next:

Temperature profile evolution needs to be treated in a more consistent
way,

Stability problem of the front, i.e., can the front be splitter by any
external/internal noise?
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