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Background

* Intrinsic axial flows observed in linear device (CSDX)

* Linear device studies suggest dynamical competition between

mean perpendicular and parallel flows

— Dynamical: V, and V| exchange
energy with the background
turbulence, and each other.

-> Energy balance between /|
and V,
—> Tradeoff between V, and V,

6 x 104

5.5 1

#
i i)

1 1.5 2 2.5
V. (rad/s)

x 104



(10*rad/s)

/

z

v

Experimental observations: V| and V

. V"’ scaling with Vn, « V] scaling with Vn,
— Analogy to Rice-type scaling: — Tradeoff between V| and V"’
AV, < VT [Rice et al, PRL, 2011] — V| saturation by 1
2.5 . L . mt 0.2 ‘ ‘
[
5
2 . u - .
) 2 - 8
g N [ | -C% 4.8 [} o
1.5 | s, z ]
H :—;4.6—
, H - —~ =
I 4.4 - i
By B
-
0.5 . . . 19 | | | . -
1.2 1.4 1.6 1.8 2 1.3 1.4 1.5 1.6 1.7 1.8

Vn, (102 m—1)



Measurements: Parallel Reynolds Stress (ﬁrﬁ")
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Outline of the Rest

 |Introduction

— Key questions and why
— Current status of model

* Exploration of coupling
— Study turbulent energy branching between V, and V

— Reynolds power ratio P"R/Pf decreases as V| increases
- tradeoff between V, and 1)}

— Pf*/PF maximum occurs when ||7V||| is below the PSFI (parallel shear
flow instability) threshold = saturation of intrinsic V

* Are shear suppression “rules” correct?

— Revisiting the resonance effect

— Wave-flow resonance suppresses instability

— V| weakens resonance = enhances instability
— Implication for zonal flow dynamics



Key Questions and Why

* What's the coupling between mean perpendicular and
parallel flows (V, and V)?

— How do they interact? - How do they compete for energy from the
background turbulence?

— How does V) affect the production and saturation of intrinsic I/, ?

* Why should we care?

— Relevant to L-H transition

* Both V| and V| increase, during transition.
* The coupling of the two is relevant to transition threshold and dynamics.

— Linear device (CSDX) studies suggest competition between Vv, and V



Why linear device?

Relevance: zero magnetic shear < Enhanced-confinement states
(H-mode) favor low magnetic shear.

Self-generated, sheared /| (zonal flow) observed, which regulates
the drift wave turbulence.
Intrinsic V observed: driven by drift wave turbulence ('n,) via

turbulent Reynolds work, i.e. —0,.(T, 7))V}
— New in linear device (zero magnetic shear). New mechanism for
V|| generation proposed. [Li et al, PoP 2016 & 2017]

Advantage of CSDX: unique measurements of parallel Reynolds
stress (7, ;) and Reynolds power (—0,.(,.7,)V})
— Not achieved in tokamak cores or other linear devices.



Current status of model

* Conventional wisdom of I/, — V|, coupling:
— V| breaks the symmetry in k, but requires finite magnetic shear
— Not applicable in linear device (straight magnetic field)

* I, » V, coupling:
— 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]

— Coupling between fluctuating PV and parallel compression (61’\7"17")
breaks PV conservation
- Sink/source for fluctuating potential enstrophy density
—> Zonal flow generation

— Perpendicular flow dynamics: PV diffusion
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Section |l: Exploration of V, -V} Coupling

Goal: study how extrinsic flows
affect Reynolds powers

— generation of intrinsic flows
— turbulent energy branching

between intrinsic V, and V),

Analogy to biasing experiments

 Hasegawa-Wakatani drift wave

— near adiabatic electron:
n=0-id)¢p,6 <1

D - - Vn() - 9/~ ~
En + Urn—o -+ V”U” = D||V||(n — ¢>,

D T o~ ~ it
EViqﬁ + 0,V = D”vﬁ(n — ),

D R _
EU” -+ U,«V” = V”n,

Prescribed flows vary in x direction:

Vy = VI sin[q,(x — Le/2); Vy = —Vi"% sin[qy (x — L/2)]

Fourier decomposition iny, z directions:
f =% () ei(kyy+k"z)e_i(wk+iy")t' where f = 7, 7, ¢

~

Solve for growth rate, frequency, and eigenmode function ¢, (x) for drift wave

instability (/'n, driven) with prescribed V, and V)



e Other potential drives:

— V" = Kelvin-Helmholtz instability
— PV, = Parallel shear flow instability

Y/ Wee

Bottom Line: Vng is the Primary Instability Drive

0.25

Growth Rate

KH is not important
— V| drive weaker than V'n,
drive, i.e. |kyp2V}'| € w.e

— I, affects the drift wave
instability via wave-flow
resonance wy — kyV,

(see Section Ill)

PSFI stable in CSDX
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V'V has little effect on drift wave instability

* Influence drift wave instability via frequency shift

W/ Wie
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Definition: Reynolds Power

* Mean flow evolution is powered by Reynolds power
1aly|° o

> "5t “’—a(ﬁxﬁll)‘/u

— Parallel Reynolds power of a single eigenmode
Ly
Pi’ = fo dx ——(Vx kvllk)] Y
— Perpendicular Reynolds power of a single eigenmode

Pf —j dx[ (vxkvyk)] V.

* Effects of extrinsic V; and V, on the ratio P;*/PT are studied




Coupling of V;, and V) < Ratio of Reynolds Powers

* Ratio P*/PF decreases with V,
—> Energy branching of I/ reduced
—> V| reduces generation of I/}

—> Competition between V, and V
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* Increase V; = P;*/P¥ turnover
before V'V hits PSFI threshold
—> Max energy branching of I/, below
PSFI threshold
—> V} saturates below PSFI threshold
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Reduced model developed to study the coupling = See poster 43 on Thursday afternoon



Section IlI: Revisiting Shearing Effects

Are conventional shear suppression “rules” correct?
Aim to test well known (mis)conceptions about shearing effects on stability
Conventional wisdoms:

— EXB flow shear suppresses instability < Is it correct?

— Wave-flow resonance effect is often overlooked, though was mentioned in
past works.

Findings:
— Explore linear instability, using fixed extrinsic flows
— Wave-flow resonance stabilizes drift wave instability

— Perpendicular flow shear weakens the resonance, and thus destabilizes the
instability

Implications for zonal flow generation and saturation:

— Reuvisit predator-prey model with resonance effects
- Mechanism for collisionless zonal flow damping (without involving tertiary
instability, such as KH)
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Wave-flow resonance

Resonance: wy — k,,V, — k)
|ky|/k, <« 1 > Resonance dominated by wy, — ky,V,

Hasegawa-Wakatani drift wave model, with extrinsic V|

%ﬁ + @rvn—z" = D|Vji(i - ¢),
Bvié + 4,V = D|Vi(ii — ¢)
Dt
KH drive negligible > Vn, driven instability
* Near adiabatic electron: 1 = (1 —i6)¢, § K 1
© § = (Wee — Wi + kyV1)/kEDE = vei(wie — wi + Ky V1) ki VE,
In the limit of strong resonance, i.e. yy K wy — k), V| K w,,,
6 — Veiw*e/kllzv%he

Resonance affects the eigenmode scale = Influence instability
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Resonance and Instability Related to Mode Scale

Eigenmode equation with resonant effect:

(wk = ky Vi +iyi) p207¢ = |(1+ & pF = i6) (wi = ky Vi + iyi) — wee | 6

Mode scale defined as L;,2p? = p? f dx|0,¢|? /fL" dx|p|?

. : 2
Results: Weo(1 + kyps + L720%) ” Effectively, klps2
Wk — kyVJ_ = > X
(L+ k5 + Lptp5)*+6
5((")]( -k V_L) 6(1)*6
Yk =

L+ K22+ L2p2 (1+ k202 + Ly2ph)2 + 62

* In the limit of strong resonance * Eigenmode peaks (L% p?
Yk K wi — kyV) K w,e increases) as resonance

“ becomes stronger

, . e Resonance suppresses drift
Yk ~ 0(wk = ky Vi) Ly, ~ 0wseLy /O wave instability

wg —ky,V, ~ w*eL%,/p?
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Perpendicular flow shear destabilizes turbulence

 Mean perpendicular flow shear
increases mode scale L,,,/ps

- Weakens resonance
— Enhances instability

* KH drive negligible compared to I'n,

Mode Structure
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Implications for Zonal Flow Dynamics

* Connection to collisionless damping of ZF
e Zonal flow evolution = Mean enstrophy equation:

jdrﬁ = fdr(ﬁrﬁ)% —V; jdr<p>2 +

* Vorticity (p = V2¢) flux: (8,.p) = —D, % 4 TRes » Conserves enstrophy between

' mean flow and fluctuations

fdrﬁ= jd D, < ;?) fdr[‘}es%—v,;jdr(p)z +

* v; = 0 = Dimits shift regime = Resonance gives collisionless damping
* Collisionless damping by turbulent viscosity: d{p)/dr ~ FpReS/Dp
* Resonance sets D, 2 ZF damping

VikWse T an(w*e —wg t kyVJ_) . Vi |lw.e VK|

|y — Ky Vy + iay|” |wye — ky Vs

Dp =k32/C.S?|¢k|2 2

FRes — k c | |2 )
’ o [ i |w — kyVi|




Collisionless ZF damping by vorticity flux resonance

 Resonance replaces need for KH:

Yk = linear instability (y,) + resonance absorption yi ~ yg(wp — kyVy)

Y

Analogy to ion-acoustic absorption during collapse of Langmuir waves

* Resonance induces collisionless damping through D,,

* Reuvisit predator-prey model with resonance effect
- Mechanism for collisionless damping, without KH

[Drlft WaveJ ‘ L N - » ZF drive
Turbulence N . ’

Y/ I:> Resonance effects
Wave-Flow

Resonance




Summary

Experimental observations suggest competition between mean V.
and V

Reynolds power ratio Pf/Pf changes with prescribed extrinsic
mean flows

— P /PE decreases with V, - tradeoff between V, and V
— P*/PE maximum occurs before V'V, hits PSFI threshold

Testing misconceptions of shearing effects on stability
— Wave-flow resonance suppresses instability
— V| weakens resonance = I/| enhances instability =

— Resonance produces turbulent viscosity
—> collisionless damping of ZF, without involving KH

— Suggest revisit predator-prey model with resonance effects
- mechanism for collisionless ZF damping, without tertiary instability



