Studies of Turbulence-driven FLOWs:

a) V_\perp, V_\parallel Competition in a Tube

b) Revisiting Zonal Flow Saturation

J.C. Li, P.H. Diamond, R. Hong, G. Tynan

University of California San Diego, USA

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738.
Outline

• Background: turbulence driven V_{\perp} and V_{\parallel} observed in CSDX
• Questions: How do they interact? How do they saturate?
• Increment study of V_{\perp}, V_{\parallel} competition
 → Analogous to perturbation experiments
• Zonal flow saturation by wave-flow resonance
 • Wave-flow resonance effects on linear stability
 → *Flow shear enhances instability via resonance*
 • Collisionless ZF saturation by resonance
 → *Derives* mesoscopic ZF scale, i.e. $L_{ZF} \sim \sqrt{\rho_s L_n}$
 → Extended predator-prey model, compared to old model
Background

- **Intrinsic** axial and azimuthal flows observed in linear device (CSDX)
 - Increase B → scans mean flows-both V_{\perp} and V_{\parallel}
- **Dynamical** competition between perpendicular and parallel flows
- V_{\perp} and V_{\parallel} exchange energy with the turbulence, and each other.
 → Study energy apportionment between V_{\perp} and V_{\parallel}
 → Tradeoff between V_{\perp} and V_{\parallel}
Key Questions

• What’s the coupling between mean perpendicular and parallel flows (V_\perp and V_\parallel)?
 – How do they compete for energy from turbulence?

• How/Why do flows saturate, especially in collisionless regime?

• Why?
 – Linear device (CSDX) studies suggest apportionment of turbulence energy between V_\perp and V_\parallel
 – Relevant to L-H transition
 • Both V'_\perp and V'_\parallel increase, during transition.
 • The coupling of the two is relevant to transition threshold and dynamics.
Current status of coupling model

- Conventional wisdom of $V_\perp \rightarrow V_\parallel$ coupling:
 - V'_\perp breaks the symmetry in k_\parallel, but requires finite magnetic shear
 - *Not applicable* in linear device (straight magnetic field)
- $V_\parallel \rightarrow V_\perp$ coupling via parallel compression:
 - 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]
 - Coupling between fluctuating PV and parallel compression $\langle \tilde{q} V_\parallel \tilde{v}_\parallel \rangle$
 - *breaks PV conservation*
 - Sink/source for fluctuating potential enstrophy density
 - Zonal flow generation
V⊥ and V∥ competition

- Increment study of V⊥ and V∥ effects on Reynolds powers
 - *Turbulent energy branching* between V∥ and V⊥
 - Reynolds power ratio $P^R_∥/P^R_\perp$ decreases as V_\perp increases
 - tradeoff between V_\perp and $V∥$
 - $P^R_∥/P^R_\perp$ maximum occurs when $|\nabla V∥|$ is below the PSFI (parallel shear flow instability) threshold
 - saturation of intrinsic $V∥$
Exploration of V_\perp-V_\parallel Coupling

- **Goal:** *How do extrinsic flows affect powers?*
 - **Turbulent energy branching** between intrinsic V_\perp and V_\parallel
 - How does V_\perp affect intrinsic V_\parallel generation?

- Analogous to perturbation experiments, i.e. fix one flow and increase the other through external momentum source

- **Collisional drift wave**
 - near adiabatic electron:
 \[
 \tilde{n} = (1 - i\delta)\phi, \delta \ll 1
 \]

- **Slab geometry**
 \[
 \frac{D}{Dt} \tilde{n} + \tilde{v}_r \frac{\nabla n_0}{n_0} + \nabla_\parallel \tilde{v}_\parallel = D_\parallel \nabla_\parallel^2 (\tilde{n} - \tilde{\phi}),
 \]
 \[
 \frac{D}{Dt} \nabla_\perp^2 \tilde{\phi} + \tilde{v}_r V_\perp'' = D_\parallel \nabla_\parallel^2 (\tilde{n} - \tilde{\phi}),
 \]
 \[
 \frac{D}{Dt} \tilde{v}_\parallel + \tilde{v}_r V_\parallel' = \nabla_\parallel \tilde{n},
 \]
\(\nabla n_0 \) is the Primary Instability Drive

- Other potential drives:
 - \(V''_\perp \) → Kelvin-Helmholtz instability
 - \(\nabla V_\parallel \) → Parallel shear flow instability

- KH is not important
 - \(V''_\perp \) drive weaker than \(\nabla n_0 \) drive, i.e. \(|k_y \rho_s^2 V''_\perp| \ll \omega_e \)

- \(\nabla V_\parallel \) in CSDX is well below the PSFI linear threshold
 \(\rightarrow \text{PSFI stable in CSDX} \)
Coupling of V_\perp and V_\parallel ↔ Ratio of Reynolds Powers

- Ratio $P_\parallel^R / P_\perp^R$ decreases with V_\perp
 → Energy branching of V_\parallel reduced
 → V_\perp reduces generation of V_\parallel
 → Suggest *competition* between V_\perp and V_\parallel

- Increase V_\parallel → $P_\parallel^R / P_\perp^R$ turnover *before* ∇V_\parallel hits PSFI threshold
 → Max energy branching of V_\parallel below PSFI threshold
 → Suggest V_\parallel saturates *below* PSFI threshold

![Graph 1](image1.png)

![Graph 2](image2.png)
Partial Summary 1

- CSDX experiments suggest **energy apportionment** between mean V_\perp and V_\parallel
- Increment study on Reynolds power ratio $P_{\parallel}^R / P_{\perp}^R$
 - Analogous to perturbation study
 - $P_{\parallel}^R / P_{\perp}^R$ decreases with $V_\perp \rightarrow$ tradeoff between V_\perp and V_\parallel
 - $P_{\parallel}^R / P_{\perp}^R$ maximum occurs **before** ∇V_\parallel hits PSFI threshold
Collisionless zonal flow saturation

• Wave-flow resonance prominent in linear device (CSDX)
 – Enters turbulence regulation, both linearly and nonlinearly
 – Flow shear is not the exclusive control parameter

• Resonance suppresses linear instability by wave absorption
 – Are shear suppression “rules” correct?
 – V_\perp' weakens resonance \Rightarrow flow shear enhances instability via resonance
Collisionless zonal flow saturation (cont’d)

• Collisionless Zonal flow saturation by resonant PV mixing
 – Model of resonant PV mixing
 – Resonant diffusion of vorticity saturates zonal flow in collisionless regime
 – Incorporated in an extended predator-prey model
 – Drift wave mixes PV at zonal flow shear below that for KH/tertiary excitation
Wave-flow resonance effect on linear stability

- Resonance: $\omega_k - k_y V_\perp - k_\parallel V_\parallel$
 $|k_\parallel|/k_y \ll 1 \rightarrow$ Resonance set by $\omega_k - k_y V_\perp$

- Hasegawa-Wakatani drift wave model, with extrinsic V_\perp

\[
\left(\frac{d}{dt} + \tilde{v}_E \cdot \nabla \right) \tilde{n} + \tilde{v}_x \frac{\nabla n_0}{n_0} = D_\parallel \nabla^2 (\tilde{n} - \tilde{\phi}) + D_c \nabla^2 \tilde{n},
\]

\[
\left(\frac{d}{dt} + \tilde{v}_E \cdot \nabla \right) \tilde{\rho} + \tilde{v}_x \langle \rho \rangle' = D_\parallel \nabla^2 (\tilde{n} - \tilde{\phi}) + \chi_c \nabla^2 \tilde{\rho},
\]

- KH drive negligible, i.e. $|k_y \rho_s^2 \langle v_y \rangle''| \ll \omega_e \rightarrow$ Drift wave instability dominant
 - Near adiabatic electron: $\tilde{n} = (1 - i\delta)\phi$, $\delta \ll 1$
 - $\delta = (\omega_e - \omega_k + k_y V_\perp)/k_\parallel^2 D_\parallel^2 = \nu_e (\omega_e - \omega_k + k_y V_\perp)/k_\parallel^2 v_{Th,e}^2$

- Resonance reduces the eigenmode scale \rightarrow Suppresses instability

(Width of eigenmode)
Perpendicular flow shear **destabilizes** turbulence

- Mean perpendicular flow shear increases mode scale L_m/ρ_s
 - Weakens resonance
 - Enhances instability
- KH drive **negligible** compared to ∇n_0

Mode Structure

- Blue: max shear = $4v_d/L_x$
- Orange: max shear = $8v_d/L_x$
- Yellow: max shear = $12v_d/L_x$
- Purple: max shear = $16v_d/L_x$

Resonance

Growth Rate
Zonal Flow Saturation: Motivation

• Why?
 – Crucial to understand Dimits state physics
 → Collisionless zonal flow saturation, i.e. collisional damping → 0

• Tertiary instability does not work
 – Severely damped by magnetic shear
 – Observed mean flow shear is always below the threshold for tertiary instability excitation
Nonlinear Model: **Resonant PV Mixing**

- **Density:**
 \[
 \frac{\partial}{\partial t} \langle n \rangle = \frac{\partial}{\partial x} D_{n,\text{turb}} \frac{\partial}{\partial x} \langle n \rangle + D_c \nabla^2 \langle n \rangle,
 \]

- **Vorticity:**
 \[
 \frac{\partial}{\partial t} \langle \rho \rangle = \frac{\partial}{\partial x} \left[(D_{n,\text{turb}} - D_q^{\text{res}}) \frac{\partial}{\partial x} \langle n \rangle + D_q^{\text{res}} \frac{\partial}{\partial x} \langle \rho \rangle \right] - \mu_c \langle \rho \rangle - \mu_{NL} \langle \rho \rangle + \chi_c \nabla^2 \langle \rho \rangle,
 \]

- **PE:**
 \[
 \frac{\partial}{\partial t} \Omega = D_{\Omega} \frac{\partial}{\partial x} \Omega + D_q^{\text{res}} \left[\frac{\partial}{\partial x} \left(\langle n \rangle - \langle \rho \rangle \right) \right]^2 - \varepsilon_c \Omega^{3/2} + \gamma_L \Omega.
 \]

PE = Potential Enstrophy, i.e. \(\Omega \equiv \langle \tilde{\rho}^2 \rangle \)

- \(\mu_{NL} = \mu_{NL} \langle v_y \rangle \): nonlinear damping rate driven by tertiary mode

 Irrelevant to most cases we have encountered

- \(D_c, \mu_c, \chi_c \): collisional particle diffusivity, flow damping, vorticity diffusivity \(\Rightarrow \) vanishing in collisionless regime
Resonant PV diffusion

- PV flux \rightarrow turbulent PV diffusion:
 \[
 \langle \tilde{v}_x \tilde{q} \rangle = -D_{q,turb} \frac{\partial}{\partial x} \langle q \rangle
 \]
 \[\downarrow\]
 \[D_{q,turb} = \text{Resonant} + \text{Non-resonant}\]

- Resonant PV diffusivity:
 \[
 D_{q,\text{res}} = \sum_k |\tilde{v}_x|^2 \pi \delta(\omega_k - k_y V_\perp) \sim \sum_k \tau_{c,k} k_y \rho_s^2 c_x^2 |\phi_k|^2
 \]
 \[
 \tau_{c,k} \sim \left[|v_{g,y} - v_{ph,y}| \Delta k_y + v_{g,x} \Delta k_x \right]^{-1}
 \]

- Non-resonant PV diffusivity:
 \[
 D_{q,\text{non-res}} = \sum_{\omega_k \neq k_y \langle v_y \rangle} k_y^2 \rho_s^2 c_s^2 |\phi_k|^2 \frac{|\gamma_k|}{|\omega_k - k_y \langle v_y \rangle|^2} \sim \sum_{\omega_k \neq k_y \langle v_y \rangle} \frac{k_y^2 \rho_s^2 c_s^2}{k^2 D ||} \frac{k_y \rho_s^2 + L_m^2 \rho_s^2}{1 + k_y^2 \rho_s^2 + L_m^2 \rho_s^2} |\phi_k|^2
 \]

Resonant diffusivity exceeds non-resonant part:
\[
D_{q}^{\text{non}} / D_{q}^{\text{non-res}} \sim \tau_{c,k} k^2 v_{The}^2 / \nu_{ei} \gg 1
\]
Collisionless saturation by resonant diffusion of vorticity

- Zonal flow evolution \leftrightarrow Mean enstrophy equation:

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = \int dr \langle \tilde{\nu}_r \tilde{\rho} \rangle \frac{d\langle \rho \rangle}{dr} - v_i \int dr \langle \rho \rangle^2 + \cdots$$

Vorticity ($\rho \equiv \nabla^2 \phi$) flux:

$$\langle \tilde{\nu}_r \tilde{\rho} \rangle = -D_q^{res} \frac{d\langle \rho \rangle}{dr} + \Gamma^{Res}_{\rho}$$

Conserves enstrophy between mean flow and fluctuations

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = - \int dr D_q^{res} \left(\frac{d\langle \rho \rangle}{dr} \right)^2 + \int dr \Gamma^{Res}_{\rho} \frac{d\langle \rho \rangle}{dr} - v_i \int dr \langle \rho \rangle^2 + \cdots$$

- $v_i \rightarrow 0 \rightarrow$ Dimits shift regime \rightarrow Resonant diffusion saturates ZF

- Collisionless damping by turbulent viscosity: $d\langle \rho \rangle/dr \sim \Gamma^{Res}_{\rho} / D_q^{res}$
 - Resonant vorticity diffusivity $D_q^{res} \rightarrow$ ZF saturation
Mesoscopic stationary zonal flow

- Balance vorticity flux: $\langle \tilde{v}_x \tilde{\rho} \rangle = -D_{q}^{\text{res}} \frac{d\langle \rho \rangle}{dx} + \Gamma_{\rho}^{\text{Res}} = 0$

 $\rightarrow \langle v_y \rangle'' = d\langle \rho \rangle/dx \sim \Gamma_{\rho}^{\text{Res}} / D_{q}^{\text{res}}$

- Vorticity flux driven by ∇n: $\Gamma_{\rho}^{\text{Res}} = (D_{n,\text{turb}} - D_{q}^{\text{res}}) \frac{\partial}{\partial x} \langle n \rangle$

- Resonant PV diffusivity:\n
 $D_{q}^{\text{res}} = \sum_k \tau_{c,k} k_y^2 \rho_s^2 c_x^2 |\phi_k|^2$ with $\tau_{c,k} \sim [(v_{g,y} - v_{p,h,y}) \Delta k_y + v_{g,x} \Delta k_x]^{-1}$

- Stationary flow:\n
 $\langle v_y \rangle'' = \langle \rho \rangle' = \left(1 - \frac{D_{n,\text{turb}}}{D_{q}^{\text{res}}} \right) \frac{\partial \langle n \rangle}{\partial x} \sim -\frac{c_s}{\rho_s L_n} \left(1 - \frac{1}{\tau_{c,k} D_{||} k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2} \right)$

 \rightarrow Zonal flow scale: $L_{ZF} \sim \sqrt{\rho_s L_n} \rightarrow \rho_s \ll L_{ZF} \ll L_n$

\[\text{This} \ \text{derives} \ \text{the} \ \text{standard} \ \text{ordering}, \ \text{which} \ \text{is} \ \text{just} \ \text{invoked}, \ \text{in} \ \text{ad} \ \text{hoc} \ \text{way.} \]

L_m: radial mode scale of drift wave eigenmode, regulated by resonance.
Extended Predator-Prey Model

- **Mean flow energy:**

\[
\frac{L_{ZF}^2}{2} \frac{dV^{''2}}{dt} = \alpha_1 |V^{''}| E - \alpha_2 V^{''2} E - \gamma_{NL} V^{''2} - \mu_c V^{''2}.
\]

- **Turbulence energy (PE):**

\[
\frac{dE}{dt} = -\alpha_1 |V^{''}| E + \alpha_2 V^{''2} E - \varepsilon_c E^{3/2} + \gamma_L E.
\]

\(L_{ZF}:\) zonal flow profile scale, \(\rho_s \ll L_{ZF} \ll L_n\)

- Production by residual vorticity flux
- Resonant diffusion of vorticity
- Collisional Damping
- Nonlinear damping by tertiary modes
- Forward cascade of PE
- Linear instability
Turbulence and flow states

- Compare by regime:

<table>
<thead>
<tr>
<th>Regime</th>
<th>Collisionless</th>
<th>Weak Collisional</th>
<th>Strong Collisional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collisional Damping Strength</td>
<td>$\mu_c \ll \alpha_2 E$</td>
<td>$\alpha_2 E \ll \mu_c \ll 4\gamma_L \alpha_1^2/\varepsilon_c^2$</td>
<td>$\mu_c \gg 4\gamma_L \alpha_1^2/\varepsilon_c^2$</td>
</tr>
<tr>
<td>Flow State</td>
<td>α_1/α_2</td>
<td>$\alpha_1 \gamma_L^2/\mu_c \varepsilon_c^2$</td>
<td>γ_L/α_1</td>
</tr>
<tr>
<td>Turbulence Energy</td>
<td>$\gamma_L^2/\varepsilon_c^2$</td>
<td>$\gamma_L^2/\varepsilon_c^2$</td>
<td>$\gamma_L \mu_c/\alpha_1^2$</td>
</tr>
</tbody>
</table>

- Collisionless = collisional damping/viscosity $\to 0$

- Collisionless saturation compared to usual collisional damping:
 - Turbulence energy determined by linear stability and small scale dissipation
 - Different from usual models, where turbulence energy \sim flow damping
 - Flow state basically independent of stability drive
 - There can be flows in nearly marginal turbulence
Analogy to Landau Damping Absorption in Langmuir Turbulence

<table>
<thead>
<tr>
<th></th>
<th>Langmuir Turbulence Collapse</th>
<th>Collisionless ZF Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary player</td>
<td>Plasmon-Langmuir wave</td>
<td>Drift wave turbulence</td>
</tr>
<tr>
<td>Secondary player</td>
<td>Ion- acoustic wave (caviton)</td>
<td>Zonal flow</td>
</tr>
<tr>
<td>Free energy source</td>
<td>Langmuir turbulence driver</td>
<td>$\nabla n, \nabla T$ drives</td>
</tr>
<tr>
<td>Final State</td>
<td>(Nearly) empty cavity</td>
<td>Saturated zonal flow and residual turbulence</td>
</tr>
<tr>
<td>Resonance</td>
<td>Landau damping</td>
<td>Resonant wave absorption</td>
</tr>
<tr>
<td>Other damping effects</td>
<td>Ion-acoustic radiation</td>
<td>Kelvin-Helmholtz relaxation</td>
</tr>
</tbody>
</table>

- Landau damping: flattens PDF (negative slope) in phase space
- Resonant PV mixing: homogenizes mean PV in real space
Partial Summary 2

• Resonance effects on linear stability
 – Wave-flow resonance suppresses instability
 – V'_\perp weakens resonance $\Rightarrow V'_\perp$ enhances instability via resonance

• Resonant diffusion of vorticity saturates zonal flow in collisionless regime
 – Resonant PV mixing \Leftrightarrow resonant diffusion of PV
 – Model shows that stationary zonal flow scale is mesoscopic, i.e. $\rho_s \ll L_{ZF} \ll L_n$, since $L_{ZF} \sim \sqrt{\rho_s L_n}$
 – Extended predator-prey model
 \Rightarrow turbulence energy $\sim \gamma_L^2 / \epsilon_C^2$ not $\sim \gamma_L$
 – Flow independent of turbulence level/drive
 \Rightarrow flow in marginal turbulence