Competition of Mean Perpendicular and Parallel Flows in a Linear Device

J.C. Li, P.H. Diamond, R. Hong, G. Tynan
University of California San Diego, USA

Festival de Théorie 2017, Aix-en-Provence, France

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738.
Background

• **Intrinsic** axial and azimuthal flows observed in linear device (CSDX)
• Increase B \rightarrow scan mean flows-V_\perp and V_\parallel
• **Dynamical** competition between mean perpendicular and parallel flows
• [See George Tynan’s talk earlier]

– **Dynamical**: V_\perp and V_\parallel exchange energy with the background turbulence, and each other.
 \rightarrow Energy balance between V_\perp and V_\parallel
 \rightarrow **Tradeoff** between V_\perp and V_\parallel
Key Questions and Why

• What’s the coupling between mean perpendicular and parallel flows (V_{\perp} and V_{\parallel})?
 – How do they interact?
 → How do they compete for energy from turbulence?
 – Can we have a reduced model of the coupling between V_{\perp} and V_{\parallel}?

• Why should we care?
 – Linear device (CSDX) studies suggest apportionment of turbulence energy between V_{\perp} and V_{\parallel}
 – Relevant to L-H transition
 • Both V'_{\perp} and V_{\parallel} increase, during transition.
 • The coupling of the two is relevant to transition threshold and dynamics.
Outline of the Rest

• Current status of model

• Exploration of V_\perp and V_\parallel competition
 – *Turbulent energy branching* between V_\parallel and V_\perp
 – Reynolds power ratio P_\parallel^R/P_\perp^R decreases as V_\perp increases
 \rightarrow tradeoff between V_\perp and V_\parallel
 – P_\parallel^R/P_\perp^R maximum occurs when $|\nabla V_\parallel|$ is below the PSFI (parallel shear flow instability) threshold \rightarrow saturation of intrinsic V_\parallel

• Wave-flow resonance effects
 – Are shear suppression “rules” always correct?
 – V'_\perp weakens resonance
 \rightarrow *flow shear enhances instability*
 – Implication for zonal flow dynamics
Current status of model

- Conventional wisdom of $V_\perp \rightarrow V_\parallel$ coupling:
 - V_\perp' breaks the symmetry in k_\parallel, but requires finite magnetic shear
 - *Not applicable* in linear device (straight magnetic field)

- $V_\parallel \rightarrow V_\perp$ coupling via parallel compression:
 - 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]
 - Coupling between fluctuating PV and parallel compression $\langle \tilde{q} \nabla_\parallel \tilde{v}_\parallel \rangle$
 - *breaks PV conservation*
 - Sink/source for fluctuating potential enstrophy density
 - Zonal flow generation
Section II: Exploration of V_\perp-V_\parallel Coupling

• Goal: study *how extrinsic flows affect Reynolds powers*

 \rightarrow generation of intrinsic flows

 \rightarrow *turbulent energy branching* between intrinsic V_\perp and V_\parallel

• Analogous to increment study

• **Hasegawa-Wakatani** drift wave

 \rightarrow near adiabatic electron:

 $\tilde{n} = (1 - i\delta)\phi$, $\delta \ll 1$

• Slab geometry

\[
\frac{D}{Dt} \tilde{n} + \tilde{v}_r \frac{\nabla n_0}{n_0} + \nabla_\parallel \tilde{v}_\parallel = D_\parallel \nabla_\parallel^2 (\tilde{n} - \tilde{\phi}),
\]

\[
\frac{D}{Dt} \nabla^2_\perp \tilde{\phi} + \tilde{v}_r V''_\perp = D_\parallel \nabla_\parallel^2 (\tilde{n} - \tilde{\phi}),
\]

\[
\frac{D}{Dt} \tilde{v}_\parallel + \tilde{v}_r V'_\parallel = \nabla_\parallel \tilde{n},
\]
Bottom Line: ∇n_0 is the Primary Instability Drive

- Other potential drives:
 - $V_{\perp}'' \to$ Kelvin-Helmholtz instability
 - $\nabla V_{\parallel} \to$ Parallel shear flow instability

- KH is not important
 - V_{\perp}'' drive weaker than ∇n_0 drive, i.e. $|k_y \rho_s^2 V_{\perp}''| \ll \omega_e$

- **PSFI stable** in CSDX
Definition: Reynolds Power

- Mean flow evolution is driven by Reynolds power
 \[\frac{1}{2} \frac{\partial |V_\parallel|^2}{\partial t} \sim - \frac{\partial}{\partial x} \langle \tilde{v}_x \tilde{v}_\parallel \rangle V_\parallel \]
 - Parallel Reynolds power of a single eigenmode
 \[P_\parallel^R = \int_0^{L_x} dx \left[- \frac{\partial}{\partial x} (\tilde{v}_{x,k}^* \tilde{v}_{\parallel,k}) \right] V_\parallel \]
 - Perpendicular Reynolds power of a single eigenmode
 \[P_\perp^R = \int_0^{L_x} dx \left[- \frac{\partial}{\partial x} (\tilde{v}_{x,k}^* \tilde{v}_{\perp,k}) \right] V_\perp \]
- Effects of extrinsic V_\parallel and V_\perp on the ratio $P_\parallel^R / P_\perp^R$ are studied
Coupling of V_\perp and V_\parallel ↔ Ratio of Reynolds Powers

- Ratio $P_\parallel^R / P_\perp^R$ decreases with V_\perp
 → Energy branching of V_\parallel reduced
 → V_\perp reduces generation of V_\parallel
 → *Competition* between V_\perp and V_\parallel

- Increase V_\parallel → $P_\parallel^R / P_\perp^R$ turnover
 before ∇V_\parallel hits PSFI threshold
 → Max energy branching of V_\parallel below PSFI threshold
 → V_\parallel saturates *below* PSFI threshold

![Graph 1](image1.png)

![Graph 2](image2.png)
Section III: Revisiting Wave-Flow Resonance

[Li & Diamond, manuscript in preparation]

• **Are conventional shear suppression “rules” always correct?**
 – $E \times B$ flow shear suppresses instability \leftrightarrow Is it correct with resonance?
 – Wave-flow resonance effect is often overlooked, though was mentioned in past works.

• **Findings:**
 – Wave-flow resonance stabilizes drift wave instability
 – Perpendicular flow shear weakens the resonance, and thus **destabilizes** the instability

• **Implications for zonal flow saturation:**
 – **Collisionless** zonal flow saturation (without involving tertiary instabilities, such as KH) set by resonance, $D_\rho \sim (\omega_k - k_y V_\perp)^{-2}$
Wave-flow resonance

- Resonance: $\omega_k - k_y V_\perp - k_\parallel V_\parallel$
 $|k_\parallel|/k_y \ll 1 \rightarrow$ Resonance dominated by $\omega_k - k_y V_\perp$

- Hasegawa-Wakatani drift wave model, with extrinsic V_\perp
 \[
 \frac{D}{Dt} \tilde{n} + \tilde{v}_r \frac{\nabla n_0}{n_0} = D_\parallel \nabla^2_\parallel (\tilde{n} - \tilde{\phi}),
 \]
 \[
 \frac{D}{Dt} \nabla^2_\perp \tilde{\phi} + \tilde{v}_r V_\perp'' = D_\parallel \nabla^2_\parallel (\tilde{n} - \tilde{\phi})
 \]

- **KH drive negligible** \rightarrow Drift wave instability dominant
 - Near adiabatic electron: $\tilde{n} = (1 - i\delta)\phi$, $\delta \ll 1$
 - $\delta = (\omega* - \omega_k + k_y V_\perp)/k_\parallel^2 D_\parallel^2 = \nu_{ei}(\omega* - \omega_k + k_y V_\perp)/k_\parallel^2 v_{Te}^2$

- Resonance reduces the **eigenmode scale** \rightarrow Suppresses instability
 (Width of eigenmode)
Perpendicular flow shear \textit{destabilizes} turbulence

- Mean perpendicular flow shear increases mode scale L_m/ρ_s
 \rightarrow Weakens resonance
 \rightarrow Enhances instability
- KH drive \textbf{negligible} compared to ∇n_0
Implications for Zonal Flow Saturation

• Connection to collisionless saturation of ZF

• Zonal flow evolution \Rightarrow Mean enstrophy equation:

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = \int dr \langle \tilde{v}_r \tilde{\rho} \rangle \frac{d\langle \rho \rangle}{dr} - \nu_i \int dr \langle \rho \rangle^2 + \ldots$$

• Vorticity ($\rho \equiv \nabla^2 \phi$) flux: $\langle \tilde{v}_r \tilde{\rho} \rangle = -D_\rho \frac{d\langle \rho \rangle}{dr} + \Gamma^\text{Res}_\rho$ \hspace{1cm} Conserves enstrophy between mean flow and fluctuations

$$\frac{\partial}{\partial t} \int dr \frac{\langle \rho \rangle^2}{2} = - \int dr D_\rho \left(\frac{d\langle \rho \rangle}{dr} \right)^2 + \int dr \Gamma^\text{Res}_\rho \frac{d\langle \rho \rangle}{dr} - \nu_i \int dr \langle \rho \rangle^2 + \ldots$$

• $\nu_i \rightarrow 0 \Rightarrow$ Dimits shift regime \Rightarrow Resonance saturates ZF, w/o KH

• Collisionless damping by turbulent viscosity: $d\langle \rho \rangle/dr \sim \Gamma^\text{Res}_\rho / D_\rho$

• Resonance sets $D_\rho \rightarrow$ ZF saturation

$$\Gamma^\text{Res}_\rho = \sum_k k_y c_s^2 |\phi_k|^2 \left[\frac{\gamma_k \omega_e + \alpha_n (\omega_e - \omega_k + k_y V_\perp)}{|\omega_k - k_y V_\perp + i\alpha_n|^2} - \frac{|\gamma_k| \omega_e}{|\omega_k - k_y V_\perp|^2} \right], \quad D_\rho = \sum_k k_y^2 c_s^2 |\phi_k|^2 \frac{|\gamma_k|}{|\omega_k - k_y V_\perp|^2}$$
Summary

- CSDX experiments suggest energy apportionment between mean V_\perp and V_\parallel
- Reynolds power ratio $P_\parallel^R / P_\perp^R$ changes in response to external flow increment
 - $P_\parallel^R / P_\perp^R$ decreases with V_\perp → tradeoff between V_\perp and V_\parallel
 - $P_\parallel^R / P_\perp^R$ maximum occurs before ∇V_\parallel hits PSFI threshold
- Testing misconceptions of shearing effects on stability
 - Wave-flow resonance suppresses instability
 - V_\perp' weakens resonance $\rightarrow V_\perp'$ enhances instability
 - Resonance produces turbulent viscosity \rightarrow collisionless saturation of ZF, without involving tertiary instabilities
Backup
Details on Acoustic Coupling

• $V_{||} \rightarrow V_{\perp}$ coupling via parallel compression:
 – 3D coupled drift-ion acoustic wave system [Wang et al, PPCF 2012]
 – Coupling between fluctuating PV and parallel compression $\langle \tilde{q} V_{||} \tilde{v}_{||} \rangle$
 breaks PV conservation
 \rightarrow Sink/source for fluctuating potential enstrophy density
 \rightarrow Zonal flow generation
 – Perpendicular flow dynamics:

\[
\frac{\partial}{\partial t} \left[V_{\perp} - L_n \left(\frac{\tilde{q}^2}{2} \right) \right] \sim -v_i V_{\perp} + L_n \left[\frac{\partial}{\partial r} \left(\tilde{v}_x \frac{\tilde{q}^2}{2} \right) \right] + \mu \langle (\nabla \tilde{q})^2 \rangle - \langle \tilde{q} V_{||} \tilde{v}_{||} \rangle
\]

PV diffusion

collisional damping

$\langle \tilde{q} V_{||} \tilde{v}_{||} \rangle \sim -\sum_k \frac{|\Delta \omega_k|}{\omega_k^2} k_{||}^2 |\phi_k|^2 < 0$
Stationary Zonal Flow Profile

- Turbulent viscosity set by resonance:

\[
D_\rho = \sum_k k_y^2 c_s^2 |\phi_k|^2 \frac{|\gamma_k|}{|\omega_k - k_y V_\perp|^2} \sim \sum_k \frac{k_y^2 \rho_s^2 c_s^2}{k_\parallel D_\parallel} \frac{k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2}{1 + k_y^2 \rho_s^2 \rho_s^2} |\phi_k|^2
\]

- Residual vorticity flux:

\[
\Gamma_\rho^{Res} = \sum_k k_y c_s^2 |\phi_k|^2 \left[\frac{\gamma_k \omega_s + \alpha_n (\omega_{s} - \omega_k + k_y V_\perp)}{|\omega_k - k_y V_\perp + i \alpha_n|^2} \right] - \frac{|\gamma_k| \omega_{s}}{|\omega_k - k_y V_\perp|^2},
\]

- Reynolds force (i.e. net production) = 0

→ Stationary flow profile:

\[
\langle v_y \rangle'' = \langle \rho \rangle' = \frac{\Gamma_\rho^{Res}}{D_\rho} \sim -\frac{k_y^2 \rho_s^2 c_s^2}{(k_\parallel D_\parallel)^2} \frac{1}{L_n^3} \frac{1}{(1 + k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2)^2}.
\]
Resonance and Instability Related to Mode Scale

• Eigenmode equation with resonant effect:

\[(\omega_k - k_y V_\perp + i \gamma_k) \rho_s^2 \phi_x^2 \phi = \left[(1 + k_y^2 \rho_s^2 - i \delta)(\omega_k - k_y V_\perp + i \gamma_k) - \omega_e \right] \phi \]

• Mode scale:

\[L_m^{-2} \rho_s^2 \equiv \rho_s^2 \int_0^{L_x} dx |\phi_x|^2 / \int_0^{L_x} dx |\phi|^2 \]

• Results:

\[\left| \omega_k - k_y \langle v_y \rangle \right|_{\text{min}} \approx \frac{\omega_e}{1 + k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2} \]

\[\gamma_k \approx \frac{\omega_e^2}{k_y^2 D_\parallel} \frac{k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2}{(1 + k_y^2 \rho_s^2 + L_m^{-2} \rho_s^2)^3} \]

• Strong resonance:

\[\gamma_k \ll \omega_k - k_y V_\perp \ll \omega_e \]

• Eigenmode peaks \((L_m^{-2} \rho_s^2)\) increases as resonance becomes stronger

• Resonance suppresses drift wave instability
Analogy to Landau Damping Absorption

<table>
<thead>
<tr>
<th>Players</th>
<th>Langmuir Turbulence Collapse</th>
<th>Collisionless ZF Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasmon-Langmuir wave and ion-acoustic wave (caviton)</td>
<td>Drift wave and zonal flow</td>
</tr>
<tr>
<td>Final State</td>
<td>(Nearly) empty cavity</td>
<td>Dimits state zonal flow dominant</td>
</tr>
<tr>
<td>Free energy source</td>
<td>Langmuir turbulence driver</td>
<td>∇n, ∇T drives</td>
</tr>
<tr>
<td>Resonance effect</td>
<td>Landau damping as cavity collapses</td>
<td>Absorption by $D_\rho \sim (\omega_k - k_y V_\perp)^{-2}$</td>
</tr>
<tr>
<td>Other saturation mechanisms</td>
<td>Ion-acoustic radiation from empty cavity</td>
<td>Kelvin-Helmholtz relaxation</td>
</tr>
</tbody>
</table>
Revisit predator-prey model

- Resonance induces collisionless saturation through D_ρ, apart from KH:
 \[
 \gamma_k = \text{linear instability } (\gamma_L) + \text{resonance absorption } \gamma_R \sim \gamma_R (\omega_k - k_y V_\perp)
 \]

 Analogy to ion-acoustic absorption during collapse of Langmuir waves

- Revisit predator-prey model with resonance effect
 → Mechanism for collisionless damping, without KH