Acceleration of CRs in SNR shocks: Acid Test

Mikhail Malkov

Ackn.: Patrick Diamond (UCSD), Roald Sagdeev (UMD), Adrian Hanusch, Tatjana Liseykina (Rostock U) Supported by NASA Astrophysics Theory Program under grants NNX14AH36G and 80NSSC17K0255

More than 100 years of cosmic ray research...

IceCube compilation of CR spectrum

- CR energy spectrum was long thought to be a featureless power law:
 - a hallmark of the underlying acceleration mechanism:
 - diffusive shock acceleration, DSA
- DSA rigidity (p/Z) spectra should be the same for all CR species, independent of sgn(Z)
- Any change in power-law index interpreted as change of acceleration regime, source (galactic-extragalactic, etc.)

Outline

- 1 Preliminary Information
 - The Hypothesis: CR Origin in SNRs via DSA mechanism
 - DSA The Diffusive Shock Acceleration Test Particle vs Nonlinear
- 2 Disagreements with the standard DSA
 - \bullet Disagreement #1: Anomalies in positron spectrum
 - EXISTING explanations, issues
- (3) NEW: Minimal assumptions, single source (SNR) scenario
 - $\bullet ~e^{\pm}$ asymmetry of acceleration: Molecular Clumps
 - Minimum in $e^+/(e^+ + e^-)$: NL DSA
- Occursion to com (almost) for DM/Pulsars contribution
- 6 Facing the challenges of Today and Tomorrow
 - Disagreement #2: Violation of Rigidity Law
 - \bullet ATIC, Pamela and AMS-02 p/He anomaly

CR acceleration in SNRs

SN 1006 and SN 1572 (Tycho), Reynolds 2008 and Warren et al 2005

- At least some of the galactic SNR are expected to produce CR up to $10^{15}eV$ (knee energy)
- "Direct" detection is possible only as secondary emission
 - observed from radio to gamma
 - electron acceleration up to $\sim 10^{14} eV$ is considered well established, synchrotron emission in x-ray band (Koyama et al 1995, Bamba et al 2003)
 - tentative evidence of proton acceleration from nearby molecular clouds:

 $\textit{pp} \rightarrow \gamma$

Fermi-LAT, HESS, Agile,...

4 / 26

Essential DSA (aka Fermi-I process, E. Fermi, ~1950s)

Linear (TP) phase of acceleration

Upstream

Downstream

> U(x) x shock Scattering Centers, frozen Into flow

- CR trapped between converging mirrors:
 *p*Δx ≈ const
- CR spectrum depends on shock compression, r: $f \sim p^{-q}, \quad q = 3r/(r-1),$ r = q = 4, Mach $M \to \infty$

NL, with CR back-reaction

• Ind $q \rightarrow q(p)$: soft at low p:

•
$$q = 3r_s/(r_s-1) \sim 5$$

- hard at high $p:\,q\to 3.5$
- for M > 10, E_{max} ≥ 1 TeV (MM'97) acceleration must go nonlinear (confirmed by, e.g., Amato, Blasi, Caprioli, Reville, ...analyses and numerics in 2000s)

Positron Anomaly (excess)

- Positron excess (Accardo et al 2014)
- Observed by different instruments for several years
- Dramatically improved statistics by AMS-02 (published in 2014)

Things to note:

- Remarkable min at $\approx 8 \text{ GeV}$
- Unprecedented accuracy in the range 1-100 GeV
- Saturation (slight decline?) trend beyond 200 GeV
- Eagerly awaiting next data release!

(日) (同) (日) (日)

Suggested explanations of positron excess

- focus on the rising branch of $e^+/(e^+ + e^-)$
- \bullet invoke secondary e^+ from CR pp with thermal gas

Problems:

- \bullet Tensions with $\bar{\pmb{\rho}}:$ secondaries with differing spectra
- Poor fits, free parameters, no physics of 8 GeV upturn...

Alternative suggestions:

- Pulsars (lacking accurate acceleration models)
- Dark matter contribution ??

Stating the Obvious

- DSA@SNR' predictive capability \gg Pulsar or DM models
- $\bullet \rightarrow \rm DM/P-$ only if the DSA@SNR fails

Upshot

 $\bullet~{\rm SNR}$ contribution constrains ${\rm DM}/{\rm Pulsar}$ contributions

Possible hints from p and \bar{p}

AMS-02:Aguilar+ 2016

$particle \ property$	charge	mass	secondary?	pulsar?
p	+	М	no	no
Ē	-	М	yes	no
e ⁺	+	m	both	yes
e ⁻	-	m	no	both

(ロト (個) (注) (注) (注) き のの

The Wishlist

- account for e^+ fraction by a single-source, a nearby SNR (contribution from similar sources not excluded)
- explain physics of decreasing and increasing branches, 8 GeV min
 - $\bullet \rightarrow$ lends credence to high energy predictions
- understand \bar{p}/p and e^+/p flat spectra as intrinsic, not coincidental:
 - most likely \bar{p} and e^+ accelerated similarly to protons, whenever injected BUT:
 - $\bar{p}/p = e^+/p \neq e^+/e^-$ Why so?
- plausible answer: acceleration/injection is charge-sign and mass/charge ratio dependent
- $\bullet\,$ understand the physics of charge-sign and m/e selectivity

• \bar{p} fraction is flat on the rising e^+ fraction branch E > 8 GeV

- \bullet Opposite trends in e^+/e^- and \bar{p}/p spectra at $E<8~{\rm GeV}$
- Both are <u>fractions</u>, thus eliminating charge-sign independent aspects of propagation and acceleration (still, HS effects?)
- Striking similarity with NL DSA solution, assuming most of e^- are accelerated to p^{-4} (standard DSA)

The Assumptions

- SNR shock propagates in "clumpy" molecular gas $(n_{\rm H} \gtrsim 30 {\rm cm}^{-3},$ filling factor $f_V \sim 0.01)$
- High-energy protons are already accelerated to (at least) $E \sim 10^{12} eV$ to make a strong impact on the shock structure (CR back reaction, NL shock modification)
 - Acceleration process thus transitioned into an efficient regime (in fact, required to, once $E \gtrsim 1$ TeV, $M \gtrsim 10-15$ and the fraction of accelerated protons $\gtrsim 10^{-4} 10^{-3}$)

- The SNR is not too far away, possibly magnetically connected, thus making significant contribution to the local CR spectrum
- Other SNRs of this kind may or may not contribute

Interaction of shock-acc'd CRs with gas clumps (MC)

• Shock-acc'd CRs form a precursor : κ - CR diff. coeff.,

$$L_p \sim \kappa / u_{sh}$$

- With some help from plasma textbooks...
- Maximum electric field due to e i collisions

$$E_{\max} \simeq \frac{m_e}{e} u_{sh} \nu_{ei} \frac{n_{CR}^0}{n_i}$$

• maximum ES potential inside

$$\frac{e\phi_{\max}}{m_p c^2} \sim \frac{a}{1pc} \frac{u_{sh}}{c} \frac{n_{CR}}{1cm^{-3}} \left(\frac{1eV}{T_e}\right)^{3/2}$$

イロト 不得 トイヨト イヨト

Short digression into elementary plasma physics

• plasmas enforce almost "zero-tolerance" policy in regard to violation of their charge neutrality

Example

take 1 cm^3 of air ionize and separate p and e to distance r = 0.5 cm the resulting force

$$F = e^2 N^2 / r^2 \sim 10^{16} \text{lb} \ (\propto n^2 r^4)$$

As $N\sim 10^{19},\, I=13.6$ eV, ionization energy only ~ 100 Jouls

- similarly, <u>injection</u> of an external charge into plasma must lead to enormous electrostatic forces
- key words here are "separate" and "inject"
- need a powerful mechanism: energetic CRs can do that

in MC: Injection/acceleration of e^+ and $\bar{\rho}$ into DSA

- electric field traps e^- and some \bar{p} inside MC
- ejects secondary e^+ \rightarrow charge-sign asymmetry

PHYSICAL REVIEW D 94, 063006 (2016)

- e^+ are pre-accelerated in E to $\lesssim 1$ GeV and readily injected into DSA
- at $E_e \lesssim$ few GeV, e^+ spectrum is dominated by the subshock compression ratio, r_s
 - spectral index $q = q_s \equiv 3r_s / (r_s - 1)$ and the spectrum $f_{e^+} \propto p^{-q_s}$.
- at higher energies, particles perceive higher flow compression
 - PL-index inside the source $q \rightarrow 3.5$

e^+ spectra, compared and contrasted to e^-

- e^- are from the TP phase with p^{-4} source spectra (and other TP-SNRs)
- $\implies e^+/(e^- + e^+)$ -spectrum = p-spectrum in $p^4 f(p)$ customary normalization

- ratio $e^+/(e^- + e^+)$ is de-propagated and probes directly into the positron accelerator!
- before DM/pulsars are declared responsible for the excess above the SNR (blue curve), the following (prosaic) aspects may be considered:
 - e⁺ release from MC farther upstream (additional spectrum hardening)
 - synchrotron pile-up near the cut-off energy
 - electrostatic breakdown of MC with enhanced e^+ generation

• If most of \bar{p} and p come from the same source as e^+ (\bar{p} generated in MCs ahead of SNR shock), the \bar{p} and e^+ spectra should be the same as p at $E \gtrsim 10$ GeV

- Similarly, p
 /p should be flat if p
 are co-injected (albeit as
 secondaries) into any SNR-DSA
 process
- Decline of \bar{p} at lower energies is consistent with electrostatic retention in MC
- Solar modulation may also contribute to $p \bar{p}$ difference at lower energies
- Flat \bar{p}/p should continue up to $p \sim p_{\max}$ and decline at $p \gtrsim p_{\max}$ (secondaries with no acceleration)

Conclusions

- secondary positrons from *pp* collisions in MCs ahead of SNR, expelled into shock precursor are seeded for DSA
- shock-accelerated positrons develop a concave spectrum, characteristic for the NL DSA.
- most of the negatively charged light secondaries (e^-) , and to some extent, \bar{p} , remain inside MCs making less (\bar{p}) , or almost no contribution (e^-) to the overall spectrum, compared to e^+
- due to the NL subshock reduction, the MC remains unshocked, so that secondary \bar{p} and, in part, heavier nuclei accumulated in its interior largely evade shock acceleration
- the AMS-02 positron excess is not fully accounted for only in the range $\sim 200 400$ GeV, BUT:
- physical phenomena to be included in the next-step model $(e^+/e^- \text{ run-away breakdown, Syn. pile-up, etc.})$ are may suffice for a conventional explanation of the residual excess

Not every bump in the data is from DM

Rigidity Law of Shock Acceleration and Propagation

• Equations of motion, written for particle rigidity $\mathcal{R} = \mathbf{p}c/eZ$ instead of momentum:

$$\frac{1}{c}\frac{d\boldsymbol{\mathcal{R}}}{dt} = \mathbf{E}\left(\mathbf{r},t\right) + \frac{\boldsymbol{\mathcal{R}} \times \mathbf{B}\left(\mathbf{r},t\right)}{\sqrt{\mathcal{R}_{0}^{2} + \mathcal{R}^{2}}},$$
$$\frac{1}{c}\frac{d\mathbf{r}}{dt} = \frac{\boldsymbol{\mathcal{R}}}{\sqrt{\mathcal{R}_{0}^{2} + \mathcal{R}^{2}}}.$$

- EM-fields $\mathbf{E}(\mathbf{r}, t)$ and $\mathbf{B}(\mathbf{r}, t)$ are arbitrary
- \rightarrow all species with $\mathcal{R} \gg \mathcal{R}_0 = Am_p c^2/Ze$ (A is the atomic number and m_{p^-} proton mass, so $\mathcal{R}_0 \sim A/Z$ GV), have identical orbits in the phase space $(\mathbf{r}, \mathcal{R})$.
- species with different A/Z should develop the same rigidity spectra at $\mathcal{R} \gg \mathcal{R}_0$, if they enter acceleration at a constant ratio

CR spectra of different elements in the knee area (from Berezinsky Review)

- cut-offs of different elements are organized by rigidity rule for acceleration and propagation
- if p's and He²⁺ start acceleration at $\mathcal{R} \gg \mathcal{R}_0$ in a ratio N_p/N_{He}
- this ratio is maintained in course of acceleration and the rigidity spectra must be identical
- if both species propagate to observer without collisions, they should maintain the same $N_p/N_{\rm He}$
- DSA predicts distribution $\propto \mathcal{R}^{-q}$ where, q depends on Mach number as $q = 4/(1 - M^{-2})$

Violation of Rigidity Law

Zatsepin et al. 2004 (ATIC)

AMS-02 (2015) results along with earlier data

Key Distinction:

- Several instruments revealed deviation (≈ 0.1 in spectral index) between He and p's, claimed inconsistent with DSA (e.g., Adriani et al 2011)
- DSA predicts a flat spectrum for the He/p ratio
- similar result obtained recently by AMS-02 for C/p ratio
- points to initial phase of acceleration where elemental similarity (rigidity dependence only) does not apply
- A/Z is the same for He and C

Some explanations of He spectral hardening

- three different types of SNRs contribute Zatsepin & Sokolskaya (2006)
- outward-decreasing He abundance in certain SNR, such as super-bubbles, result in harder He spectra, as generated in stronger shocks Ohira & Ioka (2011)
- He is neutral when processed by weak shocks. It is ionized when the SNR shocks are young and strong, Drury, 2011
- p/He --Forward/reverse SNR shock, Ptuskin & Zirakashvili, 2012

Issues:

- most suggestions are hard to reconcile with Occam's razor principle
- tension with the He-C-O striking similarity
- spallation scenarios overproduce CR secondaries

イロト 不通 と 不良 と 不良 とうほう

Kounine, AMS-02 (2017) ICRC 2017

- flat C/He ratio eliminates most scenarios
- points to initial phase of acceleration, *injection*, where elemental similarity (rigidity dependence only) does not apply
- A/Z is the same for He and C
- $\mathcal{R}_0 = Am_p c^2/Ze$ that determines the injection from thermal plasma also the same

イロト イポト イヨト イヨト

Injection efficiency (normalized to proton, MM'98)

Assumptions:

- single source (SNR)
 - shock propagates into ionized homogeneous plasma
- shock radius R(t) and Mach (t) from Sedov-Taylor solution

Main ideas:

- preferential injection of He into DSA for higher Mach numbers
- injection dependence on A/Z and on ϵ , inverse wave amplitude $\epsilon \sim B_0/\delta B \propto M^{-1}$
- η_{inj} saturates with A/Z (cf $(A/Z)^2$ -? Caprioli's talk on Monday). Physically, should even $\rightarrow 0$ for $A/Z \rightarrow \infty$
- injection bias is due to Alfven wavesf driven by protons, thus retaining protons downstream more efficiently than He, C and other high A/Z species

Validating Physical ideas by hybrid Simulations

- 1D in configuration space, full velocity space simulations
 - shock propagates into ionized homogeneous plasma
- p and He are thermalized downstream according to Rankine-Hugoniot relations
- preferential injection of He into DSA for higher Mach numbers is evident
- injection dependence on Mach is close to theoretically predicted $\eta \sim M^{-1} \ln M ~(\text{MM'98})$

plots from A. Hanusch, T. Liseykina, MM, 2017

p/He ratio integrated over SNR life

• p/He result automatically predicts the p/C ratio since the rest rigidity (A/Z) is the same for C and He

Some Conclusions

- the p/He ratio at *R* ≫1, is not affected by CR propagation, regardless the individual spectra
- telltale signs, intrinsic to the particle acceleration mechanism
- reproducible theoretically with no free parameters
- PIC and hybrid simulations confirm p and He injection scalings with Mach number Hanusch et al, ICRC 2017

イロト イポト イヨト イヨト