Outstanding Problems in Astroparticle Physics for Plasma Physicists

Mikhail Malkov

University of California, San Diego

Ackn: Pat Diamond and Roald Sagdeev (UMD) Supported by NASA Astrophysics Theory Program

Cosmic rays: discovery

Cosmic rays: role in particle physics

From R. Battiston,

Table 1. Discovery of elementary particles

Particle	Year	Discoverer (Nobel Prize)	Method
e-	1897	Thomson (1906)	Discharges in gases
p	1919	Rutherford	Natural radioactivity
n	1932	Chadwik (1935)	Natural radioactivity
e^+	1933	Anderson (1936)	Cosmic Rays
μ^{\pm}	1937	Neddermeyer, Anderson	Cosmic Rays
π^{\pm}	1947	Powell (1950), Occhialini	Cosmic Rays
K^{\pm}	1949	Powell (1950)	Cosmic Rays
π^0	1949	Bjorklund	Accelerator
K^0	1951	Armenteros	Cosmic Rays
Λ^{o}	1951	Armenteros	Cosmic Rays
Δ	1932	Anderson	Cosmic Rays
= -	1932	Armenteros	Cosmic Rays
Σ^{\pm}	1953	Bonetti	Cosmic Rays
p^-	1955	Chamberlain, Segre' (1959)	Accelerators
anything else	$1955 \Longrightarrow \mathrm{today}$	various groups	Accelerators
$m_ u eq 0$	2000	KAMIOKANDE	Cosmic rays

More than 100 years of cosmic ray research...

IceCube compilation of CR spectrum

- CR energy spectrum was long thought to be a featureless power law:
 - a hallmark of the underlying acceleration mechanism:
 - diffusive shock acceleration, DSA
- DSA rigidity (p/Z) spectra should be the same for all CR species
- Any change in power-law index interpreted as change of acceleration regime, source (galactic-extragalactic, etc.)

An incredibly exciting time for this field...

Alpha Magnetic Spectrometer (AMS-02):
Particle detector operating on the International Space Station

- Both energy (rigidity)
 spectrum and composition
 aspects of DSA scrutinized
 using modern instruments and
 proved not true in some
 instances
- Either we do not understand how DSA works and/or there are additional, probably exotic CR sources, such as dark matter decay or annihilation

Outline

- 1 Exciting time for the field, difficult times for DSA
 - DSA: too big to fail?
 - SNRs as main source of galactic CRs ("Standard Model")
- 2 Disagreements: anything wrong with DSA?
 - Anomalies in positron spectrum
 - Possible explanations and their weaknesses
- 3 A new look at positron anomaly
 - Charge-sign dependent CR acceleration: molecular gas ahead of the SNR shock
 - Physics of rising and falling branches of positron fraction: NL DSA
 - Physics of the spectral minimum
- 4 Conclusions: Room for DM/Pulsars contribution

CR production mechanism: Diffusive Shock Acceleration (DSA)

flow velocity

- -Most shocks of interest are collisionless
- -Big old field in plasma physics

Problems:

- How to transfer momentum and energy from fast to slow gas envelopes if there are no binary collisions?
- waves...
- driven by particles whose distribution is almost certainly unstable...

Essential DSA (aka Fermi-I process, E. Fermi, ~1950s)

Linear (TP) phase of acceleration

Upstream

Down-

stream

Particles are trapped between converging mirrors:

$$p\Delta x \approx const$$

■ CR spectrum: determined by shock compression, r: $f \sim p^{-q}$, q = 3r/(r-1), r = q = 4 for strong shocks $M \to \infty$

NL. with CR back-reaction

- Index q becomes q(p):
 - soft at low p: $q = 3r_s/(r_s-1)$ $r_s < 4$ $(\sim 2-3)$
 - hard at high p: $q \rightarrow 3.5$ (largely independent of $r \gg 1$)

CR acceleration in SNRs

SN 1006 and SN 1572 (Tycho), Reynolds 2008 and Warren et al 2005

- At least some of the galactic SNR are expected to produce CR up to 10¹⁵eV (knee energy)
- "Direct" detection is possible only as secondary emission
 - observed from radio to gamma
 - electron acceleration up to $\sim 10^{14} eV$ is considered well established, synchrotron emission in x-ray band (Koyama et al 1995, Bamba et al 2003)
 - tentative evidence of proton acceleration from nearby molecular clouds:

$$pp \rightarrow \gamma$$

Fermi-LAT, HESS, Agile,..

Positron Anomaly (excess)

- Positron excess (Accardo et al 2014)
- Observed by different instruments for several years
- Dramatically improved statistics by AMS-02 (published in 2014)

Things to note:

- Remarkable min at $\approx 8 \text{ GeV}$
- Unprecedented accuracy in the range 1-100 GeV
- Saturation (slight decline?) trend beyond 200 GeV
- Eagerly awaiting next data release!

Suggested explanations of positron excess

- Early explanations focused on the rising branch of positron anomaly
- Most of the SNR related suggestions invoke secondary e^+ produced by galactic CR protons colliding with:
 - ambient dense gas in surroundings of SNR accelerator (Fujita+ 2009)
 - elsewhere in the Galaxy (Blum+2013, Cowsik+ 2014)
 - immediately at shock front (Blasi 2009, Mertsch 2014, Cholis+ 2014)
- Tensions with \bar{p} observations (should show similar trends, as both are secondaries)
- Poor fits to high-precision AMS-02 data or too many ad hoc assumptions (e.g. multiple sources with, often, arbitrary power-law indices)

Further explanations

- Pulsars (e.g. Profumo 2012, big review). Possible, but have disadvantage of lacking accurate acceleration models
- Dark matter contribution ??
- Positrons injected into DSA by radioactive elements of SN ejecta

Obvious remarks

- As Pulsars and particularly DM have much weaker predictive capabilities than the DSA-SNR- based models, they should be considered seriously only if (or where) the SNR contribution falls short to account for the positron excess
- SNR contribution to the phenomenon thus constrains possible DM/pulsar contributions

Weaknesses of explanations – Motivation

Bottom line:

 e^+/e^- explained only by adjusting independent sources

Weaknesses:

- Flatness of \bar{p}/p and position of minimum in e^+/e^- are coincidental
- B/C, \bar{p}/p secondary constraints put a 25% upper bound on SNR contribution to the positron rise (Cholis&Hooper, 2014)

Desirable aspects of the mechanism (Wishlist)

- \blacksquare account for e^+ fraction by a single-source, a nearby SNR
- explain physics of decreasing and increasing branches
- identify physics of the minimum at 8 GeV
- understand \bar{p} flat spectrum as intrinsic, not coincidental: most likely, accelerated just like protons, whenever injected BUT: $\bar{p}/p \neq e^+/e^-$
- \Longrightarrow acceleration mechanism ought to be *charge-sign* dependent
- physics of charge-sign selectivity

The Hints

IMS Days at CERT, Rounine 2015,

- Opposite trends in e^+/\bar{p} spectra at E < 8 GeV
- Both data sets relate to <u>fractions</u>, thus eliminating all charge-sign independent aspects of propagation and acceleration
- Striking similarity with NL DSA solution, assuming most of e^- are accelerated to ρ^{-4} (standard DSA)

Assumptions of the present model

- A strong SNR propagates in "clumpy" molecular gas, $n_{\rm H} \gtrsim 30 {\rm cm}^{-3}$ with filling factor $f_V \sim 0.01$, but mass \gg ambient plasma
- The SNR is not too far away, likely magnetically connected, thus making significant contribution to the local CR spectrum
- Other SNRs of this kind may or may not contribute
- Consider a moderately oblique (shock normal to the ambient magnetic field) portions of SNR shock surface
- High-energy protons are already accelerated to $E \gtrsim 10^{12} eV$ to make a strong impact on the shock structure (CR back reaction, NL shock modification)
- Acceleration process thus transitioned into an efficient regime (in fact, required to, once $E \gtrsim 1$ TeV, $M \gtrsim 10-15$ and the fraction of accelerated protons $\sim 10^{-4}-10^{-3}$)

Interaction of shock-acc'd CRs with gas clumps (MC)

Shock-acc'd CRs form a precursor $L_p \sim \kappa/u_1$: κ - CR diff. coeff., u_1 shock velocity $\kappa = \kappa_B$ $\simeq cr_g(p)/3$, r_g -gyro-radius

 CR number density increases towards subshock

$$n_{CR}(x) = \frac{x_0 n_{CR}^0}{x_0 + x_{MC}}$$

■ CR charge the MC at a relative rate (charge/discharge)

$$\eta = rac{\dot{n}_{\mathrm{CR}} L_{\mathrm{MC}}}{V_{Te} n_{0} + V_{i} n_{i}} \ \sim rac{L_{\mathrm{MC}}}{L_{\mathrm{CR}}} \cdot rac{u_{1} n_{\mathrm{CR}}}{V_{Te} n_{0} + V_{i} n_{i}}$$

Electrodynamics of CR-MC interaction

- MC move faster (in the shock frame) than the upstream flow (bow-shocks form)
- CR number density in MC increases explosively:

$$n_{CR}\left(t\right) = n_{CR}^{0} x_{0} / \left(x_{0} - u_{1}t\right)$$

- Reaction from the MC:
- buildup of electric field of a positive electrostatic potential
- minus-charge particles are attracted and stay inside MC during the subsequent shock crossing → evade acceleration
- plus-charge particles are expelled and injected into DSA
- charge-sign asimmetry of injection/acceleration

Short digression into elementary plasma physics

 plasmas enforce almost "zero-tolerance" policy in regard to violation of their charge neutrality

Example

take 1cm^3 of air ionize and separate p and e to distance r = 0.5 cm the resulting force

$$F = e^2 N^2/r^2 \sim 10^{16} \ \mathrm{lb}$$

As $N \sim 10^{19}$, I = 13.6 eV ionization energy only ~ 100 Jouls

- similarly, <u>injection</u> of an external charge into plasma must lead to enormous electrostatic forces
- key words here are "separate" and "inject"
- need a powerful mechanism
- energetic CRs can do that

Electrodynamics inside MC

■ Two-fluid equations:

$$\frac{dV_i}{dt} = \frac{e}{m_i} E(x, t) - \nu_{in} V_i$$

$$\frac{dV_e}{dt} = -\frac{e}{m_e} E - \nu_{ei} (V_e - V_i)$$

$$\frac{\partial n_{e,i}}{\partial t} = -\frac{\partial}{\partial x} n_{e,i} V_{e,i}$$

$$n_e = n_i + n_{CR}$$

■ Electric field is related to CR charging rate and ion outflow:

$$E(x,t) = \frac{m_e}{e} \nu_{ei} \frac{n_{CR}}{n_{CR} + n_i} \left(\frac{\dot{n}_{CR}}{n_{CR}} x + V_i \right)$$

Self-similar solution

- Ions leave the MC symmetrically: $V_i(x,t) = xV(t)$, $E \propto V_i$, assuming x = 0 being a midpoint of the field line threading the MC, $|x| \leq a$
- All other solutions converge to this form
- Electric field $(-\infty < t < 0)$:

$$E\left(x,t
ight)\simeqrac{m_{i}}{e}a
u_{in}^{2}rac{xlpha}{\left(t_{0}-t
ight)^{2}}\left[1+rac{lpha}{t_{0}-t}
ight]$$

with dimensionless parameter that characterizes ion depletion

$$\frac{\alpha}{t_0} \sim \left(\frac{1 eV}{T_e}\right)^2 \frac{n_{CR}^0}{n_n} \sqrt{\frac{m_n}{m_i} \left(\frac{m_n}{m_i} + 1\right) \frac{m_e}{m_i}} \sim \Delta n_i/n_i \ll 1$$

(t measured in i - e collision times)

Solution for electric field in MC, cont'd

■ Maximum electric field (at MC edge)

$$E_{\max} \simeq \frac{m_e}{e} u_1 \nu_{ei} \frac{n_{CR}^0}{n_i}$$

electrostatic potential with a maximum in the middle of the MC (x = 0) screens the MC interior from penetrating CR

$$\frac{e\phi_{\rm max}}{m_pc^2} \sim \frac{a}{1\rho c} \frac{u_1}{c} \frac{n_{CR}}{1cm^{-3}} \left(\frac{1eV}{T_e}\right)^{3/2}$$

- A 1-parcec MC $(r_{\sigma} \text{ of a PeV proton})$ is acceptable as it occupies only a $u_1/c \ll 1$ - fraction of CR precursor
- electric field is strong enough to keep low-energy CRs away from the MC interior
- keeps secondary e^- (and \bar{p} , to much lesser extent) inside, ejects secondary e^+
- charge sign asymmetry of injection into DSA established

Positron Injection into DSA

- secondary e^+ are largely produced deep inside MC, preaccelrated in E and easily injected into DSA
- injection from many MCs occasionally crossing the shock occurs with a time-averaged rate Q(p,x)
- lacksquare Q decays sharply with x, the distance from the subshock
- it has a broad maximum at $p \sim e\phi_{\rm max}/c$
- near subshock, CR number density sharply increases on account of GeV particles. They generate secondary e^{\pm} and \bar{p} , on the periphery of MC. The edge electric field then expels positively charged secondaries (e^{+}) and sucks in negatively charged ones, such as e^{-} and, to some extent, \bar{p}
- typical energy of expelled positrons < 1 2 GeV

Shock Acceleration of Positrons

- As the shock is modified, acceleration starts in its precursor since $\partial u/\partial x \neq 0$
- However, most of the positrons are released from the MC near the subshock
- at lower energies, their spectrum is dominated by the subshock compression ratio, $r_s = u_0/u_2$
- spectral index $q=q_s\equiv 3r_s/\left(r_s-1\right)$ and the spectrum $f_{e^+}\propto p^{-q_s}$.
- at higher energies, positrons feel progressively higher flow compression (diffuse farther ahead of the subshock)
- their spectrum tends to a universal form with $q \to 3.5$

Positron spectra

 Shock structure is self-consistently adjusted to the pressure of accelerated protons

- e⁺ and other secondaries produced in pp collisions of shock accelerated CRs with MC gas, as well as e⁻ can be treated as test particles in a given shock structure
- positively charged particles are enhanced while negatively charged suppressed because of charge-asymmetric injection from MC
- plausible assumption: e^+/e^- injection rate $\gg 1$.

Positron spectra cont'd

- In calculating $e^+/(e^- + e^+)$, e^- are assumed to be from conventional shocks with p^{-4} source spectra
- ⇒ $e^+/(e^- + e^+)$ spectrum = proton spectrum in $p^4 f(p)$ customary normalization

- background e^- (with p^{-4} spectrum) propagate distance similar to that of e^+
- ⇒ratio $e^+/(e^- + e^+)$ is de-propagated and probes directly into the positron accelerator!
- excess above the blue curve is not SNR e.g., DM or pulsars
- as SNR contrib. is rising with E, constraints on DM signal in 200-400 GeV range are weaker compared to secondary e⁺(decaying) without acceleration

Antiprotons

If most of \bar{p} and p come from the same source as e^+ (\bar{p} generated in MCs ahead of SNR shock), the \bar{p} spectrum should be the same as p at $E \gtrsim 10 \text{ GeV}$

- Similarly, \bar{p}/p should be flat if \bar{p} are injected as secondaries into any SNR-DSA process
- Decline of \bar{p} towards lower energies is consistent with electrostatic retention in MC
- This effect has not been quantified for \bar{p}
- Solar modulation may also contribute to $p \bar{p}$ difference at low energy
- Flat \bar{p}/p should continue up to $p \sim p_{\text{max}}$; should decline at $p \gtrsim p_{\text{max}}$ (secondaries with no acceleration)

Conclusions

- 1 A weakly ionized dense molecular gas (MC) in SNR shock environment, illuminated by shock accelerated protons results in the following phenomena:
 - \blacksquare an MC of size $L_{\rm MC}$ is charged (positively) by penetrating protons to $\sim (L_{\rm MC}/pc)(V_{sh}/c)(1eV/T_e)^{3/2}(n_{CR}/cm^{-3})\rm GV$
 - secondary positrons produced in pp collisions inside the MC are pre-accelerated by the MC electric potential and expelled from the MC to become a seed population for the DSA (get "injected")
 - \blacksquare most of the negatively charged light secondaries (e^-), and to some extent, \bar{p} , along with the primary electrons, remain locked inside the MC
- 2 Assuming that the shock Mach number, proton injection rate, and cut-off momentum all exceed the thresholds of NL acceleration, the spectrum of injected positrons has concave form, which physically corresponds to a steepening due to the subshock reduction, and flattening resulting from acceleration in the smooth part of the shock

Conclusions cont'd

- the crossover energy is related to the change in proton transport (diff. coeff. changes from $\kappa \propto p^2$ to $\kappa \propto p$) and respective contribution to the CR partial pressure in a mildly-relativistic regime. The crossover pinpoints the 8 GeV minimum in the $e^+/(e^++e^-)$ fraction measured by AMS-02
- due to the NL subshock reduction, the MC remains unshocked so that secondary \bar{p} and, in part, heavier nuclei accumulated in its interior largely evade shock acceleration
- The AMS-02 positron excess in the range ~ 200 − 400GeV is not accounted for by the SNR positron spectrum and is available for alternative interpretations (DM, Pulsars, ???)
- However, an e^+/e^- run-away break down in MC with e^\pm production may alter the last conclusion