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Outline

ØModels
-- What is an Elastic Fluid? (Pedagogic)
• Oldroyd-B ‘family’, origins
• MHD connection and Deborah number
• Other systems, esp: Spinodal Decomposition in binary mixture

Ø(Linked) Single Eddy
• Flux Expulsion – 2D MHD

oKinematics – two views
oDynamics – vortex disruption

• Cahn-Hilliard Flows and Target Patterns
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Outline

ØTurbulence
• 2D MHD – Quick Review

oDual cascade
oA closer at 〈𝐴#$〉

• Cahn-Hilliard Navier-Stokes (CHNS)
o Scales, ranges, trends
oCascades and power laws
o Lessons
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Outline

ØActive Scalar Transport
• 2D MHD – Flux Diffusion

oKinematics
oQuenching: Alfvenization for vortex disruption
o Thoughts on transport dynamics

• CHNS -- 𝜓 as the Active Scalar

ØConclusions, of Sorts
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Models
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Elastic Fluid -> Oldroyd-B Family Models

Ø𝛾 ()⃑+,-
(.

− 𝑣⃑ 𝑟2,$, 𝑡 = − 56
5)⃑+,-

+ 𝜉 , where 𝑈 = :
$
𝑟2 − 𝑟$ $ + ⋯

Øso (<
(.
= 𝑣⃑ 𝑅, 𝑡 + 𝜉/𝛾 , and (?

(.
= 𝑞⃑ ⋅ 𝛻	𝑣⃑ 𝑅, 𝑡 − $

D
56
5?
+ noise
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→	Solution
of Dumbells

H2O

𝑟2 𝑟$←	𝑞⃑→

𝑅 = 𝑟2-𝑟$
𝑣⃑(𝑟2, 𝑡) 𝑣⃑(𝑟$, 𝑡) Internal DoF

i.e. polymers

stokes drag entropic spring
noise



Seek 𝑓(𝑞⃑, 𝑅, 𝑡|𝑣⃑, … )→	distribution

Ø𝜕.𝑓 + 𝜕< ⋅ 𝑣⃑ 𝑅, 𝑡 𝑓 + 𝜕? ⋅ 𝑞⃑ ⋅ 𝛻𝑣⃑ 𝑅, 𝑡 𝑓 − $
D
56
5?
𝑓

= 𝜕< ⋅ 𝐃L ⋅
5M
5<
+ 𝜕? ⋅ 𝐃N ⋅

5M
5?

Øand moments:

𝑄PQ 𝑅, 𝑡 = ∫ 𝑑T𝑞	𝑞P𝑞Q𝑓(𝑞⃑, 𝑅, 𝑡) →	electric energy field (tensor)
Øso:
𝜕.𝑄PQ + 𝑣⃑ U 𝛻𝑄PQ = 𝑄PD𝜕D𝑣Q + 𝑄QD𝜕D𝑣P

−𝜔W𝑄PQ + 𝐷L𝛻$𝑄PQ + 4
:Z[
D
𝛿PQ

Ø Defines Deborah number: 𝛻𝑣⃑/𝜔]
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Is F.P. valid?

strain

relaxation

and concentration
equation



Reaction on Dynamics

Ø𝜌[𝜕.𝑣P + 𝑣⃑ U 𝛻𝑣P] = −𝛻P𝑃 + 𝛻P ⋅ [𝑐c𝑘𝑄PQ] + 𝜂𝛻$𝑣P + 𝑓P

ØClassic systems; Oldroyd-B (1950).
ØExtend to nonlinear springs (FENE), rods, rods + springs, networks,
director fields, etc…

ØSupports elastic waves and fluid dynamics, depending on Deborah
number.

ØOldroyd-B↔	active tensor field
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elastic stress



Constitutive Relations

ØJ. C. Maxwell:

(stress) + 𝜏<
((ghijgg)

(.
= 𝜂 (

(.
(strain)

ØIf 𝜏</𝑇 = 𝐷 ≪ 1, stress = 𝜂 (
(.

(strain)

J = - 𝜂𝛻𝑣⃑
ØIf 𝜏</𝑇 = 𝐷 ≫ 1, stress ≅ p

qr
(strain)

~ E (strain)
ØLimit of “freezing-in”: D>1 is criterion.
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relaxation viscosity

𝑇 ≡ dynamic
time scale



Relation to MHD?!

ØRe-writing Oldroyd-B:
𝜕
𝜕.
𝐓 + 𝑣⃑ U 𝛻𝐓 − 𝐓 ⋅ 𝛻𝑣⃑ − 𝛻𝑣⃑ [ ⋅ 𝐓 =

1
𝜏
(𝐓 −

𝜇
𝜏
𝐈)

ØMHD: 𝐓w = xx
yz

𝜕.𝐵 + 𝑣⃑ U 𝛻𝐵 = 𝐵 U 𝛻𝑣⃑ + 𝜂𝛻$𝐵
ØSo

𝜕
𝜕.
𝐓w + 𝑣⃑ U 𝛻𝐓w − 𝐓w ⋅ 𝛻𝑣⃑ − 𝛻𝑣⃑ [ ⋅ 𝐓w = 𝜂[𝐵𝛻$𝐵 + (𝛻$𝐵)𝐵]

Ø lim
�→�

	(Oldroyd-B)⟺ lim
<�→�

	(MHD)
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𝐓 ≡ stress



Elastic Media -- What	Is	the	CHNS	System

ØElastic media – Fluid with internal DoFsà “springiness”
ØThe	Cahn-Hilliard	Navier-Stokes	(CHNS)	system describes phase separation
for binary fluid (i.e.	Spinodal Decomposition)
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AB

Miscible	phase	
à Immiscible	phase

[Fan et.al. Phys. Rev. Fluids 2016] [Kim et.al. 2012]



Elastic Media? -- What	Is	the	CHNS	System?

ØHow to describe the system: the concentration field

Ø𝜓 𝑟, 𝑡 ≝ [𝜌� 𝑟, 𝑡 − 𝜌x 𝑟, 𝑡 ]/𝜌 : scalar field →	density contrast

Ø𝜓 ∈ [−1,1]

ØCHNS equations (2D):

𝜕.𝜓 + 𝑣⃑ U 𝛻𝜓 = 𝐷𝛻$(−𝜓 + 𝜓T − 𝜉$𝛻$𝜓)

𝜕.𝜔 + 𝑣⃑ U 𝛻𝜔 =
𝜉$

𝜌
𝐵� U 𝛻𝛻$𝜓 + 𝜈𝛻$𝜔
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Why Should a Plasma Physicist Care?

ØUseful	to	examine	familiar	themes	in	plasma	turbulence	from	new	
vantage	point	

ØSome	key issues	in	plasma	turbulence:
1. Electromagnetics Turbulence

• CHNS vs 2D MHD: analogous, with interesting differences.
• Both CHNS and 2D MHD are elastic systems
• Most	systems = 2D/Reduced	MHD	+	many	linear	effects	

ØPhysics	of	dual	cascades	and	constrained relaxationà relative	
importance,	selective	decay…

ØPhysics	of	wave-eddy	interaction	effects	on	nonlinear	transfer	(i.e. Alfven	
effectßà Kraichnan)	
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MHDßà CHNS



Why Care?

2. Zonal	flow	formation	à negative	
viscosity	phenomena
• ZF can be viewed as a “spinodal
decomposition” of momentum.

• What determines scale?
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[Porter 1981]

Spinodal Decomposition

Arrows:
𝜓 for CHNS;
flow for ZF.

http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT411/HTML/AT41102.htm

Zonal Flow



[J.	A.	Boedo et.al. 2003]

Why Care?

3. “Blobby	Turbulence”
• CHNS is a	naturally	blobby	system of
turbulence.

• What is the role of structure in
interaction?

• How	to	understand	blob	coalescence	and	
relation	to	cascades?

• How to understand multiple cascades of
blobs and energy?
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• CHNS	exhibits	all	of	the	above,	with	many new	twists	



A	Brief	Derivation	of	the	CHNS	Model

ØSecond	order	phase	transition	à Landau Theory.
ØOrder	parameter:	𝜓 𝑟, 𝑡 ≝ [𝜌� 𝑟, 𝑡 − 𝜌x 𝑟, 𝑡 ]/𝜌
ØFree energy:

F 𝜓 = �𝑑𝑟(
1
2
𝐶2𝜓$ +

1
4
𝐶$𝜓y +

𝜉$

2
|𝛻𝜓|$)

�

�

Ø𝐶2(𝑇),	𝐶$(𝑇).
ØIsothermal	𝑇 < 𝑇� .	Set	𝐶$ = −𝐶2 = 1:

F 𝜓 = �𝑑𝑟(−
1
2
𝜓$ +

1
4
𝜓y +

𝜉$

2
|𝛻𝜓|$)

�

�
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Phase Transition Gradient	Penalty



A	Brief	Derivation	of	the	CHNS	Model

ØContinuity	equation:	(�
(.
+ 𝛻 U 𝐽 = 0. Fick’s	Law:	𝐽 = −𝐷𝛻𝜇.

ØChemical potential: 𝜇 = �� �
��

= −𝜓 + 𝜓T − 𝜉$𝛻$𝜓.

ØCombining	above	à Cahn	Hilliard	equation:
(�
(.
= 𝐷𝛻$𝜇 = 𝐷𝛻$(−𝜓 + 𝜓T − 𝜉$𝛻$𝜓)

Ø𝑑. = 𝜕. + 𝑣⃑ U 𝛻.	Surface	tension:	force	in	Navier-Stokes equation:

𝜕.𝑣⃑ + 𝑣⃑ U 𝛻𝑣⃑ = −
𝛻𝑝
𝜌
− 𝜓𝛻𝜇 + 𝜈𝛻$𝑣⃑

ØFor	incompressible	fluid,	𝛻 U 𝑣⃑ = 0.
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2D	CHNS	and 2D	MHD

Ø2D	CHNS	Equations:

𝜕.𝜓 + 𝑣⃑ U 𝛻𝜓 = 𝐷𝛻$(−𝜓 + 𝜓T − 𝜉$𝛻$𝜓)

𝜕.𝜔 + 𝑣⃑ U 𝛻𝜔 =
𝜉$

𝜌
𝐵� U 𝛻𝛻$𝜓 + 𝜈𝛻$𝜔

With 𝑣⃑=𝑧�×𝛻𝜙, 𝜔 = 𝛻$𝜙, 𝐵� = 𝑧�×𝛻𝜓, 𝑗� = 𝜉$𝛻$𝜓.
Ø2D	MHD	Equations:

𝜕.𝐴 + 𝑣⃑ U 𝛻𝐴 = 𝜂𝛻$𝐴

𝜕.𝜔 + 𝑣⃑ U 𝛻𝜔 =
1
𝜇L𝜌

𝐵 U 𝛻𝛻$𝐴 + 𝜈𝛻$𝜔

With 𝑣⃑=𝑧�×𝛻𝜙, 𝜔 = 𝛻$𝜙,	𝐵 = 𝑧�×𝛻𝐴,	𝑗 = 2
��
𝛻$𝐴.

4/4/18 WIN	2018 19

−𝜓:	Negative diffusion term
𝜓T:	Self nonlinear term
−𝜉$𝛻$𝜓	:	Hyper-diffusion term

𝐴:	Simple	diffusion term



Linear Wave

ØCHNS supports linear “elastic” wave:

𝜔 𝑘 = ±
𝜉$

𝜌
�

𝑘×𝐵�L −
1
2
𝑖 𝐶𝐷 + 𝜈 𝑘$

Where
ØAkin	to	capillary	wave	at	phase	interface.	Propagates	only along the
interface of the two fluids, where |𝐵�| = |𝛻𝜓| ≠ 0.

ØAnalogue of Alfven wave.
ØImportant differences:	

Ø𝐵� in CHNS is large only in the interfacial regions.
ØElastic	wave	activity	does	not	fill	space.
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Air

Water

Capillary	Wave:



(Linked) Single Eddy
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Flux Expulsion
ØSimplest dynamical problem in MHD (Weiss ‘66, et. seq.)
ØClosely related to “PV Homogenization”

ØField wound-up, “expelled” from eddy
ØFor large Rm, field concentrated in boundary layer of eddy
ØUltimately, back-reaction asserts itself for sufficient B0

4/4/18 WIN	2018 22

B0

Rm~vL/𝜂 ≫ 1



How to Describe?

ØFlux conservation: B0L~bl Wind up: b=nB0 (field stretched)
ØRate balance: wind-up ~ dissipation
 
¡
𝐵L ∼

p
£-
𝑏 . 𝜏¥¦c§£¨P©ª ∼

¡
 �

𝑅𝑚2/T.

𝑙 ∼ 𝛿x¡ ∼ 𝐿/𝑅𝑚2/T . 𝑏 ∼ 𝑅𝑚2/T𝐵L .
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B0

L

b

𝑙

after n turns:
nl=L

N.B. differs from
Sweet-Parker!



What’s the Physics?

ØShear dispersion! (Moffatt, Kamkar ‘82)
𝜕.𝐴 + 𝑣⃑ U 𝛻𝐴 = 𝜂𝛻$𝐴 (Shearing coordinates)
𝑣® = 𝑣® 𝑥 = 𝑣®L + 𝑥𝑣®° + ⋯	
(:±
(.

= −𝑘®𝑣®° ,
(:²
(.

= 0

𝜕.𝐴 + 𝑥𝑣®° 𝜕®𝐴 − 𝜂 𝜕¦$ + 𝜕®$ 𝐴 = 0
𝐴 = 𝐴 𝑡 exp 𝑖(𝑘 𝑡 ⋅ 𝑥⃑)

(Shear enhanced dissipation annihilates interior field)

ØSo 𝜏wP¦ ≅ 𝜏¨¶¥·)𝑅𝑚2/T=(𝑣®°
¸2)𝑅𝑚2/T
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Single Eddy Mixing -- Cahn-Hilliard

ØStructures are the keyà need understand how a single eddy
interacts with 𝜓 field

ØMixing of 𝛻𝜓 by a single eddyà characteristic time scales?
ØEvolution of structure?
ØAnalogous	to	flux	expulsion	in	MHD	(Weiss,	‘66)

4/4/18 WIN	2018 25

?
𝛻𝜓 ↔ 𝐵

Transport / Relaxation



Single Eddy Mixing -- Cahn-Hilliard
Ø3 stages:	(A) the ”jelly roll” stage, (B)	the topological	evolution stage, and
(C)	the target pattern stage.

Ø𝜓 ultimately homogenized in slow time scale,	but	metastable	target	
patterns	formed	and	merge.

ØAdditional mixing time emerges.4/4/18 WIN	2018 26

(a) t=10

(b) t=70

(c) t=75

(d) t=80

(e) t=85

(f) t=400

(g) t=1500

(h) t=4000

A: Jelly roll B: reconnection C: Target

[Fan et.al. Phys. Rev. E
Rap. Comm. 2017]

Note coarsening!



[Ashourvan et.al. 2016]

Single Eddy Mixing

ØThe bands merge on a time scale long relative to eddy turnover time.
ØThe 3 stages are reflected in the elastic energy plot.
ØThe target bands mergers are related to the dips in the target pattern stage.
ØThe	band	merger	process	is	similar	to	the	step	merger	in	drift-ZF	staircases.	
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Episodic relaxation-coarsening Cahn-Hilliard dynamics



Back Reaction – Vortex Disruption

Ø(MHD only) (A. Gilbert et.al. ‘16; J. Mak et.al. ‘17)
ØDemise of kinematic expulsion?

• Magnetic tension grows to react on vorticity evolution!

ØRecall: 𝑏 ∼ 𝐵L(𝑅𝑚2/T)
• B.L. field stretched!

Øand 𝐵 U 𝛻𝐵 = − x -

)º
𝑛¼ + (

(¨
( x

-

$
)𝑡̂

Ø|𝐵 U 𝛻𝐵| ≅ 𝑏$/𝐿L
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𝑟¾ ∼ 𝐿L
𝑑
𝑑𝑠

∼ 𝐿L¸2
vortex scale



Back Reaction – Vortex Disruption

ØSo 𝜌 (À
(.
= 𝑧̂ ⋅ [𝛻×(𝐵 U 𝛻𝐵)]

→	𝜌𝑢 ⋅ 𝛻𝜔 ∼ 𝑏$/𝑙𝐿L

ØFeedback →	1 for: 𝑅𝑚  Â�
§

$
∼ 1

ØCritical value to disrupt vortex, end kinematics
ØRelated Alfven wave emission.
ØNote for 𝑅𝑚 ≫ 1→	strong field not required
ØWill re-appear…
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small BL scale enters

Remember this!

𝑣�L$ = 𝐵L$/4𝜋𝜌



Turbulence
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MHD Turbulence – Quick Primer

Ø(Weak magnetization / 2D)
ØEnstrophy conservation broken
ØAlfvenic in Brms field – “magneto-elastic” (E. Fermi ‘49)

𝜖 =  Å- -

£-
£

xÆ�Ç
⟹ 𝐸 𝑘 = 𝜖𝐵)w¨ 2/$𝑘¸T/$ (I-K)

ØDual cascade:

ØWhat is dominant (A. Pouquet)?
• conventional wisdom focuses on energy
• yet 𝐴$ conservation – freezing-in law!?
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Forward in energy
Inverse in 𝐴$ ∼ 𝑘¸Ê/T



Ideal	Quadratic	Conserved	Quantities
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• 2D	CHNS
1.	Energy

𝐸 = 𝐸Ë + 𝐸x = �(
𝑣$

2
+
𝜉$𝐵�$

2
)𝑑$𝑥

�

�

2.	Mean	Square	Concentration

𝐻� = �𝜓$
�

�

𝑑$𝑥

3.	Cross	Helicity

𝐻� = � 𝑣⃑ U 𝐵�

�

�

𝑑$𝑥

• 2D	MHD
1.	Energy

𝐸 = 𝐸Ë + 𝐸x = �(
𝑣$

2
+
𝐵$

2𝜇L
)𝑑$𝑥

�

�
2.	Mean	Square	Magnetic	Potential

𝐻� = �𝐴$
�

�

𝑑$𝑥

3.	Cross	Helicity

𝐻� = � 𝑣⃑ U
�

�

𝐵𝑑$𝑥

Dual cascade expected!



Scales,	Ranges,	Trends

ØFluid	forcingà Fluid	straining	vs	Blob	coalescence
ØStraining vs coalescence is fundamental struggle of CHNS turbulence
ØScale	where	turbulent	straining	~	elastic	restoring	force	(due	surface	tension):
Hinze Scale

𝐿Í~(
𝜌
𝜉
)¸2/T𝜖Ï

¸$/Ð
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How	big	is	a	raindrop?
• Turbulent	straining	
vs	capillarity.

• 𝜌𝑣$ vs	𝜎/𝑙.
[Hinze	1955]



Scales,	Ranges,	Trends
ØElastic range: 𝐿Í < 𝑙 < 𝐿(: where elastic effects matter.

Ø𝐿Í/𝐿(~(
Ò
Ó
)¸2/T𝜈¸2/$𝜖Ï

¸2/2Ô à Extent	of	the elastic	range

Ø𝐿Í ≫ 𝐿( required for	large	elastic	rangeà case	of	interest

4/4/18 WIN	2018 34

𝐻� Spectrum
𝐻:
�	

𝑘𝑘Pª 𝑘Í 𝑘(

Elastic	Range
Hydro-
dynamic	
Range

(𝐻:
� = 𝜓$ :)



• Key	elastic	range	physics:	Blob	coalescence
• Unforced case: 𝐿 𝑡 ~𝑡$/T.
(Derivation: 𝑣⃑ U 𝛻𝑣⃑~ Ó-

Ò
𝛻$𝜓𝛻𝜓 ⇒ ¡̇-

¡
~ ×
Ò
2
¡-
)

• Forced case: blob	coalescence	arrested	at	Hinze	scale 𝐿Í.

• Blob coalescence suggests inverse cascade is fundamental here.

Scales,	Ranges,	Trends
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• 𝐿 𝑡 ~𝑡$/T recovered
• Blob growth arrest observed
• Blob growth saturation scale 

tracks Hinze scale (dashed lines) 



Cascades:	Comparing	the	Systems

ØBlob	coalescence	in	the elastic range of CHNS	is analogous	to	flux	
coalescence	in	MHD.

ØSuggests	inverse	cascade of	〈𝜓$〉 in	CHNS.
ØSupported	by	statistical	mechanics studies (absolute	equilibrium	
distributions).

ØArrested by straining.
4/4/18 WIN	2018 36

MHD CHNS



Cascades

ØSo,	dual	cascade:
• Inverse cascade	of	 𝜓$ � �
• Forward cascade	of	𝐸� �

ØInverse	cascade	of	 𝜓$ is	formal	expression	of	blob	coalescence	
processà generate	larger	scale	structures	till	limited	by	straining	

ØForward cascade of	𝐸 as usual, as elastic force breaks	enstrophy	
conservation	

ØForward cascade of energy is analogous to counterpart in 2D MHD
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Cascades
ØSpectral	flux	of 𝐴$ : Spectral flux of 𝜓$ :

ØMHD:	weak	small	scale	forcing	on	𝐴 drives	inverse	cascade
ØCHNS:	𝜓 is	unforcedà aggregates naturally⟺ structure of free energy
ØBoth	fluxes	negativeà inverse cascades
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MHD

CHNS



Power	Laws
Ø 𝐴$ spectrum: 𝜓$ spectrum:

ØBoth	systems	exhibit	𝑘¸Ê/T spectra.
ØInverse	cascade	of	 𝜓$ exhibits	same	power	law	scaling,	so	
long	as 𝐿Í ≫ 𝐿(,	maintaining	elastic	range:	Robust	process.
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CHNSMHD
𝑓�



Power	Laws

ØDerivation of -7/3 power law:
ØFor MHD, key assumptions:

• Alfvenic	equipartition	(𝜌⟨𝑣$⟩ 	∼ 2
��
⟨𝐵$⟩	)

• Constant	mean	square	magnetic	potential	dissipation	rate	𝜖Í�, so
𝜖Í�~

ÍÂ

q
~(𝐻:�)

Ú
-𝑘

Û
-.

ØSimilarly, assume the following for CHNS:
• Elastic equipartition (𝜌⟨𝑣$⟩ 	∼ 𝜉$⟨𝐵�$⟩)
• Constant	mean	square	magnetic	potential	dissipation	rate	𝜖Í�, so

𝜖Í�~
ÍÜ

q
~(𝐻:

�)
Ú
-𝑘

Û
-.
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𝑓Ý

CHNS
More Power	Laws

ØKinetic energy spectrum (Surprise!):

Ø2D CHNS: 𝐸:Ë~𝑘¸T;

Ø2D MHD: 𝐸:Ë~𝑘¸T/$.

ØThe -3 power law:
• Closer	to	enstrophy	cascade	range	scaling,	in	2D	Hydro turbulence.
• Remarkable departure	from	expected	-3/2 for	MHD.	Why?	

ØWhy	does	CHNSßàMHD	correspondence	hold	well	for	
𝜓$ :~ 𝐴$ :~𝑘¸Ê/T, yet	break	down	drastically	for	energy???

ØWhat	physics underpins	this	surprise??
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Interface Packing Matters! – Pattern!
ØNeed	to understand	differences,	as	well	as	similarities,	between	
CHNS	and	MHD	problems.	

4/4/18
WIN	2018
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MHD CHNS

2D CHNS:
ØElastic	back-reaction	is	limited	to	regions	of	
density	contrast	i.e. |𝐵�| = |𝛻𝜓| ≠ 0.

ØAs	blobs	coalesce,	interfacial	region	
diminished.	‘Active	region’	of	elasticity	decays.

2D MHD:
Ø Fields pervade	system.



Interface Packing Matters!

ØDefine	the	interface	packing	fraction 𝑃:

𝑃 =
#	ßà	áiâã	äßâåhg	æçjij	|xÜ|èxÜ

Æ�Ç

#	ßà	hßhéê	áiâã	äßâåhg

Ø𝑃 for CHNS decays;
Ø𝑃 for MHD stationary!

Ø𝜕.𝜔 + 𝑣⃑ U 𝛻𝜔 = Ó-

Ò
𝐵� U 𝛻𝛻$𝜓 + 𝜈𝛻$𝜔: small 𝑃à local back reaction is

weak.

ØWeak back reactionà reduce to 2D hydroà k-spectra

ØBlob coalescence coarsens interface network
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What	Are	the	Lessons?

ØAvoid	power	law	tunnel	vision!
ØReal	space realization	of	the	flow	is	necessary	to	understand	key	
dynamics.	Track	interfaces	and	packing	fraction	𝑃.

ØOne	player	in	dual	cascade	(i.e.	 𝜓$ )	can	modify	or	constrain	the	
dynamics	of	the	other	(i.e.	𝐸).

ØAgainst	conventional	wisdom,	 𝜓$ inverse	cascade	due	to	blob	
coalescence	is	the	robust	nonlinear	transfer	process	in	CHNS	
turbulence.

ØBegs more attention to magnetic helicity in 3D MHD.
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Transport
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Active Scalar Transport

ØMagnetic diffusion, 𝜓 transport are cases of active scalar transport
Ø(Focus: 2D MHD) (Cattaneo, Vainshtein ’92, Gruzinov, P. D. ’94, ’95)

𝜕.𝐴 + 𝛻𝜙×𝑧̂ U 𝛻𝐴 = 𝜂𝛻$𝐴
𝜕.𝛻$𝜙 + 𝛻𝜙×𝑧̂ U 𝛻𝛻$𝜙 = 𝛻𝐴×𝑧̂ U 𝛻𝛻$𝐴 + 𝜈𝛻$𝛻$𝜙

ØSeek 𝑣¦𝐴 = −𝐷[
5 �
5¦

− 𝜂 5 �
5¦

ØPoint: 𝐷[ ≠ ∑ |𝑣:|
$�

: 𝜏:
ì , often substantially less

ØWhy: Memory!↔	Freezing-in
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scalar mixing – the usual

back-reaction
turbulent resistivity



Origin of Memory?

Ø(a) flux advection vs flux coalescence
• intrinsic to 2D MHD (and CHNS)
• rooted in inverse cascade of 𝐴$

Ø(b) tendency of (even weak)meanmagnetic field to “Alfvenize”
turbulence [cf: vortex disruption feedback threshold!]

ØRe (a): Basic physics of 2D MHD
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Memory Cont’d

Øv.s.

ØObvious analogy: straining vs coalescence; CHNS
ØUpshot: closure calculation yields:

Γ� = −∑ [𝜏¾
Ý 𝑣$ :î − 𝜏¾

� 𝐵$ :î
�
:î ] 5 �

5¦
+ ⋯	
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flux of potential competition
scalar advection vs. coalescence (“negative resistivity”)

(+) (-)



Zeldovich and Alfvenization

ØRe (b): Competition winner? →	Alfvenization!
ØAlfvenization is a natural consequence of stronger 〈𝐵〉, ala’ vortex
disruption

Øfluid stretches 〈𝐵〉, ala’ 𝐵L → 𝑏 in flux expulsion
ØHow to quantify: Zeldovich Theorem
𝐻� = ∫ 𝑑$𝑥	𝐻� = ∫ 𝑑$𝑥〈𝐴$〉
2
$
5ÍÂ
5.

= −Γ�
5 �
5¦

− 𝜂〈𝐵$〉
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Zeldovich and Alfvenization, Cont’d

ØSo 𝐵$ ≅ −ïÂ
p
5 �
5¦

≅ �ð
p

5 �
5¦

$

𝐵$ ≅ �ð
p
𝐵 $

ØStrong RMS field generated from modest 〈𝐵〉
ØReflects the effect of small scale B-field amplification (i.e. 𝐵L → 𝑏 )
ØUltimately, 𝜂 asserts itself (Cowling)
ØBest think 𝐵$ ↔ 𝑇w (elastic energy)
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(meta-stationary state)

O(Rm)

Small scale
field as elastic
network

𝐵



Bottom Line

ØEliminate 𝐵$ in Γ� using Zeldovich

ØSo: 𝐷[ = 𝐷Ë/ 1 + 𝑅𝑚  Â�
-

 -

Øwhere:
• 𝐷Ë is usual kinematic diffusivity

• 𝑅𝑚  Â�
-

 -
∼ 1 identical to vortex disruption threshold

• Weak 𝐵 “quenches” flux diffusion for large Rm

ØPhysics is memory enforced by strong, small scale field.
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[Implications for ⍺, dynamo, etc.]

(Well-established numerically)



Bottom Line, Cont’d

ØActive scalar transport bifurcation!

Γ� = −
�ñ

ò Â
ò±

2ó r�
ô õ-

ò Â
ò±

- − 𝜂
5 �
5¦

i.e.

ØExpect analogue in CHNS, modulo density gradient
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(Standard form)

Γ�

−
𝜕 𝐴
𝜕𝑥

𝐷[
𝜂

Spatio-temporal dynamics
largely unexplored
• bi-stable system
• fronts, barriers, domains



Something Old: Quenching

Ø𝑀$ = 𝑣Å$ /𝑣�L$

ØHigher 𝑣�L$ / 𝑣Å$ →	lower
𝐷[ →	longer 𝐸w persistance

ØUltimately 𝜂 asserts itself

ØBlue: 𝐵 sufficient for
suppression

ØYellow: Ohmic decay phase
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[Cattaneo and
Vainshtein ‘91]



ØInitial condition: cos(x) for A
ØShorter time (suppression phase)

• Domains, and domain boundaries
evident, resembles CHNS

• A transport barriers?!

ØLonger time (Ohmic decay phase)
• Well mixed
• No evidence nontrivial structure
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Spatial Structure (Preliminary)



Something New, Cont’d

ØFor analysis: pdf of A
ØSuppression phase:

• quenched diffusion
• bi-modal distribution

o quenching prevents fill-in
o consequence i.c.

ØOhmic decay phase:
• uni-modal distribution returns
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Higher Pm (Lower 𝜼𝑻)
ØBi-modal pdf of A structure
persists longer

ØBarrier resists Ohmic decay

ØA field exhibits strikingly sharp
domain structure

ØTransition layer (barrier) evident
ØClear example of decoupling of
transport, intensity.
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What of CHNS?

ØSo far much the same, without Ohmic decay phase

ØCH structure feeds elastic energy↔	resembles forcing in B-field in
MHD

ØOngoing
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Conclusion
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Conclusion, of Sorts

ØElastic fluids ubiquitous, interestingly similar and different.
Comparison/contrast is useful approach.

ØSimple problems, like flux expulsion (50+ years), reveal a lot about
basic feedback dynamics.

ØCHNS is interesting example of elastic turbulence where energy
cascade is not fundamental or dominant.

ØSpatio-temporal dynamics of (bi-stable) active scalar transport is a
promising direction. Pattern formation in this system is terra novo.

ØRevisiting polymer drag reduction would be interesting.
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