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Abstract
In the context of temperature gradient-driven, collisionless trapped-ion modes in magnetic con-

finement fusion, we perform and analyse numerical simulations to explore the turbulent transport

of density and heat, with a focus on the velocity dimension (without compromising the details

in the real space). We adopt the bounce-averaged gyrokinetic code TERESA, which focuses on

trapped particles dynamics and allows one to study low frequency phenomena at a reduced com-

putational cost.

We focus on a time in the simulation where the trapped-ion modes have just saturated in ampli-

tude. We present the structure in velocity space of the fluxes. Both density and heat fluxes present

a narrow (temperature-normalized energy width ∆E/T ≈ 0.15) resonance peak with an amplitude

high enough for resonant particles to contribute for 90% of the heat flux. We then compare these

results obtained from a nonlinear simulation, to the prediction from the quasi-linear theory and we

find a qualitative agreement throughout the whole energy dimension : from thermal particles to

high-energy particles. Quasi-linear theory over-predicts the fluxes by about fifteen percent, how-

ever this reasonable agreement is the result of a compensation between two larger errors of about

fifty percent, both at the resonant energy, and at the thermal energy.
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I. INTRODUCTION

Understanding and being able to predict core turbulent (or anomalous) transport, in or-

der to mitigate it, is crucial to achieve controlled fusion energy.

Turbulence appears spontaneously in strongly magnetized plasmas from microinstabilities

driven by density, temperature and sometimes velocity gradients[1]. Turbulence is a highly

nonlinear process involving multi-scale phenomena in phase space and time[2]. Indeed

plasma microinstabilities can give rise to large scale structures such as zonal flows[3–6]

or streamers[7–9].

This multi-scale physics is particularly challenging for numerical computation. In essence,

the nonlinearity of the turbulence is described by a system consisting of a Vlasov (or colli-

sionless Boltzmann) equation for each species coupled to Maxwell equations. The solution

of the Vlasov equation for a species s is the distribution function fs(~r,~v, t) depending of the

time t and a 6 dimensional phase space (~r,~v).

Gyrokinetic theory allows one to reduce the dimensionality from 6 to 5 (by averaging out the

fast cyclotron motion). The resulting phase-space is 4D (3 gyro-center spatial coordinates,

plus the guiding center parallel velocity v̄‖), parametrized by the magnetic moment µ̄ which

is an invariant[1, 10, 11].

When considering low frequency turbulence, typically of the order of the trapped particles

toroidal precession frequency, it is then possible to average out the bounce motion, further-

more reducing the dynamics to a reduced 2D phase-space, parametrized by the energy and

pitch-angle invariants, thus saving CPU time. The TERESA code used in this paper is based

on this reduced model and solves the Vlasov-Poisson system[12–14] using a Semi-Lagrangian

numerical scheme[1, 15, 16].

Exploring the details of the velocity space with brute force gyrokinetic simulation, even with

a local code, can consume up to 108 core.hours on a modern supercomputer[17]. The global

gyro-bounce averaged code TERESA allows one to study the details of the trapped particles

dynamics in the velocity space, without degrading the precision in the real space, and at

reasonable numerical cost.

For collisionless trapped-particles-driven modes, such as the trapped-electron mode (TEM)

or the trapped-ion mode (TIM), we expect the mode-particle resonance to play an essen-

tial role for the particles and heat fluxes. It was found recently that this poses an issue
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for the accuracy required to describe the mode structure, which has a strong, narrow peak

around the resonant energy[18]. Trapped-ion modes being weakly dispersive, all resonances

in the turbulent case could be very localized in the velocity (or energy) space. This raises

the issue of the precision required to accurately describe the fluxes in the velocity space

in gyrokinetic simulation when weakly dispersive modes are present. Usually, conventional

gyrokinetic simulation focus on fine description of the real space, but are limited to only a

handful of points in the velocity dimensions.

The present work aims to describe in details the velocity dependence of the heat and density

radial fluxes in nonlinear simulations from the gyro-bounce averaged code TERESA, in order

to give an estimate of the accuracy required in the velocity space to describe the resonant

fluxes. In this article, we focus on trapped-ion modes, although TERESA can treat TEM

as well.

To provide some reference point, the results from TERESA’s nonlinear simulation will

be compared to the quasi-linear theory. More than five decades after the two pioneering

papers[19, 20], quasi-linear theory[21–23] is still relevant nowadays because in spite of a

priori crude simplifications, its estimations of turbulent fluxes remains in good agreement

with experimental results[24, 25] as well as with nonlinear gyrokinetic simulations[26, 27].

The principal assumptions of the quasi-linear theory are a low level of fluctuations of the

distribution function (i.e. f = feq + δf and |δf | � feq where feq describes a slowly evolving

background distribution that is changing due to the effects of the unstable waves themselves)

and that there is no trapped particle inside "potential wells"[19, 28]. These assumptions can

be questioned in the case of trapped particles driven modes, where wave/particles resonances

play a central role. Quasi-linear theory also relies upon the assumption that the correlation

time τC of the electric field seen by a resonant particle is small as compared to the evolution

time of averaged quantities[29].

We describe the gyro-bounce averaged model of TERESA in section II. In section III, we

give the simulation configuration and input parameters. In section IV we show the radial

density and heat flux from the TERESA simulation in the real space (ψ, corresponding to

the minor radius), then we separate the contribution to the heat flux from thermal (low

energy) particles and resonant particles. We also introduce quasi-linear theory with the

purpose to give an element of comparison for the fluxes. Then in section V we explore in

details the energy dependence of the radial particle flux from TERESA, and we compare it
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to the quasi-linear estimation.

II. MODEL - TERESA CODE

The TERESA (Trapped Element REduction in Semi lagrangian Approach) code is based

on an electrostatic reduced bounce-averaged gyrokinetic model [12] [30] [14]. The dynamics

considered is of the order of the trapped particles precession timescale. Averaging out the

cyclotron and bounce motions allows one to reduce the dimensionality from 6D to 4D. The

bounce-averaged distribution function f of the trapped particles (or "banana center") thus

depends on 2 phase-space variables (an angle and an action) and 2 invariants. The phase-

space variables are : the poloidal magnetic flux ψ which is a function of the minor radius,

and will be used as a radial coordinate for the numerical simulations, and an angle α = ϕ−qθ

which is the toroidal precession angle, where ϕ is the toroidal angle, q is the safety factor

and θ is the poloidal angle. The phase space is parametrized by 2 invariants : the particle

kinetic energy E and the trapping parameter κ =
√

1−λ
2ελ where λ = µBmin

E
, µ is the magnetic

moment, Bmin is the minimum magnetic field amplitude, and ε = a
R0

is the inverse aspect

ratio (a being the minor radius and R0 the major radius at the magnetic axis).

The passing particles dynamics is considered adiabatic. In this article we focus on the

trapped ion dynamics and a quasi-adiabatic response of electrons is assumed although the

model allows kinetic response of both ions and electrons. The time evolution of the bounce-

averaged distribution function f of the trapped ions (or "banana center") is determined by

the Vlasov equation
∂f

∂t
− [J0φ, f ]α,ψ + EΩd

∂f

∂α
= 0 (1)

where φ is the plasma electrostatic potential, EΩd is the energy-dependent precession fre-

quency, [g, h]α,ψ = ∂αg∂ψh − ∂αh∂ψg are the Poisson bracket, and J0 is the gyro-bounce-

averaging operator.

Eq. (2) is obtained from the Poisson equation, it closes the system and allows the model to

be self-consistent.

C1
[
φ− 〈φ〉α + F−1

(
iδmφ̂m

)]
− C2∆̄φ = 2√

π

∫ ∞
0
J0(E)f

√
EdE − 1 (2)

where F−1 is the inverse Fourier transform, δm is the electron dissipation which takes into

account the effects of electrons-ions collisions, expressed as a phase-shift between electron
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density and perturbed electric potential[18], φ̂m is the m-th component of the Fourier de-

composition in α of φ. C1 = C2(1 − fT )(1 + τ)/fT and C2 = a/R0 are dimensionless,

constant input parameters, where fT is the fraction of trapped particles and τ is the

ion/electron temperature ratio, ∆̄φ is the polarization term of the quasi-neutrality equa-

tion, with ∆̄ =
(
q0ρ0
a

)2
∂2

∂α2 + δ2
b
∂2

∂ψ2 .

This reduced model relies on the following assumptions:

• The equilibrium configuration is that of a large aspect ratio tokamak. However, the

inverse aspect ratio ε must not be so small that the fraction fT ∼
√
ε of trapped

particles is negligible.

• Resonant interactions are dominated by strongly trapped ions. In this case, we can

neglect the radial variation of precession frequency, and we focus on a single value of

the pitch-angle.

• The mode frequency is much lower than the passing ion transit frequency.

• The plasma is at low-β, in other words trapped ion precession resonance-driven modes

are mostly electrostatic.

All the physical quantities are normalized as listed in the Table I. We will now omit the hat

for normalized quantities for clarity.

More details on this model are available in [12–14, 30–33]

III. SIMULATION CONFIGURATION

We run our nonlinear simulations with the gyrokinetic code TERESA and we focus on

the ion dynamics. The grid in phase space is uniform, with Nψ points in ψ ∈ [0; 1], with

ψ = 1 being in the center of the fusion plasma and ψ = 0 being toward the edge (but

still in the core) and Nα points in the toroidal precession angle α ∈ [0; 2π[. We choose

Nα ×Nψ = 256× 257. For the 2 invariants, the grid has NE points in E ∈ [0; 20]. It should

be noted that such a range of energy is required for the convergence of the simulation results.

A single value in κ = 0 which corresponds to deeply trapped particles[13] is chosen. The

energy grid is finer close to E = 0 and looser for higher E allowing greater precision for low

E. This is done using a new parameter V =
√
E instead of the parameter E itself, so that
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Dimension of e.g. Normalization

Time t, ω−1 t̂ = ωd,0t

Length r r̂ = r(B0/q0Lψ)1/2

Poloidal magnetic flux ψ, a, ρ0, δb ψ̂ = ψ/Lψ

Electric potential perturbation φ φ̂ = (R0/a)eφ/T0

Energy E Ê = E/T0

Density n n̂ = n/n0

Temperature T T̂ = T/T0

TABLE I: Normalization. Physical quantities are noted without a hat, and dimensionless

quantities with a hat. Here, ωd,0 ≡ q0T0/(eaR0B0) is a typical precession frequency of

strongly trapped ions at E = T0, n0 and T0 are arbitrary normalizing ion density and

temperature such that n̂ = T̂ = 1 at ψ̂ = 1, and Lψ = a2B0/q0 is the radial size of the

simulation box in magnetic flux units. Note that the minor radius a, the Larmor radius ρ0,

and the banana width δb are all expressed in units of Ψ here. In the main text, the

notation "̂ " is omitted for clarity.

Grid Number of grid points Value

α Nα = 256 α ∈ [0; 2π[

ψ Nψ = 257 ψ ∈ [0; 1]

κ Nκ = 1 κ = 0

E, V NE or NV = 1024 E ∈ [0; 20]

TABLE II: Grid used for our simulations. α and ψ are the phase-space variables while κ

and E (or V ) are parameters.

the new grid in V still have NE points but is finer in terms of E for low V , corresponding to

low E. In this paper we choose NE = 1024. We noticed for instance an error of about 6%

on the density and heat fluxes when we choose 128 points in energy instead of 1024 points.

With 64 points in energy the density flux has an error of 25% and the heat flux an error of

10%.

Here, the TERESA simulations are performed with thermal baths at both outside boundary
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Quantity Value

Ion Larmor radius ρi = 0.01

Ion banana width δbi = 0.1

Initial temperature gradient κT = 0.15

Initial density gradient κn = 0

Trapped particles precession frequency Ωd = 1

C1 C1 = 0.1

C2 C2 = 0.1

Electron dissipation[18] δm = 0.02

TABLE III: Input parameters.

ψ = 0 and inside boundary ψ = 1. Artificial dissipation is imposed in buffer regions

ψ < 0.15 and ψ > 0.85 to smooth out the transition between turbulent fluctuations of φ,

and the constraint φ = 0 at ψ = 0 and ψ = 1. In the figures represented with a ψ axis, the

buffer zones are for ψ ∈ [0; 0.15] and ψ ∈ [0.85; 1], and will be shaded in grey.

We choose the ion Larmor radius ρi = 0.01 and the ion banana width δbi = 0.1.

The initial radial temperature gradient is κT = 0.15.

At t = 0 the electrostatic potential is a sum of sines both in α and ψ, multiplied by an

envelope, so that it is close to zero at ψ = 0 and ψ = 1, and writes

φ |t=0= φsum of sines

(
tanh

(
ψ − ψ2

Lψ

)
+ tanh

(
Lψ − ψ − ψ2

Lψ

))
(3)

where ψ2 = 0.15 and Lψ = 1.

The buffers artificial diffusion is of the form :

Dbuffers(ψ) = D0

[
2−

(
tanh

(
ψ − ψ0

LD

)
+ tanh

(
Lψ − ψ0 − ψ

LD

))]
(4)

with D0 = 0.001, ψ0 = 0.1, LD = 0.02.

The equilibrium distribution function feq is chosen as locally Maxwellian in V (so exponential

in E) as

feq(ψ,E) = e−E[1 + (κT (E − 3/2) + κn)ψ] (5)

where κn ≡ ∂ log(neq)
∂ψ

|ψ=0 is a constant input parameter, which measures the equilibrium

density gradient and similarly κT measures the temperature gradient.

The grid configuration and the input parameters are recalled in tables II and III respectively.
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FIG. 1: Time-evolution of the amplitude of 10 Fourier modes of the electric potential φ.

The modes l = 5 to l = 13 correspond to the 9 most intense modes and the l = 0 mode

corresponding to the zonal flow. The intensity of each l 6= 0 mode grows in the linear

phase from t = 0 to t ≈ 5, when they reach saturation level. The dominant modes at time

t ≈ 5 are the modes 7, 8, 9, 10 and 11. This plot is for ψ = 0.5. For ψ = 0.3 or ψ = 0.7,

the only significant difference is that the l = 0 mode corresponding to the zonal flow has

an intensity of the same order of magnitude than the other modes.

IV. TRAPPED-ION-MODE TURBULENCE AND RADIAL TRANSPORT

In this section we analyse the evolution of the turbulent field, and the resulting density

and heat fluxes obtained from the TERESA simulation.

1. Time evolution of dominant modes

Fig. (1) shows the obtained time evolution of a selection of dominant modes. We observe

a phase of linear growth of the plasma potential from t = 0 until t ≈ 4 − 5. Linearly,

the most unstable mode is the mode number l = 9, where φ = ∑
l φl exp(ilα). Its linear

frequency and growth rate are ωl = 15.6 and γl = 0.987. After t = 5 the modes achieve

their saturation level. The saturation amplitude in terms of the root mean square φrms is

of the order of φrms ∼ 0.05. In physical units, since we have chosen an aspect ratio ε = 0.1,

we obtain eφrms/T ∼ 5× 10−3.

At t ≈ 5, the most intense modes are the modes around l = 10. For the rest of this article
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we investigate the time t = 5, at the beginning of the turbulent phase, where the dominant

modes have just achieved saturation.

2. Particle, density, and heat fluxes

Averaging the Vlasov equation over the angle α yields

∂〈f〉α
∂t

= ∂

∂ψ
ΛNL
ψ (ψ,E, t), (6)

with

ΛNL
ψ (ψ,E, t) = −〈ψ̇f〉α =

〈
∂J0φ

∂α
δf

〉
α

, (7)

where δf = f − 〈f〉α.

The quantity ΛNL
ψ is the nonlinear radial particle flux. It is calculated directly within the

TERESA simulation.

Taking the moments of Eq. (6) yields the following conservation equations:

∂〈n〉α
∂t

= ∂ΓNL

∂ψ
, (8)

∂〈nT 〉α
∂t

= ∂qNL

∂ψ
, (9)

with the density flux

ΓNL(ψ, t) =
∫
E

ΛNL
ψ (ψ,E ′, t)

√
E ′dE ′, (10)

or the heat flux

qNL(ψ, t) =
∫
E

ΛNL
ψ (ψ,E ′, t)E ′

√
E ′dE ′. (11)

The velocity space is linked to the energy space as d3v = C
√
EdE with C being a constant[34,

p. 44], therefore we add a
√
E factor inside the integral over energy space to physically

integrate over the velocities.

Note that we distinguish the particle (in the sense of "test particle") flux Λ, which is also

the flux of phase-space density, and the density (in the sense of fluid density) flux Γ.

Fig. 2a shows the density flux Γ(ψ, t), and Fig. 2b shows the heat flux q(ψ, t), both at the

given time t = 5. The quasi-linear fluxes will be discussed later.
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(a) (b)

FIG. 2: Nonlinear and quasi-linear radial density (2a) and heat (2b) fluxes as a function of

ψ and at t = 5.

The artificial density and heat fluxes due to the buffers diffusion in TERESA are included.

The positive sign of both Γ and q is consistent with a flattening of the initial gradients. The

fluxes are bell shaped because of the boundary conditions restraining the instability to a 0

value at ψ = 0 and ψ = 1. Simulation with larger box size yielded flatter flux profile, but

with higher numerical cost, so this paper focuses on a "small box".

In order to obtain more information about the origin of turbulent transport, we are now

going to separate the contribution from thermal particles and from resonant particles, by

integrating over different ranges of energy E.

Thermal particles and resonant particles will be discriminated as follows : thermal particles

range of integration will be E ∈ [0; 1.4] and for the resonant particles E ∈ [1.4; 2.4].

These integration intervals are chosen to take into account all the particles below the reso-

nance energy for the thermal particles, and all the particles in the resonance peak for the

resonant particles. These choices are coherent considering Fig. 4 and 5, discussed later in

the paper.

Figs. 3a and 3b show the contribution to the heat flux of the thermal and the resonant

particles, respectively.
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(a) (b)

FIG. 3: (3a) qNL,QLth (ψ, t) =
∫ E2=1.4
E1=0 〈Λ

NL,QL
ψ 〉α(ψ,E ′, t)E ′

√
E ′dE ′ takes into account

only the thermal particles contribution to the heat flux. (3b) qNL,QLR (ψ, t) =∫ E3=2.4
E2=1.4 〈Λ

NL,QL
ψ 〉α(ψ,E ′, t)E ′

√
E ′dE ′ takes into account only the resonant particles contri-

bution to the heat flux. The buffer zones are shaded.

The resonant particles contribution accounts for more than 90% of the total heat flux.

Furthermore, the contribution from thermal particles has the opposite sign. This can be

simply explained by the sign of ∂〈f〉α
∂ψ

which is positive for E > 3/2 but negative for E < 3/2.

Here we focused on heat, but similar conclusions are reached for the density flux.

3. Quasi-linear theory

Quasi-linear theory describes the slow evolution (∂ log 〈f〉
∂t
� γk with γk the linear growth

rate of the most unstable mode) of the α-averaged particle distribution function 〈f〉α, as the

solution of a diffusion equation[35],

∂〈f〉α
∂t

= ∂

∂ψ

(
DQL

∂〈f〉α
∂ψ

)
(12)

In other words, the particle flux takes a specific form, ΛQL
ψ (ψ,E, t) = DQL

∂〈f〉α
∂ψ

.

Eq. (12) is obtained by substituting the linear response for φ and δf in Eq. (7), which

implies neglecting some of the nonlinear coupling terms as described in appendices A and

B.
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The main hypotheses of quasi-linear theory are : weak turbulence (small fluctuations of the

profiles compared to the equilibrium), no trapped particles in electrostatic potential ’wells’

(with a very large number of electrostatic waves, the resonance region of each waves can

overlap so that the particle motion becomes stochastic, and the particle can wander in the

velocity phase space[35, 36]) and a small auto-correlation time of the electric field compared

to the evolution time of the profiles.

The quasi-linear radial particle flux ΛQL
ψ (ψ,E, t) is the product of the quasi-linear diffusion

coefficient DQL and the mean gradient

ΛQL
ψ (ψ,E, t) = −DQL(ψ,E, t)∂〈f〉α

∂ψ
(ψ,E, t), (13)

with

DQL(ψ,E, t) =
∑
l

l2
∣∣∣φ̂l(ψ,E, t)∣∣∣2 1− e−i(ωR,l−ωl)t−γlt

i(ωR,l − ωl) + γl
, (14)

and

ωR,l(ψ,E, t) = l

ΩdE

Z
+ ∂φ̂0

∂ψ

 , (15)

where the sum ∑
l is over the l components of the Fourier decomposition in α of the gyro-

bounce averaged electrostatic potential, noted φ̂l(ψ,E, t). Derivation of equations (13) and

(14) are detailed in appendix A. γl and ωl are respectively the growth rate and linear

frequency of each trapped-ion mode l, ωR,l(ψ,E, t) is homogeneous to a frequency and ∂φ̂0
∂ψ

accounts for the Doppler effect from the mean flow (including zonal flow), and the trapped

particles precession frequency Ωd and Z are equal to 1 in our normalized units.

The moments of Eq. (13) yields the QL density flux

ΓQL(ψ, t) =
∫
E

ΛQL
ψ (ψ,E ′, t)

√
E ′dE ′, (16)

or the QL heat flux

qQL(ψ, t) =
∫
E

ΛQL
ψ (ψ,E ′, t)E ′

√
E ′dE ′. (17)

To compute the quasi-linear fluxes, the electrostatic potential φ, the mean distribution

function 〈f〉α, the modes growth rate γl and the modes frequency ωl are needed.

In order to test fundamental aspects of the QL formalism, we want to limit the sources of

discrepancies between QL theory and NL simulations. We thus take φ and 〈f〉α directly

from the TERESA simulation, instead of using approximations such as the mixing length.
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γl and ωl are obtained from the resolution of the linear dispersion relation[14, 33].

DQL includes the contribution of the zonal flow. Because the zonal radial electric field ∂φ̂0
∂ψ

fluctuates rapidly in ψ and in time, which can create artifact in the resonance considering

its presence in the denominator of Eq. (14), we average this quantity over time and ψ.

Considering we are only interested in the time t = 5, we thus perform a time averaging

over t ∈ [4.8; 5.2]. This time window (0.4) corresponds to a typical oscillation time of ∂φ̂0
∂ψ

.

We then perform a moving average in ψ with a 100 points window. This window in ψ

corresponds to approximately a third of the total box size in ψ.

After these averages, the quantity ∂φ̂0
∂ψ

has only a ψ dependence and can take positive or

negative values. For example, for the highest oscillation amplitude of ∂φ̂0
∂ψ

we have ∂φ̂0
∂ψ

(ψ ≈

0.28) ≈ 0.06 and ∂φ̂0
∂ψ

(ψ ≈ 0.34) ≈ −0.05. These oscillations in value have an impact on the

position in energy of the resonance peak. Between these values of ψ, the resonance peak

can shift in energy space from E ≈ 1.79 to E ≈ 1.66, only by considering two ψ positions

yet quite close.

Figures 2 and 3 include the QL prediction for the density and heat fluxes. The NL fluxes

and QL predictions are in qualitative agreement. However, there are significant quantitative

discrepancies, even as we have chosen the best case scenario for QL theory (t not too large, φ

and ∂f
∂ψ

directly from simulation and no mixing length estimate). The quasi-linear estimation

of the density flux, the heat flux, the thermal particles contribution to the heat flux and the

resonant particle contribution to the heat flux respectively present a 16%, 16%, 50% and

a 20% discrepancy compared to the nonlinear flux obtained from the TERESA simulation.

In appendix B, we present a comparison of the neglected or kept terms in the quasi-linear

equation. We find that two key terms contribute to the radial transport : the linear term
∂φ
∂α

∂〈f〉α
∂ψ

which is kept in the quasi-linear equation and the nonlinear term
〈
∂φ
∂α

∂δf
∂ψ

〉
which

is neglected. A comparison term by term shows that the neglected nonlinear term which

contribute to the radial transport is in fact greater than the kept linear term. This may

explain the discrepancy between the nonlinear and quasi-linear fluxes.

The next section is focused on the investigation of the details in the velocity (or energy)

space of theses fluxes.
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FIG. 4: Resonance condition for each modes l with Ωd = 1 and Z = 1. The time averaging

around t = 5 of ∂φ̂0
∂ψ

is necessary and is explained in section IV. This figure, coupled with

Fig. 1, shows that we can expect the resonance to be the most intense for an energy

E ≈ 1.78 to E ≈ 1.83 at t = 5, because the most intense modes in ψ = 0.5 are the modes

between l = 7 and l = 11.

V. ANATOMY OF THE RADIAL FLUXES IN THE ENERGY SPACE

TERESA allows us to investigate in details the velocity (or energy) space at reduced

computational cost. In this section we will investigate the energy dependence of the particle

flux ΛNL(ψ,E, t), at ψ = 0.5 and at time t = 5, taking advantage of our large number of grid

points in energy, NE = 1024. In order to have some reference point, we will then compare

ΛNL to the quasi-linear particle flux ΛQL.

The quasi-linear diffusion, Eq. (14), presents a resonance for each mode l, when ωR,l(ψ,ER, t) =

ωl, with ER = Z
Ωd

(
ωl
l
− ∂φ̂0

∂ψ

)
. This peak is the result of the resonance between the low fre-

quency trapped ions modes and the precession of trapped particles. The position of the

resonance for each mode is mainly determined by the ratio ωl
l
. The mean flow contribution

∂φ̂0
∂ψ

slightly shifts the position of the resonance as discussed in section IV. The contribution

of the most intense modes to the fluxes will be greater, so that the peak position will be

mainly determined by these most intense mode at t = 5 (see Fig. 1). Fig. 4 shows the

resonant energy ER as a function of the modes l. The dominant modes (l = 7 − 11) have

their resonant energy in the range E ∈ [1.78; 1.83]. Therefore we can expect a narrow,
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FIG. 5: Nonlinear and quasi-linear radial particles fluxes as a function of E and at t = 5.

∆E ≈ 0.05 resonance peak for the flux around E ≈ 1.8.

Fig. 5 shows the particle flux (or flux of phase-space density f), ΛNL(ψ,E, t), at a fixed

radius ψ = 0.5. The sign is everywhere consistent with a flattening in ψ of 〈f〉α (since ∂〈f〉α
∂ψ

is negative for E < 3/2 and positive for E > 3/2, as explained in section IV 2). As expected,

the nonlinear (from TERESA simulation) fluxes in the energy/velocity space, at the middle

of the box and at t = 5, present a narrow resonance peak. The resonance peak width is about

∆E ≈ 0.15 (obtained by a Gaussian fit of the resonance peak, ΛNL ∼ exp[(E − E0)/∆E]).

Strikingly, the resonance peak accounts for most of the flux. Indeed the flux at the resonance

is one order of magnitude stronger than the flux for thermal particles, while the high energy

particles flux tends to 0.

We must keep in mind that the position of this resonance peak is determined by the most

intense electrostatic modes at this ψ and time, and can be slightly shifted by the intensity

of the zonal radial electric field ∂φ̂0
∂ψ

.

Fig. (5) includes the QL particle flux ΛQL as well. The NL and QL fluxes are in qualitative

agreement, in terms of sign, energy of sign reversal, position of peak, width of peak, and

behavior at large energies. However, quantitatively, the discrepancy between the nonlinear

fluxes and the quasi-linear estimation is of 41% at E = 0, 55% at E = 1, and 57% at the

resonance peak. As discussed in section IV 3, appendix B shows that out of two terms con-

tributing to the radial transport, only the linear term is kept in the quasi-linear theory while
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the nonlinear term is neglected. The term by term comparison shows that the neglected

nonlinear term is greater than the kept linear term, which may explain this discrepancy.

VI. CONCLUSION

We performed a numerical simulation of trapped ion mode turbulence with the bounce-

averaged gyrokinetic TERESA code. It is based on a reduced model, which is meant to

investigate fundamental mechanisms and trends, rather than provide realistic quantitative

predictions for tokamaks. The trapped ions are treated kinetically, while the passing ions

respond adiabatically. The electrons respond quasi-adiabatically. The simulation parameters

correspond to a small aspect ratio (0.1), a radial box size of 10 banana widths, a flat density

profile, and a moderate temperature gradient (gradient length of 67 banana widths). The

electric potential in terms of root mean square φrms saturates to a value eφrms/T0 ≈ 5×10−3.

To investigate how the radial turbulent transport depends on the energy dimension, the

simulation was performed with a large number of grid points NE = 1024. We focused

on a radial location in the middle of the simulation box, and on a time in the simulation

where the dominant trapped-ion modes have just achieved saturation, corresponding to the

beginning of the turbulent phase. As expected, the radial flux is negative for E/T0 < 3/2 and

positive for E/T0 > 3/2, consistent with a flattening of the radial gradient of the distribution

function. We emphasize that the flux features a narrow peak in the resonant region, with a

width ∆E/T0 ≈ 0.15, around the energy E/T0 ≈ 1.8. Strikingly, this resonant peak accounts

for 90% of the density and heat fluxes. In contrast, the contribution from thermal particles

is negligible. Based on these results, a fine mesh in the energy space (δE � 0.1T0), in the

resonant region, is required to accurately describe the radial transport of density and heat.

The quasilinear predictions for radial fluxes (including the effect of zonal flow) are in

qualitative agreement with the simulation results, in terms of global structure in the radial

direction, sign throughout the energy dimension, behavior at small and large energies, and

for the resonant peak in terms of its shape, location and width in the energy dimension.

However, quantitatively, there is a 57% overprediction at the peak, and a 55% overprediction

at the thermal energy E = T0. Since the flux is positive for resonant energies, and negative

for thermal energies, these discrepancies can compensate each others. Indeed, the total

density and heat fluxes predicted by quasi-linear theory are in good quantitative agreement
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with the nonlinear simulation result, with only 16% overprediction. However, this agreement

is only a result of compensating errors. We showed that the non-zonal nonlinear part of the

radial advection in the Vlasov equation is actually slightly larger than the linear part. This

can explain the discrepancy, since quasi-linear theory discards the non-zonal nonlinear part

to obtain the response of the perturbed distribution function f − 〈f〉. Here, we should

emphasize that we have chosen to maximize the chances of success of quasilinear theory.

Indeed, both electric potential and mean distribution were taken directly from the nonlinear

simulation, and substituted into the quasilinear formula for the flux. We did not use theory-

based assumptions for the potential spectrum and amplitude, nor did we use an analytic

equilibrium for the mean distribution. In this sense, we did not really test a prediction, but

rather we have tested the assumptions underlying quasilinear theory.

In this paper we focused on the trapped ion mode (TIM), but we expect similar results

for the trapped electron mode (TEM). However, our analysis does not include the effects

of neither ion-temperature-gradient (ITG) nor electron-temperature-gradient (ETG) modes,

since the kinetic description in TERESA is limited to trapped particles. We believe this is

the main caveat to our analysis, since, for example in ITG turbulence, resonances may not

play such a crucial role in the transport, and therefore the co-existence and/or the coupling

between TEM and ITG may mitigate the importance of the resonant peak in the radial

fluxes.

Another important caveat is that boundary conditions consist of thermal baths, which

strongly restrict the evolution of the profiles. As a result, the heat flux remains small, and

the relaxation of the initial temperature gradient is only marginal. A future analysis based

on flux-driven simulations may provide new information about the role of resonant particles

in turbulent transport.
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Appendix A: Quasi-linear diffusion coefficient

In this appendix, the quasi-linear diffusion coefficient derivation for the TERESA model

is detailed, adopted from the procedure developed in the case of the 1D Vlasov-Poisson

model[36]

The starting point is the Vlasov equation in normalized units,

∂f

∂t
+
[
EΩd

Z
+ ∂φ

∂ψ

]
∂f

∂α
− ∂φ

∂α

∂f

∂ψ
= 0, (A1)

where f(α, ψ,E, t) is the distribution of banana centers, Z is the charge number, and

φ(α, ψ,E, t) = J0(E)φ̄(α, ψ, t) denotes the gyrobounce-gyroaverage of the electric poten-

tial φ̄, with

J0(E) ≈
(

1 + ρ2
0

4 E
∂2

∂α2

)(
1 + δ2

b

4 E
∂2

∂ψ2

)
. (A2)

which comes from the Taylor expansion of the product of two Bessel functions, J0(k⊥ρ0)

and J0(kψδb), in the limit of long-wavelength where k⊥ρ0 � 1 and kψδb � 1.[31, 34] We

transform f and φ in Fourier space in the α direction,

f̂m(ψ,E, t) = 1
2π

∫ 2π

0
f e−imαdα, (A3)

φ̂m(ψ,E, t) = 1
2π

∫ 2π

0
φ e−imαdα. (A4)

The Fourier transform of Eq. (A1) yields

∂f̂m
∂t

+ im
EΩd

Z
f̂m − imφ̂m

∂f̂0

∂ψ
= −

∑
l

ilf̂l
∂φ̂m−l
∂ψ

+
∑
l 6=0

i(m− l)φ̂m−l
∂f̂l
∂ψ

. (A5)

The rhs corresponds to nonlinear wave-wave and wave-particle interactions. In the frame-

work of quasilinear theory, the nonlinear wave-wave and wave-particle interactions are as-

sumed to be weak according to the hypotheses of weak turbulence and of no particle trapped

in electrostatic potential. Thus we neglect these nonlinear interactions except for m = 0 or

l = m. Therefore, for m 6= 0, Eq. (A5) is approximated by

∂f̂m
∂t

+ im
EΩd

Z
f̂m − imφ̂m

∂〈f〉
∂ψ

+ imf̂m
∂φ̂0

∂ψ
= 0, (A6)
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where 〈〉 is the average in α.

The latter equation is of the form

Lf̂m = g(ψ,E, t), (A7)

where L is the linear operator L = ∂t + iωR,m(ψ,E, t), with

ωR,m(ψ,E, t) = m

ΩdE

Z
+ ∂φ̂0

∂ψ

 (A8)

and g = imφ̂m∂ψ〈f〉. For ωR,m = 0, the solution is trivial. For ωR,m 6= 0, Eq. (A7) can

be solved using Green’s function GE(t, s) = exp [iωR,m(s− t)], which is such that LGE =

δ(s− t). The solution is

f̂m(ψ,E, t) =
∫ t

0
eiωR,m(s−t) im φ̂m(ψ,E, s) ∂〈f〉

∂ψ
(ψ,E, s) ds. (A9)

It turns out that the latter expression is also valid for ωR,l.

Each mode is assumed to have a fixed frequency ωm (obtained from linear theory), and

a time-dependent growth rate γm,

φ̂m(ψ,E, t) = φ̂m(ψ,E, 0) exp
[∫ t

0
(−iωm + γm(t′)) dt′

]
. (A10)

For m = 0, Eq. (A5) simplifies as

∂〈f〉
∂t

+
∑
l

il
∂(f̂lφ̂∗l )
∂ψ

= 0. (A11)

Substituting Eqs. (A9) and (A10) yields

∂〈f〉
∂t

= ∂

∂ψ

[∑
l

l2
∣∣∣φ̂l(ψ,E, t)∣∣∣2 ∫ t

0
ei(ωR,l−ωl)(s−t)

∂〈f〉
∂ψ

∣∣∣∣∣
s

exp
(∫ s

t
γ(t′)dt′

)
ds
]
. (A12)

Since the rhs phase-mixes for t − s larger than a typical growth time γ−1 and a typical

timescale of relaxation of 〈f〉, we can approximate
∫ s
t γ(t′)dt′ by γ(t)(s− t) and ∂ψ〈f〉|s by

∂ψ〈f〉|t. With this approximation, the time evolution of the α-averaged distribution function

simplifies to
∂〈f〉
∂t

= ∂

∂ψ

[
DQL

∂〈f〉
∂ψ

]
, (A13)

with

DQL(ψ,E, t) =
∑
l

l2
∣∣∣φ̂l(ψ,E, t)∣∣∣2 1− e−i(ωR,l−ωl)t−γlt

i(ωR,l − ωl) + γl
, (A14)
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The electrostatic potential φ used will be the one obtained from the TERESA simulation.

The quasi-linear particle flux is thus the product of the quasi-linear diffusion coefficient DQL

and the α-averaged trapped ion distribution function gradient

〈Λψ〉QL
α (ψ,E, t) = −DQL(ψ,E, t)∂〈f〉α

∂ψ
(ψ,E, t), (A15)

Appendix B: System equation terms comparison

Quasi-linear theory neglect some of the nonlinear terms in the Vlasov-Poisson system.

In this appendix we give details about the neglected or kept linear or nonlinear terms in the

quasi-linear approximation.

The linear terms from Equation A5 are:

• L1,m = ∂f̂m
∂t

• L2,m = mEf̂m

• L3,m = mφ̂m
∂f̂0
∂ψ

and the nonlinear terms are:

• NL1,m = mf̂m
∂φ̂0
∂ψ

• NL2,m = ∑
l 6=m lf̂l

∂φ̂m−l
∂ψ

• NL3,m = ∑
l 6=0(m− l)φ̂m−l ∂f̂l∂ψ

In order to compare their magnitude, we take their absolute value and sum them over all

non zonal modes, which gives us the terms L1, L2, L3, NL1, NL2 and NL3, where

L1 =
∑
m6=0
|L1,m| . (B1)

The terms kept in the quasi-linear equations are the terms L1,2,3 and NL1.

We plot on Figure 6 the linear and nonlinear terms of the system at a time t = 5 of the

simulation and as a function of the particles energy.

L1 is not represented because choosing an adequate timestep in order to evaluate ∂f̂m
∂t

can

be a tricky task considering the timestep taken for the simulation. However it is possible to
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estimate the magnitude of this term.

From A5 we have L1 + L2 + L3 = NL1 + NL2 + NL3. We observe on Figure 6 that L2 �

L3,NL1,NL2,NL3 (except for E � 1), thus, we deduce that L1 is of the same order of

magnitude than L2 and that the two terms cancel each other out.

L2 correspond to the bananas precession around the toroidal direction and does not impact

transport in the radial direction nor the QL radial fluxes.

L3 contributes directly to the radial QL fluxes since it involves the gradient of 〈f〉α in the

ψ direction.

NL1 involves the zonal radial electric field ∂φ̂0
∂ψ

and is the one responsible for the resonance

peak shift in the energy/velocity dimension.

NL2 and NL3 correspond to all the other nonlinear coupling that don’t involve the zonal

flow. NL3 contributes directly to the radial transport since it involves the gradient of 〈f〉α
in the ψ direction but is neglected in the framework of the quasi-linear theory.

The key terms influencing the radial fluxes are thus L3 and NL3 but only L3 is taken into

account.
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FIG. 6: (6a) Comparison between linear and nonlinear terms from the system equations. In

the quasi-linear theory the nonlinear coupling is neglected. (6b) Zoom around the resonance

on the key terms contributing to radial transport : L3 and NL3.
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We observe that the key term influencing the radial transport, kept in the quasi-linear

theory (L3) is small compared to the neglected nonlinear coupling term also influencing the

radial transport (NL3), especially around the resonance energy. The other neglected term

(NL2) is in contrast small compared to the other non neglected term. From this, one can

expect large discrepancy between nonlinear and quasi-linear theory.
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