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Introduction

We introduce a new model for turbulence spreading in MFE
plasma, an important phenomenon that delocalizes the
relation between fluctuation intensity and temperature
gradient

Unlike conventional models, this model
1 Accounts for observed hysteresis in the fluctuation intensity
2 Predicts significantly stronger delocalization, via ballistic

spreading into the stable zone
3 Supports subcritical spreading of turbulence

It also (a) serves as physical model for avalanching by
supporting intermittently propagating turbulent excitations
and (b) provides a quantitative estimate for the threshold for
such pulses to propagate



What is turbulence spreading?

Phenomenon in which turbulent
fluctuations propagate radially
[Garbet et al., 1994,
Diamond and Hahm, 1995]

Fluctuations can penetrate into
linearly stable zone and excite
turbulence there
[Hahm et al., 2004,
Naulin et al., 2005]

Closely related to avalanching,
transport barrier/staircase
formation
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Figure Cartoon depicting a
turbulence pulse propagating
into the stable zone and ex-
citing turbulence there.



Why is turbulence spreading important?

Believed to be key actor in various nonlocality phenomena
[Ida et al., 2015]

Crucial: spreading results in the fluctuation intensity being
influenced by dynamics outside of the turbulence correlation
length

Result: fluctuation level, heat flux have nonlocal dependence
on driving gradient, e.g.

Q(r) = −χ∇T (r) −→ Q(r) = −χ
∫

dr ′ K (r , r ′)∇T (r ′)

Spreading also believed to be involved in the observed
breakdown of gyro-Bohm transport scaling
[Lin and Hahm, 2004]



Conventional wisdom: Fisher fronts

How to model spreading? Simplest, most common model is
based on Fisher equation for normalized turbulence intensity I :

∂t I = γ0I︸︷︷︸
local lin.

growth/decay

− γnl I
2︸︷︷︸

local nonlin.
coupling to
dissipation

+ ∂x (D(I )∂x I )︸ ︷︷ ︸
nonlin. diffusion of turb. energy

Typically take D(I ) = D0I

If lin. stable (γ0 < 0): single stable root at I = 0 (low
turbulence)

If lin. unstable (γ0 > 0): unstable root at I = 0, stable root at
I = γ0/γnl (high turbulence)—quadratic term saturates
growth



Fisher fronts (cont’d)

Upshot: if supercritical, turbulent
fluctuations grow into traveling
waves connecting the two roots

Wavefronts propagate at constant
speed

c =

√
D0γ2

0

2γnl

If subcritical, all fluctuations decay
to I = 0 exponentially in time
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Figure Initial fluctuation in
Fisher will grow into a wave
and spread if γ0 > 0 or decay
to 0 if γ0 < 0



How does Fisher do?

Correctly predicts ballistic spreading,
reasonable success predicting
propagation speed

However: penetration into stable zone
is weak. Turbulence level decays
exponentially to finite depth depth
λ ∼

√
D0/γnl , i.e. just a few

correlation lengths at most
[Gürcan et al., 2005]

Suggests Fisher may be insufficient to
explain nonlocality!

Also, no possibility of spreading in
subcritical zone: not a model of
avalanching!
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Figure A wave develops in
the unstable zone and pene-
trates a short depth into the
stable zone



Nail in the coffin: hysteresis in fluctuation intensity

Experiments have clearly
demonstrated hysteresis between
flux/gradient and fluctuation
intensity/gradient in the L-mode
[Inagaki et al., 2013]

Hysteresis strongly suggests
bistability in the fluctuation
intensity

Fisher is unistable: cannot account
for this!

Figure Inagaki et al. 2013.
Hysteresis!



A new model is born

We thus propose a new phenomenological model equation for
turbulence spreading

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D(I )∂x I ) (∗)

where again D(I ) = D0I

Motivation: simplest, generic 1D model incorporating
bistability (thus accounting for hysteresis). Other forms
possible, but qualitative features should be the same!

In the spirit of [Barkley et al., 2015] model for onset of
turbulence in pipe flow, also [Gil and Sornette, 1996]
Landau-Ginzburg model for avalanching

Roughly anticipate γi ∼ ω∗,D0 ∼ χGB ∼ csρ
2
i /a



Physical justification: whence bistability?

[Guo and Diamond, 2017] showed that
temperature profile corrugations can
contribute an additional nonlinear
drive, modifying Fisher equation to

∂t I = γ0I+γcorr I
3/2−γnl I

2+∂x (D(I )∂x I )

Essentially same as cubic equation (∗)
Corrugations observed in GK
simulation [Waltz et al., 2006]

Physics of I 3/2 term: temperature
gradient fluctuations can cause critical
gradient to be locally exceeded,
driving turbulence, but mean square
gradient fluctuations themselves scale
linearly with turbulence intensity

Figure Profile corruga-
tions (‘bumps’ or ‘voids’)
can cause the critical gra-
dient to be exceeded lo-
cally



Summary of model regimes

regime
stable
roots

unstable
roots waves comments

γ1 > 0 I+ 0
forward-

propagating
unistable

similar to Fisher

γ1 < 0

|γ1|γ3/γ
2
2 < 15/64 0, I+ I−

foward-
propagating

α < α∗

turbulent root abs. stable

γ1 < 0

15/64 < |γ1|γ3/γ
2
2 < 1/4 0, I+ I− receding

α > α∗

turbulent root metastable

γ1 < 0

|γ1|γ3/γ
2
2 > 1/4 0 none none “strong damping”

Table Summary of features of the various parameter regimes in cubic
model. Here I± = (γ2 ±

√
γ2 + γ1γ3)/2γ3.

Note: in the bistable case we can rewrite the equation in the
simpler form

∂t I = f (I ) + ∂x (D(I )∂x I )

with f (I ) = γI (I − α)(1− I )



α 1
I

f (I)

Figure Plot of the re-
action function f (I ) =
I (1− I )(I − α)
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Figure Plot of potential part of free energy V(I ) =

−
∫ I

0
dI ′ D(I )f (I ) for different α. Note the minima at

I = 0, 1 and the barrier at I = α



Spreading “free energy”

Dynamics governed by dissipation of free energy: can rewrite
in variational form

D(I )∂t I = −δF
δI

with free energy functional

F =

∫
dx [

1

2
(D(I )∂x I )

2︸ ︷︷ ︸
kinetic/flux

−
∫ I

0
dI ′D(I ′)f (I ′)]︸ ︷︷ ︸
potential

and dF/dt ≤ 0



Free energy and hysteresis

Bifurcation: when α < α∗ = 3/5, potential has metastable
minimum at I = 0 and stable minimum at I = 1 — turbulence
‘preferred.’ Opposite for α > α∗. L-mode/H-mode transition?

Potential barrier at I = α leads to threshold behavior and
hysteresis

Basic idea: thresholds for global heat flux increment
(decrement) for forward (backward) transition. Thresholds
unequal → hysteresis

∆Qf = D0I−〈∇T 〉, ∆Qb = D0(I+ − I−)〈∇T 〉



Traveling waves in bistable system

Like Fisher, again have traveling
waves
[Sánchez-Garduño and Maini, 1994].
Unlike Fisher, supported even in
damped system!

Speed c of order
√
Dγ, depends on

α

Can show that waves propagate
forward for α < α∗, retreat when
α > α∗—consistent with the
bifurcation in the potential
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Threshold for spreading of a slug of turbulence

For α < α∗, a localized
perturbation from I = 0 (i.e.
turbulent slug) in this model
may either grow into a wave
and spread or collapse
exponentially

Similar, but reverse situation
for α > α∗ (‘laminar slugs’)

Classic question in
turbulence (spreading of a
spot): how big, in amplitude
and spatial extent, does the
slug have to be in order to
spread?
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Threshold for spreading of a slug of turbulence (cont’d)

Threshold for amplitude is clear:
intensity must exceed I = α
somewhere

Otherwise effective linear growth
γeff = (I − α)(1− I ) is negative
everywhere

What about threshold in spatial
extent? Question seems largely
unexplored in literature!

α 1
I

γeff (I)

Figure Plot of effective local
linear growth as function of
turbulence intensity



Lengthscale threshold

Can estimate by assuming initial
growth of turbulent mass in “cap”
(part > α) of slug governs
asymptotic spreading

Threshold then determined by
competition between outgoing
diffusive flux from cap and local
growth in cap

This competition suggested by
form of free energy functional

Leads to power law
Lmin ∼ (I0 − α)−1/2. Result sees
excellent agreement with
simulation!
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Figure Illustration of slug’s
“cap”



Lengthscale threshold: analytical vs. simulation
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Figure Numerical result for threshold at α = 0.3 for three types of initial
condition (Gaussian (I1), Lorentzian (I2), parabola (I3)), compared with
analytical estimate



Threshold: what have we learned?

An initially localized turbulent fluctuation with amplitude
exceeding I− and correlated over at least Lmin will spread and
excite the system to turbulence!

Thus a bistable system naturally supports intermittent
propagating turbulence pulses, especially near marginal.
Captures basic features of avalanching!

Near marginal linear stability, threshold is meager:

I− ∼
|γ1|
γ2
� 1, Lmin ∼

(
χGB

ω∗

)1/2

∼ ρi

Suggests that near marginal, stability is not robust against
noise, provided the fluctuation spectrum has a fat enough tail!



Penetration into bistable zone

Let’s revisit the problem of
spreading from weakly supercritical
into weakly subcritical (α < α∗),
now with a bistabilizing effect
(temperature corrugations, e.g.)

Amplitude of wave in unstable
region always exceeds amplitude
threshold in stable region

Thus, another wave forms in
second region! Turbulence front
propagates at constant speed
(instead of finite depth), as long as
weakly subcritical

Conclude: delocalization effect
much stronger than in Fisher!
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Figure A wave develops in the
unstable zone, penetrates into
the bistable zone, and forms a
new traveling wave with reduced
speed and turbulence level.



Conclusions

Upgrading the unistable Fisher model to a bistable model
simultaneously resolves several issues

1 Can account for hysteresis in fluctuation intensity
2 Penetration into stable zone much stronger
3 Subcritical spreading is supported

As a bonus, also predicts avalanche-like phenomena, along
with a quantitative prediction for the threshold excitation
require to trigger an avalanche



Future directions

Full model needs to incorporate coupling to zonal flow and/or
profiles

Can we test for ballistic spreading into stable zone
numerically? Possible inspiration: [Yi et al., 2014]

Can we test for threshold numerically? Idea: initialize patches
of turbulence in subcritical zone in GK

Possible experiments: what does the fluctuation spectrum
look like? How does its tail evolve as we move about the
hysteresis loop? Spatial correlator?



References I

Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., and Hof, B. (2015).

The rise of fully turbulent flow.
Nature, 526:550–553.

Diamond, P. H. and Hahm, T. S. (1995).

On the dynamics of turbulent transport near marginal stability.
Physics of Plasmas, 2(10):3640–3649.

FitzHugh, R. (1961).

Impulses and physiological states in theoretical models of nerve membrane.
Biophysical Journal, 1(6):445–466.

Garbet, X., Laurent, L., Samain, A., and Chinardet, J. (1994).

Radial propagation of turbulence in tokamaks.
Nuclear Fusion, 34(7):963.

Gil, L. and Sornette, D. (1996).

Landau-Ginzburg theory of self-organized criticality.
Phys. Rev. Lett., 76:3991–3994.

Guo, Z. B. and Diamond, P. H. (2017).

Bistable dynamics of turbulence spreading in a corrugated temperature profile.
Physics of Plasmas, 24(10).
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Avalanching 101

Observed in MFE plasma [Politzer, 2000]

Basic picture: a sufficiently large, localized increase in the
turbulence level radially cascades into neighboring regions,
ultimately causing a sudden burst of transport

Closely related to turbulence spreading: avalanching and
(subcritical) spreading essentially two ways of looking at same
phenomenon

Associated with self-organized criticality (occurs near
marginal, 1/f spectra)

Intermittent (long tails)



Bistable case: reduction to FitzHugh-Nagumo

(∗) is bistable for weak damping γ1 < 0 and γ2
2 > 4|γ1|γ3

Roots: I = 0, I± = (γ2 ±
√
γ2

2 − 4|γ1|γ3)/2γ3. 0, I+ stable

(note: nonzero for marginal γ1), I− unstable

If γ1 < 0 and γ2 sufficiently large, can be written

∂t I = f (I ) + ∂x (D(I )∂x I )

with f (I ) = γI (I − α)(1− I ) by defining

|γ3|I+
2 → γ,

I−
I+
→ α, I+D0 → D

This is a version of the Nagumo equation, a simplification of
the FitzHugh-Nagumo model for excitable media
[FitzHugh, 1961, Nagumo et al., 1962]



Lengthscale threshold (details)

Strategy: assume initial slug is even, has single max at I0 and
single lengthscale L

Expand intensity curve about max to quadratic order, plug
into dynamical equation, integrate over extent of cap

Result: growth if

L > Lmin =

√
λD(α)I0

f (I0)− 1
3 (I0 − α)f ′(I0)

=

√
3λDαI0

γ(I0 − α)((1− 2α)I0 + α)


