Subcritical turbulence spreading and avalanche birth

R.A. Heinonen and P.H. Diamond

CASS and Department of Physics
University of California, San Diego

APS DPP 2019

Supported by the Department of Energy under Award Number DE-FG02-04ER54738
In magnetic fusion plasma, turbulence driven by linear instability

However, turbulence is still found to be present in linearly stable regions

Explanation: turbulence can spread

Basic example of nonlocality

Figure: Experiment [Nazikian et al., 2005] clearly showing fluctuations in stable zone
Turbulence spreading: old news?
Challenge the conventional wisdom on spreading (supercritical Fisher model)
Suggest a new model based on subcritical turbulence, which testably differs from old story
Will see that new model also serves as basic framework for avalanching

Figure: Conventional wisdom on turbulence spreading
For the impatient: preview of results

- New model accounts for robust penetration of turbulence into stable regions via **ballistic propagation**, whereas old model features weak, evanescent penetration $\ell \sim \Delta_c$
- New model features threshold for propagation of a puff of turbulence, akin to an avalanche
- Power law threshold for puff size vs. intensity

Penetration into stable zone in Fisher model (left) and new model (right)
Outline

1. Background: turbulence spreading

2. Fisher model

3. Bistable model

4. Avalanche threshold

5. Conclusions
Background: turbulence spreading
What the Fick?: turbulence spreading

- Turbulence can radially self-propagate via **nonlinear coupling**. Intensity profile gradient \rightarrow intensity flux
- Can penetrate linearly stable zones
- Decouples flux-gradient relation: local turbulence intensity now depends on global properties of the profiles
- Spells doom for local Fickian transport models i.e. $Q \propto \partial_x T$

Figure: Mesoscale gradient in intensity envelope generates turbulence flux
Figure: Spatiotemporal evolution of flux-surface-averaged turbulence intensity in toroidal GK simulation. Linearly unstable region is $0.42 < r < 0.76$; profiles are fixed. From [Wang et al., 2006]
Fisher model
Conventional wisdom: Fisher model

- Conventional wisdom [Gürcan and Diamond, 2005, Hahm et al., 2004, Naulin et al., 2005] for spreading is Fisher-type equation for turbulence intensity:

\[
\frac{\partial t}{t} I = \gamma_0 I - \gamma_{nl} I^2 + \frac{\partial_x (D_0 I \partial_x I)}{
\text{local lin.}
\text{growth/decay}
\text{local nonlin.}
\text{coupling to}
\text{dissipation}
\text{nonlin. diffusion of turb. energy}}
\]

- When \(\gamma_0 > 0 \), uniform fixed points are "laminar" \(I = 0 \) and "saturated turbulence" \(I = \frac{\gamma_0}{\gamma_{nl}} \)

- Dynamics characterized by traveling fronts connecting roots, with speed \(c = \sqrt{\frac{D_0 \gamma_0^2}{2\gamma_{nl}}} \)
Figure: Evolution of traveling turbulence front in Fisher model. From [Gürcan and Diamond, 2006]
Consider spreading of turbulence from linearly unstable to linearly stable zone.

Simple model: $\gamma_0 > 0$ for $x < 0$, $\gamma_0 < 0$ for $x > 0$.

Allow turbulent front to form in lefthand region and propagate.

Penetration is **weak**: forms stationary, exponentially-decaying profile with $\lambda \sim \sqrt{D_0/\gamma_{nl}} \sim \Delta_c$. Puny!

Figure: A front of turbulence crosses into stable zone and penetrates a finite depth.
Does Fisher-type spreading make sense?

- No
- Fisher model purports to describe spreading of a patch of turbulence in linearly unstable zone
- Begs the question: why didn’t noise already excite the whole system to turbulence?
- Only relevant if $\gamma_0 \ll c/\Delta x$ i.e. $\Delta x^2 \gamma_{nl} \ll D_0$
- Otherwise, physical fronts separating laminar/turbulent domains generally require bistability à la [Pomeau, 1986]
Bistability

Figure: Free energy of unistable system, corresponding to Fisher

Figure: Free energy of bistable system
Bistable model
A new model is born

Heinonen and Diamond 2019: propose phenomenological model of form

\[\frac{\partial I}{\partial t} = \gamma_1 I + \gamma_2 I^2 - \gamma_3 I^3 + \partial_x (D_0 I \partial_x I) \]

- local lin. growth/decay
- nonlin. instability
- nonlin. coupling to dissipation
- nonlin. diffusion of turb. energy

Simplest extension of Fisher-like model with bistability

New physics: nonlinear turbulence drive \(\propto I^2 \). Can sustain sufficiently large fluctuations even when linearly damped

Bistable in weak damping regime

Estimate \(\gamma_1 \sim \epsilon \omega_* \), \(\gamma_{2,3} \sim \omega_* \), \(D_0 \sim \chi_{GB} \) (drift-wave/Gyro-Bohm scaling)
Evidence for bistability/subcriticality

- [Inagaki et al., 2013]: experiments demonstrate hysteresis between fluctuation intensity and driving gradient (no TB present). Suggests bistable S-curve relation?

- Turbulence subcritical in presence of strong perpendicular flow shear [Barnes et al., 2011] or in the presence of magnetic shear [Drake et al., 1995]

- Profile corrugations [Guo and Diamond, 2017] and phase space structures [Lesur and Diamond, 2013] can drive nonlinear instability

Figure: Hysteresis between intensity and gradient, flux and gradient
Bistable regime

- Qualitatively similar to Fisher EXCEPT in bistable/weak damping case.
- Can then transform to Zel’dovich/Nagumo equation
 \[\partial_t I = f(I) + \partial_x (D I \partial_x I) \]
 \[f(I) \equiv \gamma I (I - \alpha)(1 - I) \]
- Unlike Fisher, traveling fronts admitted (even though damped)!
 \[c \sim \sqrt{D\gamma} \text{ (depends on } \alpha), \ell \sim \sqrt{D/\gamma} \]
 \[\alpha \equiv I_- / I_+, \quad \gamma \equiv I_+^2 \gamma_3, \quad D \equiv I_+ D_0, \quad I_{\pm} \equiv \left(\gamma_2 \pm \sqrt{\gamma_2^2 - 4|\gamma_1|\gamma_3} \right)/2\gamma_3 \]

Figure: Reaction function has stable nodes at \(I = 0, 1 \) and unstable node at \(I = \alpha \)
Penetration into stable zone: new model

- Take $\gamma_1 = \gamma_g > 0$ for $x < 0$, $\gamma_1 = -\gamma_d < 0$ for $x > 0$
- In contrast to Fisher, a new front with reduced speed/amplitude forms in second region if weakly damped

$$\left(\gamma_d < \frac{15\gamma_2^2}{64\gamma_3} \right)$$
- Hence: can have **ballistic propagation into stable zone**!
- Much stronger penetration than possible in Fisher—resolves issue of feeble, evanescent penetration
Figure: Spreading into stable zone in GK simulation with magnetic shear [Yi et al., 2014]. Evidence of ballistic propagation? More careful study needed!
Avalanche threshold
Avalanches

- Bursty, intermittent transport events associated with SOC
- Accounts for a large percentage of total flux
- Initially localized fluctuation cascades through neighboring regions via gradient coupling, simultaneous firing of many cells
- What does this have to do with spreading?

Figure: Cartoon depicting generic avalanche process via overturning of fluctuation into neighboring cells
Spreading vs. avalanching

- Fast, mesoscopic turb front propagation
- Interaction of a small scale (DW, cell) with a mesoscale (envelope, avalanche)
- Turbulence intrinsic to avalanching → drives spreading
- Unified model?

Figure: Spreading and avalanching both result from coupling of small scale k with mesoscale q ($q \ll k$)
Depiction of avalanching

Figure: Pressure (left) and potential (right) contours for simulations of resistive drift interchange turbulence [Carreras et al., 1996]. Diagonal lines → propagating transport events
Local threshold behavior

- In contrast to Fisher, sufficiently large localized puff of turbulence will grow into front and spread. Suggestive of an avalanche triggered by sufficiently strong initial seed
- How to determine threshold?

Two puffs differing only in spatial size are initialized; one grows and spreads, other collapses
Obviously puff amplitude must exceed $l_0 = \alpha$ or else
$\gamma_{\text{eff}} = (l - \alpha)(1 - l) < 0$

Consider “cap” of puff (part exceeding $l = \alpha$)

Competition between diffusion of turbulence out of cap and total nonlinear growth in cap

Sets threshold lengthscale $\sqrt{D/\gamma}$

Figure: “Cap” of initial data. There is a competition between nonlinear growth and turbulence diffusion here.
Avalanche threshold II

- Analytic result: puff grows if
 \[L > L_{\text{min}} \sim (I_0 - \alpha)^{-1/2} \]

- Near linear marginality, threshold is weak:
 \[l_\perp \sim \frac{\gamma_1}{\gamma_2} \ll 1, \quad L_{\text{min}} \sim \left(\frac{\chi_G B}{\omega_*} \right)^{1/2} \sim \Delta_c \]

- Thus, avalanche could be triggered by noise. Another possibility: corrugation

Figure: Numerical result for threshold at \(\alpha = 0.3 \) for three types of initial data (Gaussian \(I_1 \), Lorentzian \(I_2 \), parabola \(I_3 \)), compared with analytical estimate
Conclusions
Fisher vs. new model

<table>
<thead>
<tr>
<th></th>
<th>Fisher</th>
<th>new model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spreading possible</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>above lin. marginal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spreading possible</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>below lin. marginal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold behavior</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Penetration into stable zone</td>
<td>evanescent</td>
<td>ballistic or evanescent</td>
</tr>
</tbody>
</table>
Bistability in the wild: testing the model

Two key tests:

- To investigate avalanches: perturb plasma locally, observe spatiotemporal response à la [Van Compernolle et al., 2015]. Need distinguish from linear mode response!

- Can we see ballistic penetration of stable region in numerical experiments? More careful study à la [Yi et al., 2014]

Figure: Cartoon (poloidal cross section) depicting basic setup for avalanching experiment observing response to local pulse.
[Inagaki et al., 2013] is interesting but not the last word. We suggest:

- More basic experiments exploring \tilde{n}/n vs ∇T hysteresis
- Better resolution of dependence of fluctuation intensity on the input power
- More careful study of relaxation after ECH is turned off
- More information on fluctuation field (e.g. spatial correlations)
- Simultaneous measurement of zonal flow pattern
Spreading in context

- How does spreading affect profiles in a real system?
- Spreading will be most important when profiles force sharp ∇I
- Basic example: NML. Spreading reduces turbulence intensity, leading to increased pedestal height/width — spreading can be “good” for confinement
- More details: see Rameswar Singh’s talk, NO4.2 “When does turbulence spreading matter?”

Figure: Intensity and pressure profiles; $\sigma =$spreading strength
Conclusions

- Update to Fisher model that allows for physical fronts separating laminar/turbulent domains and robust penetration of stable regions
- Supported by substantial evidence for subcritical turbulence
- Provides simple framework for understanding avalanching: local exceedance of nonlinear instability threshold by turbulent puffs
- Key testable predictions: ballistic spreading into weakly linearly damped regions, power-law threshold for spreading of puffs
- Need more experiments in the vein of Inagaki to study bistability
<table>
<thead>
<tr>
<th>References I</th>
</tr>
</thead>
</table>
| The rise of fully turbulent flow.
| Turbulent transport in tokamak plasmas with rotational shear.
| A model realization of self-organized criticality for plasma confinement.
| Nonlinear self-sustained drift-wave turbulence.
| **Gil, L. and Sornette, D. (1996).**
| Landau-Ginzburg theory of self-organized criticality.
| **Guo, Z. B. and Diamond, P. H. (2017).**
| Bistable dynamics of turbulence spreading in a corrugated temperature profile.
Physics of Plasmas, 24(10). |
| **Gürcan, O. and Diamond, P. (2005).**
| Dynamics of turbulence spreading in magnetically confined plasmas.
Physics of Plasmas, 12(3):032303. |
References II

Radial transport of fluctuation energy in a two-field model of drift-wave turbulence.

Turbulence spreading into the linearly stable zone and transport scaling.
Plasma Physics and Controlled Fusion, 46(5A):A323.

How is turbulence intensity determined by macroscopic variables in a toroidal plasma?

Nonlinear instabilities driven by coherent phase-space structures.

Turbulence spreading, anomalous transport, and pinch effect.

Measurement of turbulence decorrelation during transport barrier evolution in a high-temperature fusion plasma.
Front motion, metastability and subcritical bifurcations in hydrodynamics.

The transition to turbulence in parallel flows: A personal view.

Laboratory study of avalanches in magnetized plasmas.

Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments.
Physics of Plasmas, 13(9):092505.

Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis.
Physics of Plasmas, 21(9):092509.
Isn’t this just quasilinear theory?!

- Quasilinear theory describes spreading of active region in phase space
- Related concept but there are key differences
- TS: active region remains **fixed**
- Real/phase space distinction important. We can compute propagation speeds
- QL spreading more similar to avalanching (gradient propagation). Realistic model should incorporate both effects
Cousin models

- Compare to bistable models for subcritical transition to fluid turbulence [Barkley et al., 2015, Pomeau, 2015].
- Compare to [Gil and Sornette, 1996] model for sandpile avalanches

\[\partial_t S = \gamma \left(|\partial_x h| / g_c - 1 \right) S + \beta S^2 - S^3 + \partial_x (D_S S \partial_x S) \]
\[\partial_t h = \partial_x (D_h S \partial_x h). \]

- \(S \leftrightarrow I, \ h \leftrightarrow p \)
- Weak gradient coupling limit \(D_h \ll D_S \Rightarrow \) our model
- Strong gradient coupling limit: \(S \) slaved to \(h \). \(\partial_x h \propto S^{-1} \Rightarrow \) linear term is \(c - \gamma S \), where \(c \) is a constant which depends on BCs. Bistable again!