Drift Wave-Zonal Flow Turbulence in Tangled Magnetic Fields

1. β-Plane Approximation

Consider a solid sphere– a planet, which is covered by a thin atmosphere. The sphere is rotating in a constant angular velocity. At latitude ϕ_0 the velocity is at the surface is v, and thus the **Coriolis Force** is $2\Omega \times v$.

Zonal Direction

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla\right)\mathbf{v} + 2\Omega \times \mathbf{v} = -\nabla P + \mathbf{F}$$

$$\beta = \frac{df}{dy}|_{\phi_0} = 2\Omega cos(\phi_0)/a$$

 ϕ_0 : latit

 $f = f_0 + \beta y$

	A BAS SAL STO STO BALCO AL MAR		
Our w	ork – Zonal Flov	v Evo	
	(2-av	erage	
Randon	n Fields Random-Fiel Averaging sca	d ale	
•			
Assumptions.	1. zonal scale \sim . Rossby scale	r · random_f	
rissumptions.	large scale \rightarrow small scale		
(potential field)	$A = \overbrace{A_l + \widetilde{A} + A_r}^{\sim}$		
(magnetic field)	$B = B_l + \widetilde{B} + B_r '$		
(magnetic current)	$J = 0 + \widetilde{J} + J_r$		
Two-averages met	nod:		
(1). $\bar{F} = \int dR^2 \int$	$dB_r \cdot P_{(B_{r,x},B_{r,y})}F$ Random-field av	/eraging regio	
(average random fields)			
$\int \overline{B_{r,i}} = 0 \text{averaged of random field}$			
More Assumptions: $\begin{cases} \overline{B_{r,x}B_{r,y}} = 0 & \text{No correlation of t} \end{cases}$			
	$\left(\overline{L \cdot M} = \overline{L} \cdot \overline{M}, L, M \text{ as} \right)$	re arbitr	
We start with two basic equations — vorticity and induc			
(1). $\frac{\partial}{\partial t}\overline{\zeta} - \beta \frac{\partial \overline{\psi}}{\partial v} = -\frac{(\boldsymbol{B}_r \cdot \nabla) \nabla^2 A_r}{\nu \nabla^2 \overline{\zeta}} + \nu \nabla^2 \overline{\zeta}$			
$\rho T = \rho P$ Results we have (OL expressions):			
	$B_l = 0$		
Vorticity flux	$\overline{\Gamma}$ – $\begin{pmatrix} i \\ 1 \\ \widetilde{\Gamma} \\ 1 \\ 2 \\ 1 \\ 2 \\ 1^2 $	$\partial_{\overline{\varkappa}}$	
$(\overline{\Gamma_k} \equiv \widetilde{u^*}, \widetilde{\zeta_k})$	$\prod_{k} = \left(\frac{i\overline{B_{r,j}^2}k_j^2}{\omega + i\nu k^2 + \frac{i\overline{B_{r,j}^2}k_j^2}{L^2}} \right) \prod_{k=1}^{l} u_{y,k}$	$\left(-\frac{\partial y}{\partial y}\zeta\right)$	
y,K • K •	$\mu_0 \rho \eta k^2$		
Dispersion	$(\omega - \omega_{\rm p} + i\nu k^2)(ink^2)$	$= \frac{B_{r,j}^2 k_j}{k_j}$	
Relation	$(\omega \omega_R \mid \nu \kappa) (\eta \kappa)$	$\mu_0 ho$	
Evolution of Mean	_	$\frac{\partial}{\partial \langle v_x \rangle} =$	
Flow		$\partial t $	
1. The term $-\frac{1}{n\mu}$	$\frac{1}{2} \left\langle \overline{B_{r,y}^2} \right\rangle \left\langle v_x \right\rangle$ act as a drag fo	rce. It co	
Magnetic dra	g and the cross-phase effect	S.	
2. Both large-an	d small-scale magnetic fields	s modify	
3. Cross-Phase of field intensitie	effect occurs at levels of the swell below that of	10^{-2}	
Alfvénization. This result matches 10^{-4}			
simulation from	m Tobias et al. (in	10^{-6}	
		10 ⁻⁸	
	Basi	c Def	

2. Rhines scale in 2D MHD

olution in Stochastic Fields es theory)

field scale

 $k_{B_r} > \overline{k} \sim k_{Rossby} > k_{Zonal}$

$$(B_r + \frac{\delta B_r}{\delta \widetilde{B}} \widetilde{B})^2 \simeq \overline{B_r^2}$$

The collective field at Rossby – scale is NOT large enough to alter the structure of the random fields.

(2).
$$\langle \rangle = \frac{1}{L} \int dx \frac{1}{T} \int dt$$

(ensemble average over zonal flows)

elds is zero

the random fields (see discussion),

rary function,

ction equation:

(2).
$$\frac{\partial}{\partial t}A = (\boldsymbol{B} \cdot \nabla)\psi + \eta \nabla^2 A$$

$$B_{l} \neq 0$$

$$= \beta \sum_{k=1}^{n} \left(\frac{i}{\omega + i\nu k^{2} + \frac{i\overline{B_{r,j}^{2}}k_{j}^{2}}{\mu_{0}\rho\eta k^{2}} + \frac{i}{\mu_{0}\rho}\frac{B_{l,x}^{2}k_{x}^{2}}{\eta k^{2} - i\omega}}{\mu_{0}\rho\eta k^{2} + i\nu k^{2}} \right) |\widetilde{u}_{y,k}|^{2} \left(-\frac{\partial}{\partial y}\overline{\zeta} - \beta \right)$$

$$= \langle \overline{\Gamma} \rangle - \frac{1}{\eta\mu_{0}\rho} \langle \overline{B_{r,y}^{2}} \rangle \langle v_{x} \rangle$$

comes from $J_r \times B_r$ force. Two effects here:

⁷ the cross-phase.

finitions

It's widely accepted that the Zel'dovich Theorem

for 2D MHD is applicable to β -plane MHD:

$$\frac{B_r^2}{B_0^2} = \frac{\eta_T}{\eta},$$

Zel'dovich Theorem

MHD Rhines scale

Chang-Chun Chen¹ & Patrick H. Diamond¹

We rewrite the dispersion equation, we have (turnoff Rossby wave: $\omega_R = 0$):

$$(\omega + i\alpha + i\nu k^2)(\omega + i\eta k^2) = \chi$$
, where $\alpha \equiv \frac{\overline{B_{r,j}^2}k_j^2}{\mu_0\rho\eta k^2}$, and $\chi \equiv \frac{B_{l,x}^2k_x^2}{\mu_0\rho}$

	$B_{l,x}^2 \ll \overline{B_{r,j}^2}$	$B_{l,x}^2 \ge \overline{B_{r,j}^2} (\sqrt{\chi} \ge \alpha \sim \eta k^2)$
Frequency	$\omega_{RE}^2 = 0, \ \omega_{IM} = -\alpha = -\eta k^2$	$\omega_{RE}^{2} = \chi - \frac{1}{4}\alpha^{2} + \alpha \eta k^{2} \ge 0, \omega_{IM} = \frac{-1}{2}(\eta k^{2} + \alpha)$
Q factor	Always Overdamped	$\lambda^{2} \begin{cases} > 1 & \text{Overdamped: } \frac{1}{2}(\alpha^{2} + \eta^{2}k^{4}) > \chi > \frac{1}{4}(\alpha^{2} + \eta^{2}k^{4}) \\ = 1 & \text{Critical damped: } \chi = \frac{1}{2}(\alpha^{2} + \eta^{2}k^{4}) \\ < 1 & \text{Underdamped: } \chi > \frac{1}{2}(\alpha^{2} + \eta^{2}k^{4}) . \end{cases}$

will dissipate energy via drag and resistivity. \rightarrow energy forward cascade toward small scales! \rightarrow a **resisto-elastic** MHD medium!

uncorrelated!

Starting with
$$\frac{D}{Dt}k_y = -\frac{\partial}{\partial y}(k_y \langle v_x \rangle)$$
, and modify cross phase $\langle k_x k_y \rangle$ with $k_y = k_y^{(0)} - k_x \frac{\partial \langle V_x \rangle}{\partial y} \tau_c$.

Fractal Network (Site-percolating):

References

Y.B. Zeldovich, The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP 4, 460–462 (1957)

3. Kubo Number

Kubo number: $Ku \equiv \frac{\tau_{ac}}{\tau_{turn over}} = \frac{l_{\parallel} |B_r|}{l_{\perp} |B_l|}$, where l_{\parallel} is auto-correlation length, which his parallel to the large-scale magnetic field B_1 .

When
$$Ku = \begin{cases} Ku > 1, \\ Ku < 1, \end{cases}$$

¹University of California, San Diego

How Alfvèn Waves Propagate in small-scale Stochastic Fields

 $\omega^2 + i(\alpha + \eta k^2)\omega - (\alpha \eta k^2 + \chi) = 0$ drag + dissipation effective spring constant

The term $\alpha \eta k^2$ can be viewed as effective spring constant. At this small scale formed by (α), system

Discussion

How to calculate the nonzero cross phase $\langle \overline{B_{r,x}}B_{r,y} \rangle$?

We are interested in Maxwell stress → Symmetry breaking by zonal shear! Shear will induce the correlation even B_{ry} and B_{ry} are initially

Next: Consider weak field where QL approximation fails. We'll recalculate the cross phase in $\langle \widetilde{v}_x \widetilde{v}_y \rangle$ and $\langle \overline{B_{r,y}} \overline{B_{r,x}} \rangle$.

Effective spring constant, effective Young's Modulus of elasticity, and effective "conductivity" of vorticity (such as encountered in amorphous

chematic of the nodes-links-blob model (Nakayama & Yakubo 1994).

This work is supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54738

F.P. Bretherton, D.B. Haidvogel, Two-dimensional turbulence above topography. Journal of Fluid Mechanics **78**(1), 129–154 (1976)

P.H. Diamond, S.-I. Itoh, K. Itoh, L.J. Silvers, β -plane mhd turbulence and dissipation in the solar tachocline. The solar tachocline, 213 (2007) T.E. Evans, R.A. Moyer, P.R. Thomas, J.G. Watkins, T.H. Osborne, J.A. Boedo, E.J. Doyle, M.E. Fenstermacher, K.H. Finken, R.J. Groebner, M. Groth, J.H. Harris, R.J. La Haye, C.J. Lasnier, S. Masuzaki, N. Ohyabu, D.G. Pretty, T.L. Rhodes, H. Reimerdes, D.L. Rudakov, M.J. Schaffer, G. Wang, L. Zeng, Suppression of large edge-localized modes in high-confinement diii-d plasmas with a stochastic magnetic boundary. Phys. Rev. Lett. 92, 235003 (2004). doi:10.1103/PhysRevLett.92.235003. https://link.aps.org/doi/10.1103/PhysRevLett.92.235003

D.O. Gough, M.E. McIntyre, Inevitability of a magnetic field in the Sun's radiative interior. Nature **394**, 755–757 (1998). doi:10.1038/29472 P.-C. Hsu, P. Diamond, On calculating the potential vorticity flux. Physics of Plasmas 22(3), 032314 (2015)

E.A. Spiegel, J.-P. Zahn, The solar tachocline. Astronomy and Astrophysics **265**, 106–114 (1992) S.M. Tobias, P.H. Diamond, D.W. Hughes, β -Plane Magnetohydrodynamic Turbulence in the Solar Tachocline. The Astrophysical Journal Letters 667, 113–116 (2007). doi:10.1086/521978 G.K. Vallis, FUNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS, 2nd edn. (Cambridge University Press, 2017), pp. 1–2

> $B_0 \gg |B_r|$ Quasi-Linear theory fails $|B_r| \gg B_0$ Quasi-Linear theory is valid

