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Abstract 

Drift  wave-zonal  flow  turbulence  frequently  occurs  in  the  presence  of  a  tangled  stochastic 
magnetic field. Tangled fields that coexist with an ordered mean field play a key role in edge 
plasmas with Resonant Magnetic Perturbations (RMP) and in turbulence in the Solar tachocline. 
The stochastic field forms an effective viscoelastic medium where the drift waves and zonal flows 
evolve. We are interested in how tangled small-scale stochastic magnetic fields ( ︎) regulate the 
drift wave. We treat this ︎-dominated (high Kubo number) system beyond quasilinear theory by 
developing a ‘double averaged’ theory. Principal results are that the vorticity flux is modified by 
the cross-phase effect due to the tangled field, which leads to an suppression of zonal flow. This 
effect occurs at levels that field intensities below that for Alfvènization (i.e. � , 
where Maxwell stress balances the Reynold stress).

Ιntroduction
Random or stochastic magnetic fields can be found in 
the interstellar medium, the Solar tachocline and the 
edge of tokamaks.
The Solar tachocline is strongly stratified. If we could 
remove the convection zone of the Sun, we’d see the 
similar pattern of the tachocline as of the Jupiter 
atmosphere.
We consider the 2D turbulence for this quasi-
geostrophic MHD, instead of spherical shell model, 
for simplicity. 
We discuss a low-Kubo number problem with Quasi-
Linear Theory.  Physics behind the β-plane turbulence 
does not just merely depend on Aflvén or Rossby 
state! Key parameter successfully predicts results of 
the simulation from Tobias et al. (2007).
We discuss a high-Kubo number problem with an 
environment consisting of stochastic fields. The Method 
we use is the two-averages theory. 
Results: 1. We found the cross-phase of 
random fields system analytically. 2. The 
system acts as a “resisto”-elastic medium. 
3. The Alfvèn wave can still be under-
damped if the mean field is slightly larger 
than root-mean-square of random fields.

Critical Questions 
What’s the Physics of drift zonal flow in random magnetic fields in 

edge tokamaks?

What modifies the cross-phase of the transport of mean potential 

vorticity, hence limits the zonal flow?

How symmetry breaking by the zonal shear affect the cross-phase 

of stresses, especially magnetic stress?

1. β-Plane Approximation
Consider a solid sphere– a planet, which is covered by a thin atmosphere. The sphere is rotating in a 
constant angular velocity. At latitude  the velocity is at the surface is v, and thus the Coriolis 
Force is 2Ω × v.

 Our work— Zonal Flow Evolution in Stochastic Fields
 (2-averages theory)

Assumptions:                 l: zonal scale    ~ :    Rossby scale   r :  random-field scale 

�    ,                                     �

Two-averages method: 

 (1).   �                                                           (2).    �  

                     (average random fields)                                    (ensemble average over zonal flows) 

More Assumptions:�   

We start with two basic equations— vorticity and induction equation:

  (1).      �                              (2).     �

Results we have (QL expressions):

1. The term �  act as a drag force. It comes from �  force. Two effects here: 

Magnetic drag and the cross-phase effects.  

2.  Both large-and small-scale magnetic fields modify the cross-phase. ✔
3. Cross-Phase effect occurs at levels of the 

field intensities well below that of 
Alfvènization.  This result matches 
simulation from Tobias et al. (in 
preparation).                                                                  

Basic Definitions
2. Rhines scale in 2D MHD

It’s widely accepted that the Zel’dovich Theorem 

for 2D MHD is applicable to β-plane MHD:  

 � ,    Zel’dovich Theorem  
 

� ,      MHD Rhines scale

  How Alfvèn Waves Propagate in small-scale Stochastic Fields
We rewrite the dispersion equation, we have (turnoff Rossby wave: � ):

        �  ,                   where � , and � . 

The term �  can be viewed as effective spring constant.  At this small scale formed by ( � ), system 
will dissipate energy via drag and resistivity.  
  �  energy forward cascade toward small scales!  ✔  
  �  a resisto-elastic MHD medium!

Discussion
How to calculate the nonzero cross phase  �  ?   
We are interested in Maxwell stress ➔ Symmetry breaking by zonal 
shear! Shear will induce the correlation even �  and �  are initially 
uncorrelated!  
Starting with  � , and modify cross phase �  with 

� .

Next: Consider weak field where QL approximation fails. We’ll 
recalculate the cross phase in �  and � .

Fractal Network (Site-percolating):  
Effective spring constant, effective Young’s Modulus of elasticity, and 
effective “conductivity” of vorticity (such as encountered in amorphous 
solids).  
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3. Kubo Number

Kubo number:  � ,  where �  is auto-correlation length, which his  parallel to 

the large-scale magnetic field � . 

When �
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S

β: is the Rossby parameter 
y: is a meridional distance Ω is angular 
rotation rate of the planet
 
φ0 : latitude raising from the equator 
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Relation

Evolution of Mean 
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) | ũy,k |2 (−
∂
∂y

ζ − β)

�Bl ≠ 0

                                                      �
∂
∂t

⟨vx⟩ = ⟨Γ⟩ −
1

ημ0ρ
⟨B2

r,y⟩⟨vx⟩

Vorticity flux 

( �  )Γk ≡ ũ*y,k ζ̃k
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Frequency
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effective spring constantdrag   +  dissipation

Atmosphere of Jupiter (NASA 2019).

The blue line indicates the edge of a tokamak where random fields is 
generated by coils. 

Schematic of the nodes-links-blobs 
model (Nakayama & Yakubo 1994).
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