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Overview

* This work studies the suppression of turbulent
transport in 2D MHD.

e Conventional wisdomes:
e [Cattaneo and Vainshtein 1991]. Physics underpinning?
e [Gruzinov and Diamond 1994, 1996] and [Diamond,
Hughes, and Kim 2005]. Imposed external B,.
* What’s new:
* The B field is highly intermittent.
e Spontaneous formation of transport barriers.
* Quench is not uniform.

* 17 expression when (B) absent. (B) is significant in the
barriers, but V4(A4%) is what is left in the blobs.

e Barrier formation: negative diffusion ((v¢) — (B?)).
* Analogy with staircase.
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Introduction

e Virtually all models of drift-Alfven, EM ITG, etc. turbulence
are based upon a vorticity equation, Ohm°s Law and
(usually multiple) scalar advection equations. The
appearance of the Alfven wave introduces a crucial
element of memory to the dynamics. Such Alfvenization-
induced-memory can significantly impact structure
formation and transport in turbulence.

e 2D MHD is the simplest model with these features.
* Kinematic expectation (passive scalar): np ~ ul

* Actual result: turbulent transport is suppressed ny < ng

* Note: 2D quench problem lead to Rm-dependent a
quenching, nonlinear (B) feedback in dynamo.
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Conventional Wisdom (1) :

e [Cattaneo and Vainshtein 1991]: turbulent 7|
transport is suppressed even when a weak °|
large scale magnetic field is present. -

3m

e Starting point:  a.(4%) = -2n(5%) en|

* Assumptions: 1
* Energy equipartition: m“ﬂ ~ (v°) S
* Average B can be estimated by: [(B)| ~/(4?)/L, ™ ° ™ &

* Define Mach number as: M?= (/0% = (*)/(—(B)?)
* Result for suppression stage: n~n’

. . . . 1l
* Combine with kinematic stage result: | 7 ~ Hle/Mg

* Lack physics interpretation of the origin of ;.
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Conventional Wisdom (2)

e [Gruzinov and Diamond 1994, 1996] and [Diamond,
Hughes, and Kim 2005] derived n+ from dynamics.
6<A>
dx
* The key of this approach is to calculate the flux r. = (v.4)

 Standard closure methods vyield:

La=) [va(~k)§A(k) — B.(~k)dp(k)]

* With an external imposed B (i.e.

e Therefore: r,- -2  with| 10 =3 7l - — (B
ox k o P
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Conventional Wisdom (2) Cont’d

e Then calculate (B?2) in terms of (v2). From:
a(A)
ox

e Multiplying by A and sum over all modes:
9(A)
ox

KA+ v-VA=—v, +nV3A

—n(B?)

S IOMA%) + (V (v A%)] = T,

Dropped stationary case Dropped periodic boundary

P ()<A> nr

* Therefore: ) =-""7" =5

 Define Mach number as: M2 = (v3)/v3, = (v%)/(— B2)

Hop
S ok Te (v - ul
1+Rm/M?2 1+ Rm/M?2

* This theory is not able to describe the system with
no B, though can be extended.

e Result: nr =
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Simulation Setup

* PIXIE2D: a DNS code solving 2D MHD equations in
real space:

HhA+v-VA=nV?A

1
dw+v-Vw=—B -VV?A+vV?w+ f
fop

* 102412 resolution.
* External forcing f is isotropic homogeneous.
* Periodic boundary condition.

e |nitial conditions:
° (1) bimodal: Af(x,y) = Ag cos 2mx
. - : o —(x—-0.25)° 0<=z<1/2
(2) unimodal: 4;(z, ) = A, « {(-1'_()-75)3 \f2<=p <1
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Initial Conditions

Bimodal Unimodal
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Conserved Quantities

1. Energy
v?  B*_

2. Mean Square Magnetic Potential
HA — fAZ dzx This is why A2 plays

an important role

3. Cross Helicity
HC — fﬁ °§d2x
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Two Stages
* 1. The suppression stage: suppression | kinematic
the large scale magnetic field stage stage

102

is sufficiently strong so that
the diffusion is suppressed.

* 2. The kinematic decay stage: "
the magnetic field is - B

103

dissipated enough so that D
the diffusion rateis backto
the kinetic rate.

* The suppression is due to the ™
memory provided by the =@

10~°

magnetic field. —
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New Observations

* With no imposed B, in suppression stage:
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New Observations Cont’d

* Nontrivial structure formed in real space in the
suppression stage.

» A field is evidently composed of “blobs”.
* The low A regions have a clear 1-dimensional shape.

* The high B* regions are strongly correlated with low
A% regions, and also have a 1-dimensional shape.

* We call these 1-dimensional high B? regions
“barriers", because these are the regions where
transport is reduced, relative to ng.
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Evolution of PDF of A

106

* Probability
Density
Function (PDF) :
In two stage:

D
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108

102

* Time evolution:
horizontal “Y”

The PDF changes from double
peak to single peak as the system
changes from the suppression
stage to the kinematic stage.
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2D CHNS and 2D MHD

* The A field in 2D MHD in suppression stage is
strikingly similar to the 1 field in 2D CHNS (Cahn-
Hilliard Navier-Stokes) system:

Y field in 2D CHNS A field in 2D MHD
1.00 . 1.0 A Field
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2D MHD 2D CHNS

2D CHNS and 2D MHD  “gecras 3 =,

B
Current j G
Diffusivity n D
] 2
e 2D CHNS Equ ations: Interaction strength - 3
- 2 3 2 2 —1: Negative diffusion term
atlp + V- le — DV (_lp + w — 5 V l'b) 13: Self nonlinear term
52 —&£2724) : Hyper-diffusion term
0w +V-Vw ="—By - V7 + vV w
p

With 9=zXV¢, w = V2@, By, = z2XV, jy, = E2V2. P € [-1,1].
* 2D MHD Equations:

atA -I— 'E . VA — nVZA A: Simple diffusion term
. 1 _
0w +7-Vw=—B VV?A+vV?w See [Fan et.al.
Hop 2016] for more
With D=zxV@, w = V2, B = zxVA, j = uiVZA about CHNS.
0

04/16/2019 Sherwood 2019 15



UCSan Diego

Unimodal Initial Condition

* One may question whether the bimodal PDF feature
is purely due to the initial condition. The answer is no.

* Two peaks away from O on PDF of A still rise, even if
the initial condltlon is unimodal.

(a2) (a3)

57 6

04/16/2019 (bl) b2) Sherwood 2019 (b3)
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The problem of the mean field (B)

1.0

* (B) depends on the averaging ey
window. e
 With no imposed external field, =.
B is highly intermittent, therefore -
the (B) is not well defined. o
At At
V.S.
> ] >
X X
|(B)| ~ +/{A%) /L, \/ (B) not well defined
Reality
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New Understanding

* From a.(4% = —(v4)-V(4) - V- (vA*) - y(B?)

* Do not drop 2nd term on RHS. Average taken over
an envelope.

* Define diffusion coefficients (closure):
(vA) = —nr V(A)
(VA%) = —noV(A?)

e Plugging in: 9,042 =y (V(4)? + Vigs - V(A2) — (B2
* For simplicity: (8% ~ -((B)* + (4)/12,,)
 where L,,,, is the envelope size. Scale of V4(42).

. 12 _ 2 1 2 2
* Define new strength parameter: = {7/C A%/ Len)

e Result: | _ ul _ b
= + Rm/M?2 + Rm/M"”? 1+ RmulTp(BV/(vQ) + Rm 1p<A2>/Lgnv<v2>

pop
04/16/2019 Sherwood 2019 18
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New Understanding Cont’d

* Quench is not uniform. Transport coefficient is different
in different regions.

* I[n the regions where magnetic fields are strong,
Rm/M? is dominant. They are regions of barriers.

* |[n other regions, i.e. inside blobs, Rm/M’2 is what
remains.

 Summary of important length scales: 1 < Lair < Lens < Lo
* System size L,
* Envelope size L,y
e Stirring length scale L,
* Turbulence length scale [, here we use Taylor microscale A
* Barrier width W

04/16/2019 Sherwood 2019 19
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Formation of Barriers

* How do the barriers form? —  flux coalescence

mr = 3 702 — — (B2

k

* From above expression, it is possible for some
strong B regions to have negative resistivity, while
the resistivity is always positive when averaged
over the whole system.

e Positive feedback:

B is strong in a specific region > diffusion of A is negative

B in that region increase ¢ V A becomes greater

04/16/2019 Sherwood 2019 20
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Formation of Barriers Cont’d

* Negative resistivity leads to barrier formation.
* The S-curve is due to the dependence of Bon I,.
* When slope is negative, it is negative resistivity.

‘unstable:

04/16/2019 Sherwoo d 2019 21
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Describing the Barriers

e Measure the barrier width W'.
* Starting point: W ~Aa4/B,

* Use /(A%) to represent AA
* Define the barrier regions to be: B(z.y) > V(B +2

# of grid points for barrier regions

* Define packing fraction: r=

# of total grid points
* Use use the magnetic fields in the barrier regions to
represent the whole magnetic energy: v~ z. ¥ p2

p p barriers system
e Thus (B) ~(B%/P

* So barrier width can be estimated by: w2 = (42,¢5%/p)

04/16/2019 Sherwood 2019 22



Describing the Barriers

* Time evolution of P and W

* What determines W

 Agor 1/ugp greater, W greater;
* fo greater, W smaller;
* W not sensitive ton orv.
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Staircase

e Staircases emerge spontaneously!
e Initial condition is the usual cos function (bimodal)

* The only major different parameter from runs above
is the forcing scale is k=32 (for all runs above k=5).

e Resembles the staircase studies in fusion research.
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Conclusions

* Magnetic fields suppress turbulent diffusion in 2D MHD by:
formation of intermittent transport barriers.

« Magnetic structures: _|Barriers—thin, 1D strong field
Blobs — 2D, weak field

ul
T4 Rl (B)2/(%) + Rm L (A%)/12,,(v?)

* Quench not uniform:
N

barriers, strong B blobs, weak B, V?(A4?%) remains
* Barriers form due to negative resistivity: rAT/\/
X 1,
nr =Y e[ — —(B*)x] | flux coalescence V —

" Hop

«B)

* Formation of “magnetic staircases” observed for some i.c.
—>

* Do barriers regulate magnetic helicity transport in 3D?

Implications for & quenching?
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