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1.Introduction
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The physics of stochastic
fields interaction with zonal

flow in the solar techocline
and at the edge of tokamak
share fundamental elements.




Introduction— Why

+ Why study disordered magnetic fields?

Disordered magnetic fields are frequently encountered.
The solar Tachocline The tokamak

Weak mean magnetization Strong mean magnetization

Convection zone

Stable stratified zone

Simulation: the stochastic magnetic t J-TEXT)
field has been “pumped” from the The resonant magnetic perturbation (RMP)
convection zone into the stably raises L-H transition power threshold.

stratified region.

PV mixing in a disordered field is a generic problem!



Introduction

+ What is Potential Vorticity (PV)? + What is inhomogeneous PV mixing?
1. Potential Vorticity 1s a generalized vorticity. Local PV mixing causes changes in flow structure.
PV ==V xv (pure 2D fluid) PVflux = (@) 0
PV = { + 2Qsin ¢y + fy (on the p-plane) NS
X
PV = (1 — p?V?) |6T|¢ + T (Hasegawa-Mima eq. for tokamak) phase correlation between u and C

n

: - After PV mixi :
2. It is conserved along the fluid — acts as sol PV il ! mixing  Velocity

conserved phase space density. Magnetic fields will \

break PV conservation.

# How the zonal flow evolves?

1. Flux of the potential vorticity = (?[Z ) - |
2. Taylor Identity and the evolution of zonal T e
flow Tavl Id L~ o\ 0 - region
- aylor Identity: \<MX(: ) = —a—y(uyux)
PV flux }?eynol;ls forceJ
Evol. of zonal flow a( ) = (7,0) 0 (U, u, ) to !
. —U,) = (U = u.u, )| equator- a
o1 ’ dy (a) (b)




Stochastic Decoherence

# Reynolds stress suppressed by stochastic dephasing: Stochastic fields

(Random ensemble of elastic loops)

Shear flow 0O
00 eddiesO 0 o \,_/ SN
#» Simulation result in solar tachocline: » Experimental result from DIII-D:
—e— Maxwell Stress (B;B,) —e— Reynolds Stress (uzu,) 4 (a)
i (Chen & Diamond, ApJ 892 24, (2020)) DIII-D "
\ @
% 10~ ~ - Tver = | + |
jS // . ' g 2 + + ,/'/
2 i = ) :_*4,
10 ! g - i ------------------------------- -
10—* 1072 1072 B )1 00 ® NBI+ECH
The Reynolds stress is suppressed when U conventional wisdom: Maxwell/ J 0 1 2 3 4 5
. . : Reynolds stress balance when the
mean field is weak, before the mean field systom is Alfvénized. 5B,/B (10-4) DIII-D

is strong enough to fully Alfvénize the T
system (L. Schmitz et al, NF §9 126010 (2019) )



Outline

2.Solar Tachocline



B - plane Model

# Properties:

1. Strongly Stratified (-plane model)

2. Zonal Flow and Rossby wave — as 1n the Jovian i e
Atm()sphere, | | | ,B — 7 ‘ — 20c0 S( ¢O) /a k e &
3. Large magnetic perturbation — large magnetic Kubo Po il

number. ? T :

4. Meridional cells forms tachocline but will make it spread ,
. L X rotation

Zonal Direction / radius

RO Lo B y .
---------- . latitude
***** Y

Rossby Parameter (B): () Ty .

Derivative of angular

-----
-~c -

S T R
# The tachocline formation:
» Spiegel & Zahn (1992) —

frequency f (Coriolis
parameter)

““At the heart of this argument,
therefore, is the role of the fast
turbulent processes in redistributing

Spreading of the tachocline 1s opposed by turbulent viscous diffusion of momentum 1n latitude.

» Gough & Mclntyre (1998) —
Spreading of the tachocline 1s opposed by a hypothetical fossil field 1n the radiational zone.

These two models ignore the strong predicted stochasticity of the
tachocline magnetic field.

angular momentum on a long
timescale.” — (Tobias et al. 2007)



How we describe stochastic fields?

Quasi-2D Magnetic field = mean field + stochasticfield B = By + B

‘ Small-scale random fields

' : O The large-scale magnetic field is
‘ distorted by the small-scale fields.
O The system thus 1s the “soup’ of
N cells threaded by sinews of open
> field line (Zel’dovich, 1983).

—Large-scale magnetic fields

A weak mean field— large magnetic Kubo number, if | B? | /Bg > 1.

#Fluid Kubo number: g, = % Yo  Ta ST Auioconcitiontng
. h b Al Al Leddy g Eddy turnover time
@ Magnetic Kubo number: oy
rMiag Oy [..|B| < 1, Quasi-linear theory
Kumag = ~ R = > 1, Quasi-linear theory fails
Aeddy AealolyBO ’ ry

“Simple” quasi-linear theory can fail.



How we describe stochastic fields?

The system is strongly nonlinear and simple quasi-linear method fails.

A" frontal assault™ on calculating PV transport in an
ensemble of tangled magnetic fields is a daunting task.

Rechester & Rosenbluth (1978) suggested replacing the “full” problem
with one where waves, instabilities, and transport are studied in the
presence of an ensemble of prescribed, static, stochastic fields.

4 Assumptions:

1. Amplitudes of random fields distributed

statistically.
2. Auto-correlation length of fields 1s small

( delta correlation /. — O, such that

%, [ |B|
Kby, = —— = — < 1, even
Acaay  ALBy

B/By> 1)
» (Closure theory.




Order of Scale in B-plane MHD

4 Parameters: 4 Two-average Method: 1 1
| — ) — — | de— | dr ensemble average
Stream Function yw = w(x,y,7) I = JdR Jstr - P (Bst,x,Bst,y)F ( ) I J TJ over the zonal scales
. . 0 0 Zonal flow Rossby wave Magnetic Rhines Stochagtic—Field ehastic fic
Velocity field u = ( l//, W,O) ’ i scale Averaging scale Stochastic field
y ) — ey v L Lk

Fluid Vorticity &= (0,0,0) Koot KRossby K Kavg ks

Potential Field A =(0,0,A) onal flow

0A O0A
Magnetic Field B = (—, ,0)
dy 0x .
: : S i
4p TWO main equations: ol VN
Quasi-linear closure: o . Rossb Random-field
— y
Function of fields F = Fy+ F + F; Random fields Wave averaging region
- 0 0 (B - V)(VZA)
Vorticity Eq:  ( Fu, - V)¢ _ﬁ_l// — < v(V X Vzu)
of 0x Hop
2 v =82 4 nvia
- _ : u, - — — ,
Induction Eq: Py 1"Vl oy n

10



Simulation Results

# Conventional wisdom— what “fully Alfvénization” means?

1. All the wave energy transferred into Alfven wave (dominated mode of the wave 1s Alfven frequency).
2. The wave and magnetic energy reach equi-partition.

3. Then the Maxwell stress cancels the Reynolds stress Mascwell Stress (B, By) ~ —s— Reynolds Stress (usu)

| 0_2 (Chen & Diamor;_d_,ép] 892 24, (2() _

» What really happens... _‘ ,

N j ! 1

. R -4l ¥ AL ized ¢

The Reynolds stress is suppressed g 1 \/‘

when mean field is weak, before 92 |

o o —6 |

the mean field is strong enough to 10 | |

fully Alfvénize the system.
10/

' SuppreSSIon o1 2ona ow: Conventional wisdom: MaxweII/Reynolds stress

balance when the system is Alfvénized.

— /T 2
»The dissipative nature of the wave-field wa) =(I') — p P’7< St,y><u ) + vV <” )
coupling induces a magnetic drag on the / 0 X
mesoscale flows. PV flux

»Random magnetic fields modity the PV flux.

Magnetic drag force (J, X B,,)
11



Results — Multi-scale Dephasing

# Multi-scale Dephasing:
Mean PV Flux (I') and PV diffusivity (Dpv).

| B2 BZ small-scale
Mean field 0 < ST random fields

The large- and small-
scale magnetic fields
have a synergistic effect
on the cross-phase in the

PV Diffusivity Dpy

Reynolds stress.

# Dispersion relation of the Rossby-Alfvén wave with stochastic fields:

(mean square) (square mean)
B{ k? Rossby frequency v, = — k. /k?
+ ivkz) (a) + ir]k2> = - : P
”}P »Drag+dissipation effect
— AW of the large-scale — this implies that the tangled fields
sping constant  BZk*/piqp magnetic field and fluids define a
dissipation nk? Dissipative response to resisto-elastic medium.

Random magnetic fields
12



Results — Resisto-Elastic Medium

# B - Resisto-elastic Medium:  Rossby frequency w; =0

AR A )

Site-percolating\Network

o e svang? 9D>
Ty p‘4 l' Awal
O D Qe
' ‘Cj’ ‘\l‘\_" ':,// S

™ TN

Alfvénic loops + elastic wave
= resisto-elastic medium

» Fluids couple to network elastic modes. Large elasticity increases
memory.

» This network can be fractal (multi-scale) and intermittent (— packing factor:

B% — pB2)
— “fractons” (Alexander & Orbach 1982).

> Similar physics— polymeric liquids.

We can calculate the effective spring constant, effective Young’s Modulus of - ¢ -~

s Schematic of the nodes-links-blobs
elaSUCItY' model (Nakayama & Yakubo 1994).

13



Conclusion

#» What studies have shown:

Reynolds stress will undergo decoherence at levels of field intensities well below that of  —e— Maxwell Stress (B,B,) ~—s— Reynolds Stress {u,u,)

Alfvénization (where Maxwell stress balances the Reynolds stress). 102 (Chen & Diamond, ApJ 892 24, (2020))
—

The flow generated by PV mixing/Reynolds force are reduced by:

\%i

E<ux> - (T) 1. Coupling to resisto-elastic waves, 10~ o
which 1s B; B2 - dependent.
: 107
< st, y)(u ) + v V? (u ) 2. Increase of the magnetic drag. /
HHoP

Stress

Stochastic de

Toroidal mean fielg

| 04 100 102 10t
4p Both Spiegel & Zahn (1992) and Gough Mclintyre (1998) Models fc  ne By

Solar Tachocline

solar Tachocline are not correct. The truth here i1s ‘neither pure nor
simple’ (apologies to Oscar Wilde).

These two models both ignore strong stochastic fields of the

tachocline. > Maya Katz, Robin

Heinonen, and Patrick

Radiative

» Suggestions for future simulation works:

. . Diamond (TO-16. Nov. 12, Zone
1. A third axis: Rossby parameter f3. 10:30 am).
2 Include a static tan gled field. Cross-Helicity Generation and Structure Core

Formation in [3-plane MHD Turbulence.

14



Outline

3.L-H transition in tokamak



Model

# The model (Cartesian Coordinate): Mean Toroidal Field

1. Strong mean field (3D).

@
2.k-B =0 or k” = () resonant at rational surface has third direction — .
&
W — @ T VAkZ'
[ \§| (a) Vorticity equation — vorticity — V2 = ¢
. __ac
3. Kubo number: Ku,,,, = A B, < D). (b)Induction equation — A, J

"IEM drift
wave

(c)Pressure equation — P
4. Four-field equations
(d)Parallel flow equation — v,

Mean-field Approximation:

Perturbations produced by
turbulences

1
,where () =— dx—Jdt
L T

ensemble average over
the zonal scales

> -
-
SIS v
- A 4 [
- Loy [
<. \ A" A 4 ' 1y 14 A
iy L
> & LY Loy v
1 ,
- ot O
“ow [ 8) N oy
LS RSk b (S )
‘ R ¢ 4~
A 4 (Y \ ’
() " N ] A
A
[ ]
3 L4 A‘ y T
A v r i H H
Stochastic fields

10



Scales

4 When does stochastic Fields dephasing become effective?

Basic scales:

Alfveénic
Shear flow rate Dispersion
0
koAx—u val Ak

ox °

Natural linewidth

Stochastic
broadening

Natural

Natu Stochastic field decoherence
linewi1dth

D beats seltf-decoherence.

(non-linear micro-
instability process)

D = VADM — Vy Z ﬂé(ku)bkz
A T fe T

e | Auto-correlation
) Magnetic length [
diffusivity
l \
/ \ Alfvén wave propagate via
/ ‘\ stochastic fields
. N — characteristic velocity
_ ~ - - fromV -J =0
N
T /

17



Scales

W Dkf > Aw gives a dimensionless parameter (a):

>\/ﬁp§§~10—7 a=———>1

4 How ‘stochastic’ is this? Magnetlc Kubo number
Basic scales:

Natural
linewi1dth

(excited by drift-
Altvénic coupllng) 1nstab111ty process)

(non-linear micro-

18



Experimental Results

4 Experimental results in L-H transition (DII-D):

<V V,> (107 mz/s2) 2NI-D (@ Dpi-D
3 | | | »J;—
- no MPs
- non-res. MPs 3 | .i’..
- resonant MPs
2 = *
= 2
. = .
o -
o T
H NBI
® NBI+ECH
—1 0 . ' .
iy 0 1 2 3
t-t iy (Mms) 5B,/B (10-4) DIII-D

(D. Kriete et al, PoP 27 062507 (2020))

4 Suppression of poloidal Reynolds stress: @ =o - (u)k,

~ 2
DPV — Z ‘ ux,ka)‘
kw

Suppressed by

_ 0
(@) = = Dpy o)+

Residual Stress Curvature

stochastic tields

and residual stress.
This stochastic dephasing 1s insensitive to turbulent mode (e.g. ITG, TEM,.. .etc.).

(L. Schmitz et al, NF §9 126010 (2019) )

b3l k*

2
6(_)2 + (VAbzlackz)

Reynolds stress will be suppressed as stochastic fields via PV diffusivity



Decoherence of eddy tilting feedback — the physics

M/% Sne",s IaW: d aa)k auy shear flow
Leads to non-zero(kxky) E = = E — — yg

—(uyity) o (kky)
4 Self-feedback of Reynolds stress:
The E X B shear generates the (k,k,) correlation and

4/‘?\ hence support the non-zero Reynolds stress.
~ ~ . k 0
(i) ~ = Yy ———(ki—1,)

B X The Reynold stress modifies the shear via momentum
k transport.

» The shear flow reenforce the self-tilting
4 Now, the dlspersmn relation with drift-Alfvén coupllng IS:

Drlft -wave frequency

Frequency shift induced by b?

(wp + 6w)* — wp(wp + 6w) — (ky + b -k )vi=0
20



Decoherence of eddy tilting feedback — the physics

4 Stochastic fields dephase the self-feedback loop of Reynolds stress:
Expectation of frequency in stochastic fields: (w) = (®,) + (ow).

1 vi Ensemble average
N 21,2 S
(W) =~ wp+——b"k] +— frequency shift
2 o
T 12 21,2 2
(T~ — Z | & | (kQ%T B lVAkL ob ) Stochastic
Y ~ Bg T ox " 2 wy  OX * 4= dephasing
When these two are comparable, -
the feedback loop will be broken. Stochastic fields
Shear flow (Random ensemble of elastic loops)
ﬁ

O
0000 g 00"

4— Stochastic fields act as elastic loops

and resist the tilting of eddies.

21



Results — Increment of Py

4 Extended Kim-Diamond Model (Simple reduced model): b2 g
Stochastic fields broadening effect requires: Aw < kiD. This gives dimensionless parameter (a): A& = 5 — > 1
€
4 1D Theory of power threshold: M. A. Malkov et al. (PoP 22, 032506 (2015)). pps
Kim-Diamond model 1s useful for testing trends in power threshold increment induced by stochastic fields.
1.4 3 a=C . Turbulence intensity —
N Zonal flow energy vz2 _ )
1.2F - — Pressuregradient » We expect stochastic fields
ok ' \ | B to raise L-I and I-H transition
Ot A\ 5 thresholds.
0.8 I 3
06 " predito —5
; | |
0.4 | b
0.9 l-phase | H-mode - .
~ L ; quantifies the strength of
Q0L s S stochastic dephasing.
0.0 0.3 1.0 1.5 2.0
L-I transition I-H transition

22



Results — Increment of Py

Extended Kim-Diamond Model with b?

2 =
1.8 (I))zﬁ : 4 b 0
0.4 2B
o — el )
g 1.4 Oy = al——0.6 o0 = b q
E 1.2 s O (1):: —
8 1| g 28| —12 \/BP% €
.;.g 0.8 % 2 | 1.6
L= ’ E 1.8
.. |
0.2 =
ol 0.5
0 2
OO é
1.2 e Input power
=8
?,;o.s ‘1’53 The threshold increase due to
§ 08|10 stochastic dephasing effect is seen in
S oal turbulence intensity, zonal flow, and
q o
Ro2 OF pressure gradient.
@) .
0) 2

23



Results — Increment of Py

4 Increment of Power threshold: )2

The power threshold increases linearly with the increment of stochastic fields intensity a = .
L | | "= Qi l \/’Bp % ¢

L-1 transition —liner 8¢

5 0.9 F

e

o o8| 4

Q

£ o7 @ pip

£ o6

5 3 T 4.

g° = b“ shift L-H, I-H

04! - ; s : S od thresholds to higher
’ - power, in
- | | ] & R L roportional to o
L 17 I-H transition e 1 prop .
= m NBI
S . : ® NBI+ECH
O ? ? T
5 1 0 1 2 3 $2 ~ 1(P7
QB) 1.3 | 6BrlB (10'4)
o
i (L. Schmitz et al, NF 59 126010 (2019) )
0 0.15 ('1 1.5 2
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Outline

4. Conclusion



Conclusion — General Ideas

4 Dephasing effect caused by stochastic fields quenches Reynolds stress.

Stochastic fields
(Random ensemble of elastic loops)

Shear flow

————

0000

< r——
4p Stochastic fields can form a fractal, elastic network. Strong coupling of flow

turbulence to the fractal network prevents PV mixing and hence zonal flow
formation. £ 4FRF AL 4o

Site-percolating\Network

L

node

blol

PV dynamics with a tangled field relevant, is a broadly applicable paradigm!

20



Thank you!




