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Background and Survey Results

ExB staircase current subject in ML.F.E

Suggested ideas:

J°F i e Zonal flow eigenmode
: il e ExB shear feedback, predator-prey
£ | - e Jams
o {ExB shear rate yg |
o
% But... is there an even simpler physical mechanism to produce
e layering

° 80 10 120 140 160 180 Clue: Staircase formation, dynamics captured in ultra-simple mixing

Normalized radius: r/p,

model with two scales. - Balmforth, et. al; Ashourvan and Diamond

Some Questions
Next:

e How does staircase beat homogenization? ,
More on staircase!

e s the staircase a meta-stable state?

e What is the minimal set of scales to recover layering? But, FIRST let's
discuss cell pattern...

_*




Background and Survey Results (cont.d)

Transport of particle between non-overlapping or marginally overlapping cells is an important

topic in fusion plasma.
Overlapping case: particles can transport directly from cell to cell, wandering along streamlines

Non-overlapping case (cells sit at near overlap): transport is a synergy of motion due to cells and
random kicks (Collisional diffusion, ambient scattering) thru gap regions.

(b) —_— . Characteristic of near marginal. :
— | 'T_hé transport over gap is random kicks |
Motion Q : (ambient diffusion): collisions, i
dui LA
> —

e cell | micro-turbulence. !
Small gap

I i Coexistence of:
i ~ Fast transport - Mixing in cell i

N.B.: “Profile stiffness” — Cells near overlap
— Rapid increase in transport prevents strong overlap . ~ Slow transport - Kicks between cells_ _ !




Background and Survey Results (cont.d)

Consider cellular lattice of marginally overlapping cells.
Transport? Answer: Deff ~ D, Pe”” {Not a simple addition of process!}

— Two time rates: v, / £o, Do / €%
— Pe=v, 0o/ Dy >> 1

Profile?

Consider concentration of injected dye — profile

Rosenbluth et. al. ‘87

— Layering!
— Simple consequence of two rates
— “Rosenbluth Staircase”

Important:

e Staircase arises in stationary array of passive eddys.

“Steep transitions in the density exist e (Global transport hybrid:

between each cell.” — fast rotation in cell Next: Work...
— slow diffusion in boundary layer - >

e Irreversibility localized to inter-cell boundary.

Relevant to key question of “near
marginal stability”




System

— The governing equation solved in this study is the passive scalar transport equation,

on 9
E—l—u-Vn—DV n,

The streamline function used to create the Bénard convection patterns inw 1s,
¢ = sinm(z/d)sinmB(y/d) Ha Yapear - Discus

later...

The fluid velocity u is of the form
u = (ad/m)3 x Vib,
here d gives the size of the roll, f its aspect ratio, and # 1s the maximum flow of the velocity.

— Two characteristic time-scales, time for circulation around the roll (t,; = d / %iff) and time for molecular

diffusion of a particle through a roll (t, = d*/ D). The ratio of these two time-scales,
D
Pe = — >>]
TH

— Primarily concerned in the case of Pe >> 1, where the physics is explained by fast mixing within the
cells and slow mixing across the boundaries of the cells.

— Later will discuss the Pe , which introduces an additional characteristic time-scale (t ).




System (cont.d)

Ongoing work... Periodic
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Insulated boundary
condition on right boundary.
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In the future we will explore
fixed flux conditions
(ejected at edge)!

Later we add shear to the
system in the form of,

77bshea1r = — COS
2




Staircase with No Shear (0=0)
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Again, fast mixing in cell and slow diffusion across boundary layer! Next: Shear...

Simulation agrees with theoretical result scaling D* oc Pe”




Staircase with Shear (0#£0)

WShear(m =5)

Now shear is introduced

mx

77Dshear = — COS 7

The strength of the shear
: | | , is controlled by a. Recall,

A w - I/JO ta wshear

A scan of averaged scalar concentration at fixed D as o= /\
m =

a function of x for different a values.
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As the shear strength increases, the staircase profile breaks down. Shear enhances

Important:

mixing (i.e., increases irreversible process). I ‘

e (Corrugation breaks down!
e There is critical o and m where the staircase begins to breaks down!
— Let’s introduce a new Peclet number, Pe = v’/ (D / {;>) = o m*> d*/ D (measure of shearing)
— In addition, there will be a shear dispersion time scale, t,= (/D v2)”
e Shear dispersion rate gives effective mixing rate faster than diffusion!



Staircase with Shear (0#£0) (cont.d)
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e (t,= (L*/D v’2)”) shear dispersion gives effective mixing rate faster than (&) D) @) | ({4
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e  Then supercritical shear — irreversible mixing outside inter-cell boundary . =
v x5 N > } = " - '4
layer. LS C )@ it
e  Results suggest here that shear flow actually weakens staircase, by reducing (@ »)]l * 1 D) i 25D
slow-fast time scale ratio! D
IMPORTANT:  For Pe, >> 1 corrugation decays! Next: What about localized
shear? Ongoing... 10




Summary

Staircase appears in stationary, passive cellular array with diffusion at
Pe >> 1.

— Fast mixing in cell, slow mixing across cell boundary 1is sufficient!

Simple consequence of two time scales, well separated, and their
interplay in transport. Slow time scale — transport barrier.
Relevant to nearby overlapping cells, near marginality.

Enhanced shear mixing reduces t_ — degrades corrugation,

low / Tfast
staircase.

No dynamical feedback in this system.

— Simpler then shearing feedback loop scenario.
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Ongoing

Localized shear

Fixed flux boundary conditions
Noisey deposition

[rregular cells

Noisey cell pattern
o Vortex crystal + forcing
o ‘Melting crystal’

= consider <n> profile in melting crystal flow.
How resilient is staircase pattern?

How does staircase degrade?
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Streamfunction showing
turbulence-induced melting of a vortex
crystal (Perlekar and Pandit, 2010)
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