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Abstract

The pedestal turbulence intensity required to convert the thin, laminar H-
mode SOL(scrape-off layer) to a broad turbulent SOL is calculated using the theory
of turbulence spreading. A lower bound on the pedestal turbulence level to exceed
the neoclassical heuristic drift width is derived. A reduced model of SOL turbulence
spreading is used to determine the SOL width as a function of intensity flux from
the pedestal to the SOL. The cross-over value for exceeding the HD(Heuristic Drift
model) width is then calculated. We determine the pedestal turbulence levels –
and the critical scalings thereof – required to achieve this level of broadening. Both
drift wave and ballooning mode turbulence are considered. A sensitivity analysis
reveals that the key competition is that between spreading and linear E ×B shear
damping. The required pedestal turbulence levels scale with ρ/R.
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SOL Width Broadening by Spreadging of Pedestal Turbulence 2

1. Introduction

Perhaps the central question of magnetic fusion
research today is how to reconcile good confinement
with satisfactory power handling and boundary
control[1]. The advent of H-mode[2] and other
enhanced confinement regimes has spawned a set of
new questions in the realm of of power handling.
These include ELM(edge localized model) mitigation,
impurity and particle control, and the SOL heat load
width. The last –namely the SOL width – is the subject
of this paper. The approaches to these questions
all require an element of compromise, i.e. one must
consider remedies which involve trade-offs between
confinement and power handling, so as to optimize
the overall device performance. A cost-benefit analysis
approach is usually required.

One power handling issue of great importance is
that of the heat load scale, set by the width of the
scrape off layer(SOL). A broad SOL width is desireable,
so as to accommodate the power density flowing to the
plasma facing component (PFC) in the divertor. For
a long time, turbulence generated locally (in the SOL)
was thought to determine the SOL width via turbulent
transport[3]. The picture here was analogous to the
textbook example of a turbulent boundary layer, the
scale of which is set by diffusion and the transit time
of a parcel through the boundary layer[4][5]. However,
more recent scaling studies[6] indicated this was not
the case, and that the SOL width in H-mode was
quite narrow, and scaled inversely with poloidal field.
The heuristic drift (HD) model[7] nicely explained the
observed SOL width (λ) scaling by relating the heat
load width to the magnetic drift velocity vD ' ρvTi/R
and the ion transit time τ‖ = qR/vTi, so λ ' vDτ‖ ∼
ερθi . Here, ρ is the ion gyro-radius, vTi is the ion
thermal velocity, q is the safety factor, ε is the inverse
aspect ratio, ρθi is the poloidal ion gyro-radius. Note
that here λ is seen to be small, independent of machine
size, and to scale as ∼ 1/Bθ. The HD model is
consistent with present day scalings for the SOL width
in H-mode[8], though the data analysis suggests that
physics other than neoclassical is at work in some cases.
It also is, plainly put, bad news. In particular, both
the inverse scaling with current and the independence
of size are undesirable. Recent work indicates that
strong E × B shear in the SOL and its concomitant
stabilizing influence underpins the HD model[9], which
ignores collective effects a-priori.

Given the situation described above, it is natural
to explore possible mechanisms for broadening the
SOL. Turbulence spreading from the pedestal to the
SOL is a natural candidate. The idea here is to convert
a laminar boundary layer to a broader, turbulent one
by injection of turbulence from the pedestal into the
SOL. Of course, this requires pedestal turbulence and
the outward spreading thereof to drive the process.
Turbulence spreading is intensively studied in fluid
mechanics, as the topic entrainment – familiar in the
context of free shear flows and wakes[5]. Entrainment
refers to the process whereby a turbulent patch
expands into stable or irrotational region of the flow.
Spreading[10] is especially relevant since turbulent
pedestal states are also of current interest for ELM
mitigation [11] and particle and impurity control.
Examples of turbulent pedestal states include ”grassy
ELMs”[12] – defacto states of modest MHD ballooning
mode turbulence – and the wide pedestal QH-mode [11]
. It is natural then to inquire if the pedestal turbulence
can also resolve yet another problem, namely that
of the SOL width. The aim here is to determine
if spreading-induced turbulent broadening can exceed
the neoclassical HD width. This requires achieving at
least an R.M.S. E×B velocity in the SOL of ṽ⊥ > vD.
As we will see, this condition also sets the required
pedestal turbulence level.

It is important to emphasize that the key question
here is quantitative . Turbulence spreading from the
pedestal to the SOL is to be expected, since the
free energy available in the pedestal is much larger,
on account of the outward heat flux and closed core
field lines. Also, there is ample direct evidence of
outward spreading (i.e. from the core towards the
SOL) of edge turbulence intensity. This has been
ascertained by measurement of the turbulence intensity
flux [13][14][15] and by calculation of the transfer
entropy [16]. The latter approach uses fluctuation
measurements to determine the direction of the flow
of information carried by turbulence spreading. All
measurements indicate outward spreading. Thus, there
is indeed little doubt that a sufficiently turbulent
pedestal can drive spreading to broaden the SOL.
The real question is whether this is possible with an
acceptable degradation of confinement. Here we aim to
answer precisely that question. With this goal in mind,
our analysis follows in two sequential parts. The first
addresses the effect of an influx of turbulence intensity
on the SOL turbulence level, and thus the SOL width,
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SOL Width Broadening by Spreadging of Pedestal Turbulence 3

via ṽ⊥rms. The second examines what level of pedestal
turbulence is required to drive the necessary SOL width
broadening.

In this paper, we examine the physics of the SOL
width scale, with special emphasis on E × B shear
and its implications for stability, and on turbulence
spreading and its impact on SOL broadening. The
aim here is to determine the pedestal turbulence level
required to broaden the layer beyond the HD width.
First, we review the linear interchange stability of the
SOL and show that E ×B shear and sheath boundary
conditions combine to strongly stabilize the SOL.
Then, using a generalized K − ε model of turbulence
spreading [17] [18] [19] [20] , we derive an expression
for the SOL turbulence energy density e in terms of
the turbulence energy density influx from the pedestal,
the rate of linear damping by E × B shear, and
nonlinear damping. This value of e so determined

then sets the layer width as λ =
(
λ2HD + τ2e

)1/2
.

Here τ = L‖/cs is the transit time through the SOL
and λHD is the HD model width. The predicted
value of λ/λHD falls along two branches, with a
transition region in between. ṽ ∼ vD is required
to achieve the transition layer. We then turn to
the question of what levels of pedestal turbulence are
necessary for broadening. Two prototypical examples
are considered, namely collisional drift wave turbulence
and ideal ballooning mode turbulence. In both cases,
we determine what pedestal conditions are necessary
to broaden the layer. A major element in this analysis
is the effect of the edge transport barrier due to the
strong electric field shear in H-mode on regulating
spreading[21]. The effect of shearing is accounted for
via the correlation time in the spreading flux from
the pedestal. In the case of collisional drift waves –
representative of pedestal microturbulence, we derive a
lower bound on pedestal fluctuation levels sufficient for
SOL layer broadening. For ballooning mode turbulence
– representative of Grassy ELMs – we show that only
a small exceedance of the ideal marginality condition
is sufficient to produce the requisite layer broadening.
Thus, we demonstrate that a state of quasi-marginal
ballooning mode turbulence – equivalent to a Grassy
ELM state – can support a SOL width which exceeds
the HD prediction. A sensitivity study of our result to
the various parameters in the nonlinear damping model
is presented, as well. We show that the key competition
at the transition is that between the spreading flux and
linear E ×B shear damping.

The remainder of this paper is organized as
following. Section 2 presents necessary background –
the HD model – and explains why it works. Section 3
determines the SOL width as a function of turbulence
energy influx from the pedestal and SOL parameters.
Section 4 links the above-mentioned energy influx

to pedestal turbulence. Two cases – namely
microturbulence and ballooning mode turbulence – are
examined. Section 5 presents the sensitivity studies.
Section 6 gives discussion and conclusions. Several
suggestions for physical and numerical experiments are
presented.

2. Background: The HD Model and why it
works

This section presents a brief discussion of background.
Goldston, et. al. [7] proposed a heuristic drift model
for the SOL heat load width which is a good fit
to data [22] of present day H-mode discharges. It
combines the magnetic drift velocity with the parallel
transit time in the SOL to obtain a SOL width scale
λ ∼ ερθ, as illustrated by Fig. 1. This model
is based entirely on drifts, and turbulence is not
considered. However, fluctuations are observed in SOL
experiments[23]. Therefore, it’s natural to ask: what’s
the role – if any – of turbulent transport in determining
the SOL width and why does Goldston’s model work?
In this section, we answer this question by a stability
analysis of the SOL.

Figure 1: Cartoon of
the Physics of Heuristic
Drift Model. The curve
represents a field line in
SOL

Figure 2: Geometry of
the 2D fluid model for
SOL

Here, a reduced electrostatic 2D model for a
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SOL Width Broadening by Spreadging of Pedestal Turbulence 4

sheath-connected SOL [24] is used.

n
d∆⊥φ

dt
= α nT 0.5

(
1− e−(φ−φ0)/T

)
− β∂yp+ nνc∆

2φ

(1)

d

dt
n+ α T 0.5n = Dc∆⊥n (2)

d

dt
T + αTT

1.5 = χc∆⊥T (3)

In this model, all the fields are functions of x, y, with
the coordinate along the field line averaged out. φ is
the field line averaged electrostatic potential, n is the
field line averaged density. T is the field line averaged
electron temperature. Ion temperature is assumed to
be the same. The equations are dimensionless. The
reference values for n, T are the values of those at the
separatrix n0, T0. The reference potential is chosen as
T0/e The reference time scale is chosen as the inverse
of the gyro-frequency at the separatrix τ0 = 1/ωc,
ωc = eB

mi
The reference length scale is chosen as the

gyro-radius at the separatrix rhos = cs/ωc where
cs =

√
(Te + Ti)/mi

The geometry of the model is illustrated in Fig.
2. φ0 is the floating potential, α is the coefficient
describing sheath resistivity. β is the coefficient
describing magnetic curvature. SE is the sheath
energy transmission coefficient, as introduced in the
model[24]. νc, Dc, χc are the neoclassical kinematic
viscosity coefficient, diffusion coefficient, and heat
conductivity. The neoclassical transport is assumed
to be in the plateau regime, which is most relevant to
experiments for the SOL. The notations are explained
below:

d/dt = ∂t + [φ, ] = ∂t + ∂xφ∂y − ∂yφ∂x (4)

αT = αSE (5)

α = 2ρs/L‖ (6)

β = 2ρs/R (7)

φ0 = −3T (8)

L‖ = qR (9)

Here, due to the floating potential in the sheath
boundary condition Eq. 8, the electrostatic potential is
directly linked to the temperature profile, and thus to
the SOL width. As a result, the average dimensionless
E × B shearing rate ωs = ∂2xφ ≈ ∂2xφ0 = 3Tsep/λ

2 is
large for small SOL width, and so leads to strong shear
stabilization in that limit.

Now, we investigate the linear stability of this
system numerically by finding the eigenvalue with
maximal real part for a linear perturbation of the
system. The mean 〈n〉, 〈T 〉, 〈φ〉 profiles are assumed
to decay exponentially in radius as 〈T 〉 = Tsepe

−x/λT .
The width of the density, temperature and potential
profile should roughly be comparable, and are denoted

by λn, λT , λφ respectively, so λn ≈ λT ≈ λφ. At the
both boundaries (x = 0 and x = ∞), all fluctuations
are assumed to be zero, and so is the velocity
fluctuation (derivative of the potential fluctuation).
The results for the growth rate as a function of layer
width are presented in Fig. 3. Note that for λ� λHD,
instability occurs, because the E×B shear stabilization
effect weakens as ∼ 1/λ2. Of course, at λ/λHD � 1,
local instability in the SOL returns.

Figure 3: Maximal Linear Growth Rate of Interchange
Mode in the SOL v.s. normalized pedestal width
λT /λHD at different SOL safety number q (with β =
0.001)

Here, the normalized maximal growth rate is
plotted against the normalized SOL width λT /λHD.
The 〈n〉, 〈T 〉, 〈φ〉 are assumed to have the same shape.
β is taken to be 1/1000. γHD is the ideal interchange
growth rate at λHD: γHD = cs/

√
λHDR. The results

shows that in a relevant range of edge q from (3 to 6),
the SOL is stable when the SOL width is ∼ λHD, on
account of the combination of large E × B shearing
and sheath resistivity. This explains how HD scaling
can work – there is no strong local instability in the
H-mode SOL, so turbulent transport is not produced
there. The origin of any fluctuations observed in the
SOL must necessarily be non-local – i.e. consequence
of spreading from elsewhere or the consequence of
a nonlinear growth process. The latter is beyond
the scope of this paper. As a result, if we are to
consider the possibility of broadening the SOL width
by turbulent transport, spreading of turbulence from
the pedestal into the SOL should be examined.

3. SOL-Edge Connection I

Intuitively, we expect that turbulence in the pedestal
should be able to broaden the SOL by turbulence
spreading. It is crucial to determine how much pedestal
turbulence is needed to cause significant broadening
of the SOL, since excessive pedestal turbulence
will result in unacceptable confinement degradation.
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SOL Width Broadening by Spreadging of Pedestal Turbulence 5

This problem is intrinsically one of benefit (SOL
broadening) vs. cost (confinement degradation due to
turbulence spreading).

In this and the next section, we study the
influence of spreading on the H-mode SOL in the
context of a 2-Box model , illustrated by Fig. 4.
Note that the presence of the shear layer and the
edge transport barrier here defines an especially clear
boundary between the domains of the two boxes. As
a result, the distinction between pedestal and SOL is
valid. The SOL is modelled as a flux driven boundary
layer with multiple drives, illustrated by Fig. 4. Apart
from the usual drives – i.e. the heat flux Q and the
particle flux Γn – a new drive, that of the turbulence
intensity flux (denoted by Γe) from the pedestal to the
SOL is included in the model. The presence of an
influx of intensity makes this boundary layer problem
fundamentally different from those usually encountered
in textbooks. The width of the SOL is ultimately
related to all these drives. The driving intensity flux is
connected to the pedestal fluctuation level and pedestal
parameters. This connection is discussed in the next
section.

Figure 4: Illustration of Two Box Model: SOL driven
by particle flux, heat flux and intensity flux (Γe)
from the pedestal. The horizontal axis is the radial
direction, and vertical axis is the poloidal direction.

Integrating Eq. 2 and Eq. 3 over the SOL, we

have:

Q = αTλT 〈T 〉sep (10)

Γn = αλn〈n〉sep (11)

The heat flux determines the separatrix temperature
and the particle flux determines the separatrix density.

The simplest model which describes turbulence
spreading is:

∂te = γ e− σ e1+κ − ∂xΓe (12)

[25][26][27]. Here, e is turbulent energy density, i.e.
turbulent intensity. γ is the local linear growth rate,
σ e1+κ is the nonlinear damping of the turbulence. Γe
is the turbulent intensity flux. So, σeκ is the nonlinear
damping rate. Eq. 12 is generic, and is an example of
a K − ε model, which evolves SOL turbulence energy
density by linear growth γ, nonlinear damping σeκ

and turbulence energy flux Γe. Note that no closure
approximation of Γe is necessary at this stage.

Assuming steady state and integrating Eq. 12
across the SOL in x direction, we obtain the key
relation:

Γe0 = λe |γ| e+ σ e1+κλe (13)

Here, Γe0 is the intensity flux at the separatrix, γ <
0 is assumed, Γe → 0 for large x, and e should
be interpreted as a constant – the later is a layer
averaged value. Note the intensity flux through the
separatrix balances the linear and nonlinear damping
of turbulent energy in the SOL. This equation will
ultimately determine the layer width as a function of
turbulence energy density e.

In the SOL, the linear growth rate is approximated
by the following equation.

γ = γ0 − ωs (14)

It is justified by Fig 5, in the large shear limit, where
the H-mode SOL sits. The nonlinear damping rate is
σeκ. The values of σ and κ vary between different
saturation models. The sensitivity of the results to the
assumptions concerning this model will be discussed in
the later part of this paper.

The width of the SOL may be estimated:

λ = λe =
√
λ2HD + τ2e (15)

Here, we calculate the root mean square of the radial
distance travelled by a particle in the SOL before it
is lost along the magnetic field, i.e. in time period
τ = L‖/cs, the parallel transit time. This distance
is used as an estimate of the SOL width. Eq. 15
accounts for both magnetic drift vD contribution,
represented by the λHD(∼ vDτ) term, and turbulent
convection contribution. The turbulence is treated as a
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SOL Width Broadening by Spreadging of Pedestal Turbulence 6

Figure 5: Linear Growth Rate of a specific mode (fixed
ky) v.s. E × B shear at q = 5, β = 0.001, ky · λHD =
1.58. The edge safety value q and β = 2ρi/R are
chosen based on experimentally relevant values. ky is
chosen so that the poloidal scale of the mode is of the
same scale as the SOL, for which the mode is the most
unstable.

stochastic process, thus explaining why the effects add
in quadrature. The correlation time of the turbulence
is assumed to be the parallel transit time, since parallel
streaming is the main process in the SOL without
turbulence. And it is still a good approximation
when turbulence is weak, and so can be used as a
first approximation when turbulence starts to have
a broadening effect. Note that the turbulent velocity
needs to be comparable to the drift velocity vD in order
to have a significant influence on the width of the SOL.
This ultimately sets the level of pedestal turbulence
required, i.e. e > v2D.

Combining Eq. 13, 14 and 15, the SOL width can
be reduced to a function of Γe0, the intensity flux at
the separatrix. A representative curve of λ/λHD v.s.
Γe0 is plotted in Fig. 6, where β = 0.001, q = 4, σ =
0.6, κ = 0.5. As the figure caption states, the curve can
be divided into three regions. First, when the intensity
flux is small, linear damping in the SOL dominates
and balances Γe0. The SOL width then has a weak
dependence on the intensity flux. When the intensity
flux is large, the nonlinear damping dominates, so the
SOL width increases slowly with Γe0. In between, there
is a cross-over region, where damping and nonlinear
damping are comparable. The linear damping reaches
its maximal value in this region. In the cross-over
region, the width of the SOL grows rapidly with
increasing intensity flux Γe0. The prediction of the
cross-over between linear and nonlinear regimes is a
significant result of this paper.

Next, we need to relate Γe0 to the pedestal
turbulence, thus obtaining the minimal pedestal
fluctuation level needed to cause significant SOL

Figure 6: λ/λHD plotted against the intensity flux Γe0
from the pedestal at q = 4, β = 0.001, κ = 0.5, σ = 0.6

broadening. As will be discussed in the next section,
this is determined by the value of Γe0 required to enter
the cross-over region.

4. SOL-Edge Connection II

In this section, the intensity flux Γ0 is estimated in
terms of pedestal parameters, and a scaling estimate
of the pedestal fluctuation level needed to broaden the
SOL is given.

The turbulence intensity flux in the pedestal
can be approximated by the following coarse-grained
expression:

Γe0 = −τcK∂xK ≈ τcK2/wped (16)

as illustrated by Fig. 7. Γe is the turbulence intensity
flux from the pedestal to the SOL, and so encapsulates
the crucial effect of turbulence spreading. Here, K
is the turbulence kinetic energy density, τc is the
correlation time of the turbulence in the pedestal and
wped is the pedestal width, which here serves as an
estimate for Le, the scale length of pedestal turbulence
intensity. Eq. 16 can be derived systematically in
the weak turbulence limit [17] and can be generalized
beyond that regime by considering different correlation
times τc.

In turbulent pedestal, there are three classes of
processes that can influence the correlation time:

(i) Linear growth rate or triad interaction time

(ii) Nonlinear decorrelation

(iii) E ×B shearing
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SOL Width Broadening by Spreadging of Pedestal Turbulence 7

Figure 7: Turbulence Spreading in Pedestal

The first process is important in the weak turbulence
regime, the second is important in the strong
turbulence regime, while the third is important when
the E × B Shearing rate is comparable to or larger
than other rates. Of course, the last limit is the one of
relevance here.

Since large E × B shear is characteristic of
the pedestal, we first investigate the effect of E ×
B shearing on the decorrelation time. Shearing
will decrease the intensity flux, as expected for a
transport barrier[21]. A challenge here is for the
pedestal intensity to be large enough for Γe to
penetrate the transport barrier, but not so large as
to excessively degrade confinement. Here we use the
shear decorrelation rate to relate τc to D and ωs[28]:
D is the turbulent diffusion coefficient.

τ−1c = Dk2(1 + ω2
sτ

2
c ) (17)

The effective eddy size is modified by shearing, as
illustrated in Fig. 8.

Figure 8: Shearing effects on eddy size and correlation
length

In the strong shear limit:

τc =
(
Dk2

)−1/3
ω−2/3s (18)

Then, using the Kubo formula[29] to relate D to the
fluctuation level, we have:

D =

∫ ∞
0

〈v (0) v (τ)〉dτ

=

∫ ∞
0

dτ
∑
k

|vk|2 e−k
2
yω

2
sDτ

3−k2Dτ (19)

In the strong shear limit:

D ∼ |v|1.5 k−0.5ω−0.5s (20)

Combining the two steps above, we see that τc is
related to ωs and the fluctuation level in the strong
shear limit as:

τc = τ0.5t ω−0.5s (21)

Here, τt is the eddy turnover rate: τt = 1/k |v|. τt is
also the correlation time of the turbulence when the
E ×B shear is weak. Therefore, Γe0 is:

Γe0 ∼ τ0.5t ω−0.5s K∂xK ∼ τ0.5t ω−0.5s K2/wped (22)

The E × B shearing rate in the pedestal is
estimated by radial force balance, so:

ωs ≈ ∂x
∇p
ne
∼ ρ2

w2
ped

Ω (23)

Here, Ω is the ion gyro-frequency, ρ is the ion gyro-
radius.

Now we apply the general estimation of the
intensity flux above to the case of drift waves, taken
as representative of micro-turbulence, and ballooning
modes as representative of MHD turbulence or ”Grassy
ELMs”. The goal here is to obtain estimates of the
minimal pedestal fluctuation level needed to broaden
the SOL. The minimal intensity flux needed is given
by Eq. 13 and 15 as:

Γe0min = |γ|λ3HDτ−2‖ (24)

This estimate assumes that the velocity fluctuation
ṽ ∼ vD i.e. the turbulent velocity becomes comparable
to the magnetic drift velocity and linear damping
dominates nonlinear damping when SOL width is of
the same order of λHD. Thus, Eq. 24 gives an effective
lower bound on the intensity flux needed to broaden
the layer. The intensity flux from the pedestal then
balances the linear damping of turbulence in the SOL.
Note that this is the critical level of intensity flux
required to enter the cross-over regime, as shown in
Fig. 6.
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SOL Width Broadening by Spreadging of Pedestal Turbulence 8

4.1. Spreading of Micro-turbulence

Here, we apply the above general equation for intensity
flux to micro-turbulence, as for drift waves. The
correlation time for the drift wave turbulence, when
the shearing is weak, is roughly:

τc0v∗ = ρ (25)

Here, v∗ is the drift velocity csρ/Ln. Ln is the
scale length of density gradient in the pedestal. This
estimation of correlation time corresponds to the weak
turbulence limit, and can be systematically derived
using the TSDIA method[17].

Plugging Eq. 25 into Eq. 16 and 22, given that
the wave length of the DW is of the order of ρ, we
obtain the minimal pedestal fluctuation level needed
to broaden the SOL in both the weak shear limit and
strong shear limit. The results for the weak shear limit
and the strong shear limit are:

Weak Shear Limit

|δv|
cs
∼
(

3Le
aLn

)0.25

(ρ/R)
0.5
q−0.25

∼ (ρ/R)
0.5
q−0.25 (26)

Strong Shear Limit

|δv|
cs
∼
(

3Le
aLn

)0.25

(ρ/R)
0.5
q−0.25

(
Lp
ρ

)1/8

∼ (ρ/R)
0.5
q−0.25

(
wped
ρ

)1/8

(27)

Here, Le is the length scale of the turbulence profile
in the pedestal, Lp is the pressure length scale in the
pedestal, which is of the same order as Ln. These three
scales are all estimated by pedestal width wped.

Notice that in both expressions, there is a factor
of (ρ/R)1/2 ≈ (ρ∗Lped/R)1/2 – a size-dependent, small
coefficient. Here ρ∗ = ρ/Lped is computed with the
pedestal scale. Note the quite favorable size scaling
of the required turbulence level. This indicates that
the minimal fluctuation level needed is indeed small.
Interestingly, Eq. 26 and 27 are similar, apart from the
factor of (wped/ρ)1/8. The ρ/R scaling also suggests
that the critical levels of broadening can be achieved
in larger devices with higher toroidal field.

Comparing the shearing rate and the correlation
time τc0, we know that for small scale (k ∼ 1/ρ)
drift waves in pedestal, the E × B shearing is weak.
Therefore, the weak shear limit should be used for the
estimation for small scale drift waves

ωsτc0 = ρ/wped (28)

Note that for larger scale drift waves, the strong shear
form is relevant.

4.2. Spreading of MHD turbulence (Grassy ELMs)

Now we turn to MHD turbulence, as for the case of
ballooning modes. This is related to turbulent pedestal
regimes, such as states of Grassy ELMs.

Here, the growth rate of the ballooning mode is
estimated by Eq.29, where Lpc represents the critical
pedestal pressure gradient scale length which renders
the ballooning mode marginally stable, ωA is the
Alfv́en frequency, Lp ∼ p/|∂xp|. We have:

γ2 = ω2
A(Lpc/Lp − 1) (29)

We take the correlation time as the linear growth time
scale, which is valid when the MHD turbulence is weak
(i.e. the case of interest).

τc0 = 1/γ (30)

The correlation time is compared to the shearing rate
in Eq.31. (wped is used to estimate Lp)

ωsτc0 =

√
βtqρR

w2
ped

√
Lpc

Lp
− 1

(31)

Since there are small parameters in both the numerator
and the denominator, both weak shear and strong
shear cases are possible, so both should be considered.

The turbulent velocity is estimated using the
linear growth rate as:

ṽ = γ∆r (32)

where ∆r is the radial displacement of the mode.
Plugging K = ṽ2 into Eq.16 and 22, we have the
following scaling estimation of the supercriticality of
the pedestal scale length needed to broaden the SOL
(i.e. achieve the cross-over level, as discussed in the
previous section). Note Lp/Lpc is on the left hand side,
so Equations 33, 34 give a measure of super-criticality.
We thus obtain:

Weak Shear Limit

Lpc
Lp
− 1 ∼ (qρ/R)

4/3 R
2

L2
p

L
8/3
p

∆
8/3
r

βt

∼ (qρ/R)
4/3 R2

w2
ped

w
8/3
ped

∆
8/3
r

βt (33)

Strong Shear Limit

Lpc
Lp
− 1 ∼ (qρ/R)

14/9 R
8/3

L
8/3
p

(
Lp
∆r

)16/9

βt

∼ (qρ/R)
14/9 R

8/3

w
8/3
ped

(
wped
∆r

)16/9

βt (34)
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SOL Width Broadening by Spreadging of Pedestal Turbulence 9

Here, βt is the toroidal beta.
In both scaling estimates, the required supercriti-

cality scales with small parameters ρ/R and βt. There-
fore, the required super-criticality is quite small, corre-
sponding to a pedestal state of MHD turbulence, such
as the Grassy ELM regime. Thus, we see that a state
of quasi-marginal ballooning turbulence is sufficient to
achieve the cross-over level for SOL width broadening.
And once again, we note a ρ/R scaling which is favor-
able for future devices.

5. Unified Estimation and Sensitivity Analysis

In this section, the results from the earlier two sections
are combined to actually relate the width of the SOL to
pedestal parameters, namely the pedestal fluctuation
level for drift waves, and the supercriticality for
ballooning turbulence. We will see that there is
indeed a minimal fluctuation level or supercriticality
needed to broaden the SOL beyond the HD prediction.
The specific shape of the curves is sensitive to the
nonlinear damping model. But a sensitivity analysis to
various parameters of the nonlinear damping model is
presented to show that the minimal fluctuation level is
actually not sensitive to the specific nonlinear damping
model and is determined mainly by the maximal value
of the linear damping. These justify the scaling
analysis of the minimal fluctuation level in the last
section.

Γe0 = |γ| eλ+ σeκ+1λ (35)

In order to do estimation, some scaling assumptions for
σ(nonlinear damping coefficient) must be made. Here,
σ is estimated by:

σ = a (ρ)
−2κ

(Ω (ρ/R)
α

)
1−2κ

(36)

The length scale for nonlinear damping is assumed to
be ion gyro-radius ρ. This is an underestimation, and
leads to an upper bound on σ. The time scale for
nonlinear damping is chose to Ω (ρ/R)

α
(Ω is the gyro-

frequency), α = 1 for parallel transit time (which is
an upper bound for the time scale), α = 0.5 for ideal
interchange growth, α = 0 for gyro-frequency(which
is an lower bound of the time scale). Here a is a
dimensionless coefficient of O (1). κ = 1 represents
nonlinear damping for weak turbulence, κ = 0.5
represents nonlinear damping for strong turbulence.
These arguments serve as guidelines for choosing the
parameters in this section.

5.1. Typical Cases

In this subsection, cases with typical parameters
are presented to relate the SOL width to pedestal
fluctuation levels (for DW) and supercriticality (for

ballooning). For all the cases, the following parameters
are chosen. β = 0.001, q = 4, κ = 0.5, α = 0.5, a =
0.6

For drift waves, the SOL width is determined
as a function of the dimensionless mean electrostatic
fluctuation level in the pedestal (eδφ/T ), as shown by
the blue curve in Fig. 9. In addition, two other curves
are plotted to show the relative importance of linear
and nonlinear damping of turbulence in the SOL. These
keep only the linear damping term or the nonlinear
damping term in Eq. 35. The blue curve can be divided

Figure 9: A typical Case for DW: the normalized
pedestal width λ/λHD plotted against the normalized
pedestal fluctuation level eδφ/Te

into three parts:

Linear Term Dominant This represents the part of
the curve where eδφ/T < 0.03 in Fig. 9. In
this part, the linear damping dominates over the
nonlinear damping, and the SOL width grows very
slowly as eδφ/T increases.

Nonlinear Term Dominant This represents the
part of the curve where eδφ/T > 0.04 in Fig. 9. In
this part, the nonlinear damping dominates over
the linear damping. The curve bends downward,
and the growth of the SOL width slows down as
eδφ/T increases.

Cross-over Part This represents the part of the
curve where 0.03 < eδφ/T < 0.04 in Fig. 9. In this
part, the linear damping reaches its maximum.
The nonlinear damping and linear damping are
comparable. The SOL width grows rapidly as
eδφ/T increases.

It is clear that the minimal pedestal fluctuation level
needed to broaden the SOL is determined by the
location of the cross over part of the curve. This in
turn is determined by the maximal value of the linear
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SOL Width Broadening by Spreadging of Pedestal Turbulence 10

damping. In this case, the minimal pedestal fluctuation
level needed is ∼ 0.03−0.05, which is within the range
of the fluctuation level for a turbulent pedestal[30].
We emphasize that the numerical values given here are
approximations only. However, although this is only an
estimate, it suggests that the SOL can be broadened
without the need for unacceptably strong turbulence.
The blue curve in Fig. 9 is one principal result of this
paper.

The same procedure is repeated for ballooning
modes with the same parameters in both the weak
shear and strong shear limit, as shown in Fig. 10. The
only difference is that the pedestal parameter is the
supercriticality margin Lpc/Lp − 1. The general trend
is similar. The curve can again be divided into 3 parts
and the minimal supercriticality is indicated by the
crossover region, and determined by the maximal linear
damping in the SOL. For ∆r/Lp = 0.5, the estimated
supercriticality is about 0.25 and so is relatively
modest. This indicates that turbulent pedestals like
those found in Grassy ELM regimes have the potential
to support a wider SOL due to spreading, without
much degradation of confinement.

a) Weak Shear Case

b) Strong Shear Case

Figure 10: Typical Cases for Ballooning. The
normalized pedestal width λ/λHD is plotted against
supercriticality Lpc/Lp − 1 at different mode width
∆/Lp

Next, we show that the existence of the minimal
pedestal fluctuation level (or supercriticality) and that
it is determined by the maximal linear damping in
the SOL are both general results, and not due to the
specific mechanism of nonlinear damping. These points
are demonstrated by the sensitivity analysis in the
following subsection.

5.2. Sensitivity Analysis

The sensitivity analysis is performed by giving different
a, α, κ values for the curves ”eδφ/T (Pedestal) v.s.
λ/λHD” and ”Lpc/Lp − 1 (Pedestal) v.s. λ/λHD”.

For drift waves, the results are presented in Fig.
11, 12 and 13. Note here the x and y coordinates have
been swapped as compared with Fig. 9, in order to
more effectively label the curves.

Figure 11: Sensitivity analysis of nonlinear model at
κ = 1, β = 0.001, q = 4 for spreading of drift wave
turbulence

Figure 12: Sensitivity analysis of nonlinear model at
κ = 1/2, β = 0.001, q = 4 for spreading of drift wave
turbulence

Although the nonlinearly dominant region of the
curves and the width of the cross-over region are
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SOL Width Broadening by Spreadging of Pedestal Turbulence 11

Figure 13: Sensitivity analysis of nonlinear model at
κ = 1/3, β = 0.001, q = 4 for spreading of drift wave
turbulence

sensitive to the choice of the nonlinear damping model,
all the curves have the same behavior in the linearly
dominant region. The latter extends all the way to the
start of the cross over region. There the SOL starts to
be significantly broadened (The corresponding y value
is the minimal fluctuation level needed). This shows
that the existence of a minimal fluctuation level needed
to broaden the SOL is a universal property, and that
it is set by the maximal value of the linear damping.

For ballooning modes, the results are presented
in Fig. 14 and 15. The x and y coordinates are
also swapped as compared with the plots in the
previous subsection. Again, all the curves have the
same linearly dominant part. For most of the curves,
the similarity continues to the start of the cross-
over region. Therefore, the existence of a minimal
fluctuation level needed to broaden the SOL, and the
fact that this level is set by the maximal value of
the linear damping, are also both insensitive to the
nonlinear damping model.

Figure 14: Sensitivity analysis of nonlinear model at
β = 0.001, q = 4 for spreading of ballooning mode
turbulence in weak shear limit κ = 1, 1/2, 1/3, a =
0.5, 1, 2, 3, 5, 10, α = 0, 0.5, 1

Figure 15: Sensitivity analysis of nonlinear model at
β = 0.001, q = 4 for spreading of ballooning mode
turbulence in strong weak limit

6. Discussion

In this paper, we have developed the theory of the SOL
scale, including the impact of turbulence spreading
from the pedestal. In particular, we have derived a
lower bound on the pedestal turbulence level required
to broaden the SOL beyond the HD layer width. This
effectively converts the SOL from a narrow laminar
boundary layer to a broad turbulent boundary layer.
The principal results of this paper are:

(i) The demonstration of the effects of strong
stabilization of the SOL in the presence of large
E × B shear stabilization and sheath boundary
condition in H-mode. This finding is the
underpinning of the success of the neoclassical HD
model.

(ii) The use of a K−ε model to determine the pedestal
turbulence level as a function of the turbulence
intensity influx from the pedestal Γe0, and of SOL
parameters. The principal competition is between
Γ0e and linear(shear) and nonlinear damping. The
SOL width follows as λ =

√
λ2HD + τ2e. Fig.

6 shows the key result. Note the presence of
two branches and a cross-over region, at which
ṽr rms ∼ vD. Achieving the cross-over is required
to broaden the layer beyond the HD width. These
results do not depend upon the microphysics of
Γ0e

(iii) The calculation for pedestal turbulence levels
required to achieve significant layer broadening.
The turbulence intensity flux is calculated in
terms of pedestal parameters, including the
E × B shear of the edge transport barrier.
Two prototypical cases are studied – collisional
drift waves (representative of microturbulence)
and ballooning mode turbulence (representative
of grassy ELMs). In the case of ballooning
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SOL Width Broadening by Spreadging of Pedestal Turbulence 12

turbulence, the analysis shows that a very weak
supercriticality – consistent with a quasi-marginal
state of ’grassy ELMs’ – is necessary to broaden
the layer. For drift wave turbulence, we show
that relatively modest pedestal fluctuation levels
of eδφ/T greater than a few percent are required
for λ/λHD > 2, as shown in Fig. 9. The scalings
of the minimal required eδφ/T and supercriticality
are derived, and are strongly favorable with ρ/R.

(iv) A quantitative analysis of the sensitivity of the
nonlinear damping model. This study shows that
the existence of the cross-over region and the
physics behind it – namely that the linear damping
reaches a maximum – are not sensitive to the
mechanism of the nonlinear damping. Thus, the
competition between linear E ×B shear damping
and spreading from the core determines the critical
condition for SOL broadening. This finding is a
key result of this paper.

(v) The ’bottom line’ that, taken together, items
(i)-(iv) support the conclusion that a turbulent
pedestal state of moderate fluctuation level can
drive turbulence spreading sufficient to broaden
the SOL heat load width well beyond the HD
model prediction. Thus, a turbulent pedestal
offers the possibility of two benefits, namely
ELM mitigation and heat load broadening. This
result boosts the attractiveness of such turbulent
pedestal states, such as grassy ELM regimes, wide
pedestal QH-mode and others.

We note here that two relatively recent simulation
results suggest that SOL widths may broaden in the
case of ITER parameters[31][32]. Turbulence spreading
is invoked, but no analysis of either the dynamics
of fluctuation intensity flux or the state of pedestal
turbulence is given. The physics understanding offered
is limited. We suggest that a direct measurement of the
turbulence intensity flux across the separatrix should
be implemented, and the scaling of the SOL width v.s.
intensity flux should be explored. The dependence of
the SOL width on pedestal turbulence levels is another
topic for investigation.

We also suggest experimental studies to illuminate
the key physics here. These should include a study
of the SOL width scale in grassy ELM and wide
pedestal QH states. Also, a study of how the SOL
width responds to changes in ELM ’grassiness’ (i.e.
amplitude) would be of particular interest. Finally, we
do not discuss possible back-spreading from SOL to
the pedestal in this paper. Such a ”tail wags the dog”
process can occur when the SOL broadens so much as
to turn off E ×B shear stabilization.

More generally ,these results have several broader
implications, which should be mentioned here. One, as
noted above, is the observation that turbulent pedestal

states offer a ”two-for-one” benefit. Another is that the
effect of turbulence spreading should be included in
the energy balance which is used to calculate pedestal
turbulence and transport, even in L-mode. Indeed,
these are indications that the HD model does not
explain all the data, even in H-mode[8]. Strong
spreading is clearly a plus, as it regulates pedestal
confinement while at the same time broadening the
layer. Finally note that calculating the turbulence
intensity flux entails understanding yet another cross-
phase factor. Experiments should address the physics
of the spreading phase factors, and how they compare
to the familiar cross-phases for quadratic fluxes. To
this end, we note that the spreading intensity flux Γe,
say ∼ 〈ṽrñ2〉, is necessarily a triplet, as compared
to the familiar particle, etc. fluxes (Γn ∼ 〈ṽrñ〉),
which are quadratic. Thus the spreading flux is
a consequence of nonlinear triad interactions, as
apposed to simple quasilinear processes. Bicoherence
analysis of the spreading dynamics should be pursued,
so as to illuminate the basic physics of turbulence
spreading. This is essential to understanding the
physics underpinnings of SOL broadening.
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