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Motivation

• High density operation: favorable for fusion reactors        

(baseline scenario for ITER)
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Motivation

• Density limit: constraints on maximum attainable density

• Greenwald empirical scaling: ഥ𝒏𝒎𝒂𝒙~𝒏𝑮[𝟏𝟎
𝟐𝟎𝒎−𝟑] = 𝑰𝒑[𝑴𝑨]/𝝅𝒂𝟐[𝒎𝟐]

• Discharges with pellet fueling: 𝒏𝑮 is exceeded with peaked density
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✓ M. Greenwald et al 2002 Plasma Phys. Control. Fusion 44 R27

✓ P .T. Lang et al 2002 Plasma Phys. Control. Fusion 44 1919–1928

➢ What physical processes underpin density limit？



Motivation

• A widely quoted picture of high density disruption
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✓ K. Borrass et al 1991 Nucl. Fusion 31 1035-1051 ✓ M. Greenwald et al 2014 Phys. Plasma 21 110501

High density

↓

Edge cooling

↓

Current shrinking

↓

MHD instability

↓

Disruption

general
agreement

secondary 
outcomes 

Mechanisms: 

particle transport, 

impurity radiation, 

ionization losses,

charge exchange,

…

➢ What triggers enhanced particle transport near density limit?



Motivation
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✓ R. Hong et al 2018 Nucl. Fusion 58 016041

✓ R. Singh and P.H. Diamond 2021 Nucl. Fusion 61 076009

✓ Y. Xu et al 2011 Nucl. Fusion 51 063020

✓ R. J. Hajjar et al 2018 Phys. Plasma 25 062306

HL-2A

TJ-II

TEXTOR

• Turbulent transport can be suppressed by shear flow 

• Edge shear layer collapse → enhanced particle flux near density limit



Motivation
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✓ T. Long et al 2021 Nucl. Fusion 61 126066

✓ R. Ke et al 2022 Nucl. Fusion (accepted)

In this report:

1. Physics of spontaneous shear flow and 

turbulent transport near density limit.          

(turbulence energy evolution)

2. Externally driven shear flow to control 

transport and realize higher density?   

(biased electrode-driven shear flow)

J-TEXT
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Spontaneous shear flow near density limit

• As ഥ𝒏 →Greenwald density (𝒏𝑮), edge 𝑬 × 𝑩 flow & shearing decrease
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Shear layer collapse → enhanced particle transport & turbulence 

intensity flux → edge cooling 

LCFS: 𝑟 = 25.5 cm

disruption 

density  ~ 0.7 𝑛𝐺



Spontaneous shear flow near density limit
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increase

Energy is diverted from shear flow drive to outward spreading

→ shear layer collapses, turbulent particle transport enhances

• Turbulence kinetic and internal energy evolution

Τ𝓟𝑲 𝓟𝑰 𝒑𝒆𝒂𝒌 ∗ Τ𝓟𝑺 𝓟𝑰 𝒑𝒆𝒂𝒌~𝐜𝐨𝐧𝐬𝐭 (~0.4 ± 0.1 × 10−3)

𝐑𝐞𝐲𝐧𝐨𝐥𝐝𝐬 𝐩𝐨𝐰𝐞𝐫 𝓟𝑲

𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧 𝐩𝐨𝐰𝐞𝐫 𝓟𝑰
=

𝒗𝒓𝒗𝜽 𝛛𝒓 𝒗𝜽

−𝒄𝒔
𝟐 𝒗𝒓𝒏 𝛛𝒓 Τ𝒏 𝒏 𝟐

𝐒𝐩𝐫𝐞𝐚𝐝𝐢𝐧𝐠 𝐩𝐨𝐰𝐞𝐫 𝓟𝒔

𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧 𝐩𝐨𝐰𝐞𝐫 𝓟𝑰
=

−𝒄𝒔
𝟐𝝏𝒓 𝒗𝒓𝒏

𝟐 /𝟐 𝒏 𝟐

−𝒄𝒔
𝟐 𝒗𝒓𝒏 𝛛𝒓 Τ𝒏 𝒏 𝟐

➢ efficiency of kinetic energy transfer 

from turbulence to shear flow 

➢ internal energy increment due to 

spreading relative to local production

decrease



Spontaneous shear flow near density limit

➢ power spectra：෨𝑰𝒔𝒂𝒕/𝑰𝒔𝒂𝒕 increase
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• No obvious change in low-frequency 

MHD activity → electrostatic fluctuation

➢ PDF of ෨𝑰𝒔𝒂𝒕: skewness increases

more 

positively 

biased tail

• 𝒏 > 𝟎 fluctuations is predominant 

in enhanced transport events

(<50 kHz) 

relation 

to blob, 

(ongoing 

study)

density 

fluctuation

~

ion saturation 

current 

fluctuation

ሚ𝐼𝑠𝑎𝑡
𝐼𝑠𝑎𝑡

~
𝑛𝑒
𝑛𝑒



Spontaneous shear flow near density limit

➢ Auto and cross correlation 

function of ෨𝑰𝒔𝒂𝒕
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Increases of auto-correlation time and radial correlation in ෨𝑰𝒔𝒂𝒕

coincide with enhanced particle transport events

➢ Coherence and cross phase 

between radially separated ෨𝑰𝒔𝒂𝒕

𝝉𝒂𝒄



Spontaneous shear flow near density limit

• As 𝒏 → 𝒏𝑮, electron adiabaticity 𝜶 decreases from 𝜶~𝟏 → 𝜶 ≪ 𝟏
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𝜶 emerges as a critical parameter (threshold < 𝟎. 𝟑𝟓 ) to signal onset of

edge shear layer collapse & enhanced particle transport events

𝜶 =
𝒌∥
𝟐𝒗𝒕𝒉,𝒆

𝟐

𝝂𝒆𝒊 𝝎

Electron 

response:

adiabatic 

→
hydro-

dynamic

Weaken 

coupling 

between

𝑛 and ෨𝜙



Spontaneous shear flow near density limit

• Transition from adiabatic (𝜶 > 𝟏) to hydrodynamic regime (𝜶 ≪ 𝟏) 

is a common characteristic
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Higher operational density available in discharges with higher 𝑰𝒑

is coincident with evolution of adiabaticity
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Externally driven shear flow near density limit

• Biased electrode to sustain edge shear flow in high density
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Maintenance of edge shear layer → increase in density 

(line-averaged density along with edge density)

edge 

density:

double

line-

averaged

density:

increase

~10%

without bias

collapse

with + 240V bias

sustain

~𝑬𝒓

~𝑬𝒓



Externally driven shear flow near density limit

• With electrode biasing, Reynolds stress increases, while turbulent 

particle flux decreases
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Enhanced Reynolds stress → maintenance of edge shear layer 

Reduced particle flux → increase of edge density

without bias with + 240V bias

Reynolds 

stress

particle 

flux



Externally driven shear flow near density limit

➢ Sufficient shear flow driven 

by positive bias → prevent 

decrease of electron 

adiabaticity 𝜶 → higher n
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➢ Hysteresis loop of 𝝎𝒔 − 𝜶

phase space: increase in 

edge flow shear leads 

increase in adiabaticity

Indication of causality: 

changes in adiabaticity follow changes in edge shear flow

flow shear

counter-

clockwise
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Summary and future plan

• Summary

➢ Edge shear layer collapse as 𝒏 → 𝒏𝑮 , resulting in

enhanced turbulent particle flux.

➢ Turbulence spreading increases while Reynolds power

decreases as 𝒏 → 𝒏𝑮. (fluctuation power is channeled

to spreading instead of turbulent drive of shear flow)

➢ Adiabaticity emerges as a critical parameter to signal

onset of enhanced particle transport events (quasi-

coherence & positive skewness).

➢ Externally driven shear flow by electrode biasing:

sustain edge plasma states to decrease transport and

realize higher density.

21



Summary and future plan
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• Future plan

➢ 𝜶~𝑻𝟐/𝒏 → The correlation between the dynamics of

edge shear layer as well as particle transport events

and the possible power dependence of density limit

➢ The current dependency of internal and kinetic

energetics and that of particle diffusion and density

fluctuations near density limit

➢ Beyond density limit: extended experimental study of

turbulence spreading: its effect on SOL width

broadening, pedestal height and width, …



Thank you!
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Back up

• Kinetic energy evolution
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𝓟𝑲

𝓟𝑰
=

𝒗𝒓𝒗𝜽 𝛛𝒓 𝒗𝜽

−𝒄𝒔
𝟐 𝒗𝒓𝒏 𝛛𝒓 Τ𝒏 𝒏 𝟐

𝜕𝑡
𝑣𝜃

2

2
= −𝜕𝑟 𝑣𝑟 𝑣𝜃 𝑣𝜃 + 𝑣𝑟 𝑣𝜃 𝜕𝑟 𝑣𝜃

𝜕𝑡
𝑣𝜃
2

2
= − 𝑣𝑟 𝑣𝜃 𝜕𝑟 𝑣𝜃 − 𝜕𝑟 𝑣𝑟 𝑣𝜃

2

relative fraction of turbulence power 

transferred to the zonal flow

𝑐𝑠
2

𝑛 2 𝜕𝑡
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= −

𝑐𝑠
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𝑐𝑠
2 𝑣𝑟 𝑛 𝜕𝑟 𝑛

𝑛 2

𝑐𝑠
2

𝑛 2 𝜕𝑡
𝑛2

2
= −

𝑐𝑠
2 𝑣𝑟 𝑛 𝜕𝑟 𝑛

𝑛 2 −
𝑐𝑠
2𝜕𝑟 𝑣𝑟 𝑛

2

2 𝑛 2

𝓟𝒔

𝓟𝑰
=

−𝒄𝒔
𝟐𝝏𝒓 𝒗𝒓𝒏

𝟐 /𝟐 𝒏 𝟐

−𝒄𝒔
𝟐 𝒗𝒓𝒏 𝛛𝒓 Τ𝒏 𝒏 𝟐

turbulence power increment due to 

spreading relative to local production

• Internal energy evolution

𝓟𝑰 𝓟𝑰

𝓟𝑲



Kinetic and internal energy evolution
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Production power:

𝓟𝑰 =
−𝒄𝒔

𝟐 𝒗𝒓𝒏 𝛛𝒓 𝒏

𝒏 𝟐

internal energy transfer from source 

∇〈n〉 to turbulence

Reynolds power:

𝓟𝑲 = 𝒗𝒓𝒗𝜽 𝛛𝒓 𝒗𝜽
kinetic energy transfer from 

turbulence to zonal flow

Dimensionless ratio:

𝓟𝑲/𝓟𝑰

relative fraction of turbulence 

power transferred to the zonal flow

As ഥ𝒏 → 𝒏𝑮, relative reduction in the efficiency of energy transfer 

from edge turbulence to 𝑬 × 𝑩 flow → shear layer collapse

drop by ~80%



Kinetic and internal energy evolution
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Production power:

𝓟𝑰 =
−𝒄𝒔

𝟐 𝒗𝒓𝒏 𝛛𝒓 𝒏

𝒏 𝟐

internal energy transfer from 

source ∇〈n〉 to turbulence

Spreading power:

𝓟𝑺 = −𝝏𝒓 𝒗𝒓𝒏
𝟐𝒄𝒔

𝟐 /𝟐 𝒏 𝟐

divergence of turbulence internal 

energy flux due to spreading

Dimensionless ratio:

𝓟𝑺/𝓟𝑰

turbulence power increment due to 

spreading relative to local production

increase by a 

factor ~ 7

As ഥ𝒏 → 𝒏𝑮, fraction of turbulence internal energy spreading 

relative to production increases dramatically

enhanced 

outward 

spreading



Back up

• Density limit associated with increased particle transport and 

particle confinement degradation in discharges with low impurity 

content 
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✓ M. Greenwald et al 1988 Nucl. Fusion 28 2199

Alcator C

density 

relaxation

time

after

pellet

𝑛𝐺/ത𝑛𝑒

✓ D. L. Brower et al 1991 Phys. Rev. Lett 67 200

TEXT

With close ത𝑛

▲ disrupting

Δ non-disruptingparticle 

diffusivity



Back up

• Edge shear layer collapse → enhanced particle flux near density limit

• The limiting edge density for shear layer collapse: scales with 𝑰𝒑 due to 

neoclassical screening of zonal flow

29

✓ R. Hong et al 2018 Nucl. Fusion 58 016041

✓ R. J. Hajjar et al 2018 Phys. Plasma 25 062306

✓ R. Singh and P.H. Diamond 2021 Nucl. Fusion 

61 076009

zonal noise drive 𝛽~𝐼𝑝
4

modulation growth 𝜎~𝐼𝑝
2

~

n approaches nG

particle 

flux

Reynolds 

power

HL-2A



Back up

• In this talk: experimental studies of edge shear layer and particle 

transport events approaching the density limit of J-TEXT tokamak

30

• Experimental set up

➢ Ohmic hydrogen discharges

➢ Limiter, 𝑅 = 1.05m, 𝑎 = 0.255m

➢ 𝐵𝑡 = 1.6 − 2.2T, 𝐼𝑝 = 130 − 190kA

➢ ത𝑛𝑒 = 2.0 − 5.3 × 1019m−3

➢ Langmuir probe: 𝑇𝑒, 𝜙𝑝, 𝑛e, 𝐸 × 𝐵 velocity, 

turbulent particle flux, turbulence intensity 

flux and Reynolds stress can be measured.

➢ Fluctuations 2 − 100 kHz

✓ T. Long et al 2021 Nucl. Fusion 61 126066

✓ R. Ke et al 2022 Nucl. Fusion (accepted)



Back up

• As ഥ𝒏 →Greenwald density (𝒏𝑮), edge 𝑬 × 𝑩 flow & shearing decrease
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Shear layer collapse → enhanced particle transport → edge cooling 

LCFS: 𝑟 = 25.5 cm

disruption 

density  ~ 0.7 𝑛𝐺

edge shear layer

𝑬 × 𝑩 flow

Reynolds stress

particle flux



• Joint PDF (normalized 𝒗𝒓 − 𝒗𝜽) for 𝟎. 𝟑𝟐 𝒏𝑮 tilts more to 1st and 3rd

quadrants than for 𝟎. 𝟔𝟑 𝒏𝑮

• Decreasing symmetry breaking in turbulence spectra:                 

consistent with reduced Reynolds stress
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Decreased turbulent drive for edge 𝑬 × 𝑩 flow as ഥ𝒏 → 𝒏𝑮

Back up

~45° ~15°



• Result (not density limit study though) on HL-2A tokamak

• In turn, increasing symmetry breaking coincides with increased shear flow 

as ECRH power increases.
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Turbulent generation of edge poloidal flow

~15°

✓ T. Long et al 2019 Nucl. Fusion 59 106010



Particle transport events

• Extended correlation in density but not in potential fluctuations

34

✓ B. A. Carreras 

et al 1996 Phys. 

Plasma 3 2903

“Small avalanches” in density fluctuations on a scale of the edge shear layer

Their onset coincides with shear layer collapse as ഥ𝒏 → 𝒏𝑮

radial position

time

pressure contour

potential fluctuations contour

time

much

wider 

spatial

range



Back up

• As 𝒏 → 𝒏𝑮 for different 𝑰𝒑
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𝐷𝑛 = − Τ𝑛 𝑣𝑟 ∇𝑛


