
On the Resilience of Staircase 
Structure in a Melting Vortex 

Crystal Flow
F.R. Ramirez¹ AND P.H. Diamond¹

¹Department of Physics, University of California San 
Diego

Festival de Théorie 2022
Research supported by U.S. Department of Energy under award number 

DE-FG02-04ER54738.



Outline

● Background and Survey Results
● Melting Vortex Crystal
● Passive Scalar Transport

○ System Setup
● Results:

○ Web and Path
○ Staircase

● Summary & Ongoing work
2



Background and Survey Results
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ExB staircase current subject in M.F.E

Suggested ideas:
● ExB shear feedback, predator-prey

○ Zonal flows predator and turbulence 
intensity prey

● Jams
...

Some Questions
● How does staircase beat homogenization?
● Is the staircase a meta-stable state?
● What is the minimal set of scales to recover layering?

Next:
More on staircase! 
But, FIRST let's 
discuss cell pattern… 

Context: Flat spots of high transport and nearly vertical 
layers acting as mini-barriers coexist. In plasmas, avalanches 
happen in flat spots and shear layers due to zonal flows 
occur in the areas of mini-barriers.

But… is there an even simpler physical mechanism to produce 
layering
Clue: Staircase formation, dynamics captured in ultra-simple mixing 
model with two scales. - Balmforth, et. al; Ashourvan and Diamond

Yellow and black colors are a rapid transition of the 
direction of flows around peaks in turbulence drive. 
This is the shear layer, which is interspersed with a 
regular pattern of shear layers and profile corrugations.



Background and Survey Results (cont.d)
Transport of particle between non-overlapping or marginally overlapping cells is an important 
topic in fusion plasma.
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Overlapping case: particles can transport directly from cell to cell, wandering along streamlines

Non-overlapping case (cells sit at near overlap): transport is a synergy of motion due to cells and 
random kicks (Collisional diffusion, ambient scattering) thru gap regions.

The transport over gap is random kicks 
(ambient diffusion): collisions, 
micro-turbulence. 

Characteristic of near marginal.

Coexistence of:
~ Fast transport - Mixing in cell
~ Slow transport - Kicks between cells

N.B.: “Profile stiffness” → Cells near overlap
→ Rapid increase in transport prevents strong overlap



✔ Large Kubo number means strong scattering and long correlation. The absence of kicks means particles 
stay on streamline, therefore, correlation time of the pattern is infinite.  

∞

Background and Survey Results (cont.d)
This relates to a classic problem studied by G.I. 
Taylor, Moffat, Rosenbluth, …, which discuss the 
laminar convective flows with the condition of infinite 
Kubo number. 
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✔ The convective diffusion transport is equivalent to the transport by magnetic cells. 

Isichenko 
Review

If we were to inject dye into 
this cellular lattice, what 
does the profile look like? 
What about transport?

Next:



Background and Survey Results (cont.d)
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“Steep transitions in the density exist 
between each cell.”

Rosenbluth et. al. ‘87 → Layering!
→ Simple consequence of two rates
→ “Rosenbluth Staircase”

Transport? Answer: Deff ~ Dₒ Pe½ {Not a simple addition of process!} 
→ Two time rates: vₒ / ℓₒ, Dₒ / ℓ²ₒ
→ Pe = vₒ ℓₒ / Dₒ  >>  1

Profile?
Consider concentration of injected dye → profile

Consider a general case of a cellular lattice of marginally overlapping cells.

● Staircase arises in stationary array of passive 
eddys.

● Global transport hybrid:
→ fast rotation in cell
→ slow diffusion in boundary layer

● Irreversibility localized to inter-cell boundary.

Important:

Relevant to key question of “near 
marginal stability”

Next:

What about the 
dynamics of a less 
constrained cell array 
(i.e., vortex array with 
fluctuations)?



Melting Vortex Crystal
→ We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 
2010),
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→ The melting flow structure is created by slowly increasing the Reynolds number in the NS equation 

→ By increasing the Reynolds number this modifies the forcing and drag term, thus, scattering the vortex 
crystal. The resilience of the staircase is studied by increasing disorder in the vortex crystal through F⍵  

→ The “vortex crystal” is simply the array of cells and “melting” is related to turbulence induced variability 
in the structure. The melting vortex crystal allows us to study a general less constrained version of the 
array!  

The streamfunction, ψ, at different evolutionary stages of the “melting” vortex crystal is inserted into the 
passive scalar equation to study the resilience of the staircase structure.

Why are we doing this? We know that a system with two disparate time scales forms a staircase!
● Now consider fluctuations… → Will staircase survive?
The melting vortex crystal will help answer this question!



Melting Vortex Crystal (cont.d)
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● Contour plots of the streamfunction (ψ), illustrating the different stages of a “melting” vortex crystal. 
● As Ω is slowly increased, there is a merger of vortices along with distortions of the crystal array.

We characterize different stages of the melting process by observing a 
contour plot of the crystal and the crystal’s energy trace during each 
different stage.  There are five different stages: 
● Stable Crystal (SX) [Ω < 6.5]
● Stable Distorted Crystal (SXA) [6.5 < Ω < 8]
● Periodic Crystal (OPXA) [8 < Ω < 10]
● Quasiperiodic Crystal (OQPXA) [10 < Ω < 13]
● Spatiotemporal chaotic/turbulent crystal (SCT) [13 < Ω] 



What is the Goal?
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● How resilient is the staircase in the presence of vortex array melting fluctuations?
● Compared to previous work, we want to study a much more general and less constrained 

version of the cell array (consider vortex array with fluctuations; jitters).

In the process of studying the 
resilience of the staircase, we aim to 
answer the following questions:
● What occurs to staircase steps 

as vortices slowly begin to 
merge together? What about 
other cellular interactions?

● Does flux insertion orientation 
matter?

● What does the scalar/particle 
path look like? 

Example of constrained cell array

To answer these questions, we use a Passive 
Scalar Transport code. Next



> 1

Passive Scalar Transport
→ The governing equation solved is the passive scalar transport equation,
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We use the streamline function created by the 2D NS equation with forcing and drag,

The fluid velocity u in the passive scalar transport equation is of the form

→ The two characteristic time-scales are the time for circulation around the roll (τH = d / ũβ) and time for 
molecular diffusion of a particle through a roll (τD = d² / D). The ratio of these two time-scales is 

We characterize the transport in this system by using the Peclet number, which is a nondimensional ratio of 
two time scales.

→ We are primarily concerned in the case of Pe > 1, where the physics is explained by fast mixing within 
the cells and slow mixing across the boundaries of the cells. 

We use Pe~40-60 in these set of 
simulations.

Next, let’s discuss setup…



System Setup
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Periodic

Periodic
d

L

Constant flux of 
particle concentration 
enters at left boundary

Noisey deposition 
(Future work)

Constant flux of 
particle concentration 
exits at right boundary

Initial simulation agrees with scaling given by Rosenbluth et al 1987.

Combination of fixed 
flux and periodic 
boundary conditions are 
used to model the 
physics of  core to edge 
in fusion devices. 

y

x

x = radial
y = poloidal



Web & Path
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We use Okubo-Weiss field (Λ) to study the evolution of the flow structure as we increase Ω. As we 
steadily increase Ω, the areas of saddles (Λ < 0) increases compared to areas of centers (Λ > 0).
● Saddles refer to areas of strong shear and centers refers to areas of strong vorticity.

Some questions:
Does the increase in flow shear affect the staircase structure? How does this affect the transport of 
scalar concentration? How does the Okubo-Weiss field describe the path of the scalar concentration?

Λ = mean sq. vorticity - mean sq. shear



Web & Path (cont.d)

13

● As the scalar 
concentration gets injected 
into the flow structure, we 
see a flamelet network 
pattern (Pocheau 2008). 

● Scalar concentration 
flows along and around 
areas of vortex 
structures. 
○ Over time, the 

scalar slowly enters 
the vortex structure. 

● Scalar concentration 
quickly flows along areas 
of strong shear 
(Λ < 0).

Path of Scalar creates 
holes around vortices



Web & Path (cont.d)
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● The path of the scalar concentration creates a web 
pattern where the holes are vortices. 

● As the degree of melting is increased, the area of holes 
increases. The web is not destroyed, it only degrades.

● Web area correlates with shear area increase! Web 
becomes thicker as we increase melting!



Web & Path (cont.d)
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● Idea relevant here is the least time criterion. 
Here one might think that as the vortex crystal 
melts, the path of least time would increase in 
length (still work in progress). 

● We observe that the scalar travels fast along the 
areas of strong shear.

● Similarities to percolation picture of infinite Kubo 
number. 
○ How would this compare to percolation 

model? Can we reproduce dynamics?

● What is the connection between the Web and 
Staircase? Next…

Can go from A 
to B if these 
two points are 
connected.



Staircase
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● For a stable crystal (SX) we get a baseline staircase structure. 
● On the left figure the blue and red box correspond to the blue and red 

plot line on the right. Note that steps are evenly spaced!
○ Both blue and red average scalar concentration have the same 

profile in stable stage.

x’

x’ x’

y’

y’

Example of baseline staircase structure!

So what happens to the 
staircase if we increase 
the degree of melting in 
the crystal (i.e., 
increase Reynolds 
number)?



Staircase (cont.d)
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● As we increase the degree of melting through Ω, we can see merger/connections of 
vortex structures in the flow. 

● These vortex mergers are shown in the scalar profile plot as mergers in steps. 
→ As we increase the degree of melting, staircase steps start to merge together.  

x’

x’ x’

y’

y’



Staircase (cont.d)
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● To quantify the difference in the different stages of the 
melting process, we look at the curvature in scalar 
concentration. 

● In general we see that as we increase Ω, the curvature 
decreases. 
○ Make sense, since the steps are starting to merge 

together as we increase Ω. 

y=

x’

x’



Staircase + Web
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We make a connection here between the web and the staircase:
● The picture on the right represents the scalar trajectory during the first couple of 

time steps. We see that scalar flows quickly around areas of strong shear.
○ The holes are shown to be vortex structures.
○ Scalar quickly forms barriers between vortex structures. 

● Picture on the left shows the connection between the web and scalar path 
dynamics to the staircase structure.
○ Yellow represents the barriers between areas of strong mixing.
○ Green represents the holes/vortices, which are the areas of strong mixing.

Main Point: Despite that vortex 
array becoming more turbulent, the 
staircase structure does not degrade. 
● Staircase steps become less 

regular. They merge into 
longer steps.

x’

y’



Summary of Work
In a much more general and less constrained version of a cell array, we study the behaviour and flow structure of a scalar 
concentration. In this study we find the following:

● As we increase the degree of melting in a cellular array, vortices connect/merge together becoming a longer vortex 
structure. 

● By inserting the scalar concentration in a specific orientation, we see that the scalar flow along and around vortices 
from one boundary to the other. 
○ Scalar fills the vortex at a slower rate leaving behind a web trajectory. This is clearly explain due to slow 

diffusion across boundary layers. 
● As the degree of melting is increased, the area of holes increases.

○ The web is not destroyed, it only degrades. 
○ Shear and web correlate. As the degree of melting is increases, the area of both increases. The path of the 

scalar trajectory widens.
● Despite the cellular array becoming more turbulent, the staircase structure persists! BUT steps become less 

regular.
○ The degree of melting causes vortices to connect/merge, which leads to merger of staircase steps in the 

scalar profile. 
○ Scalar quickly forms barriers between areas of fast mixing as shown in the contour plots of the scalar 

path/web. 
20



Ongoing Work
We want to further analyze and understand the trajectory of the scalar concentration. To do 
this, we plan the following:

● Modulate the flux on the LHS (Modulated pulse perturbations). 
● Single pulse, train pulse, etc.

→ Goal is to trace how the system response (i.e., see how the bright spot evolves in a 
steady state simulation).

In addition to this, we want to further quantify the path and time of trajectory between 
different melting stages…

● Does the scalar concentration follow a similar idea to that of the least time criterion?
● Do the number of paths decrease or increase?
● Does the scalar concentration take a longer or shorter time to travel to one end of the 

boundary?  21
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