Momentum/Energy Transport in Predator-Prey Model Associated with Pressure Bump and Shear Flow Background

This work is supported by the U.S. Department of Energy under award number DE-FG02-04ER54738

- Chang-Chun Chen¹, Hui Li¹, Patrick Diamond² and Shengtai Li¹
 - ¹Los Alamos National Laboratory, Los Alamos, USA ²University of California San Diego, USA
 - LA-UR-23-24760
 - **2023 US Transport Task Force Workshop**

Why it matters?—Proto-Planetary Disks

Observations founds **ring structures**: Pressure bumps traps particles for planet formation.

Momentum transport: angular momentum re-distribution results in mass accretion Weakly magnetized \rightarrow compressible: $\nabla \cdot \mathbf{u} \neq 0$

ALMA 0.87 mm continuum emission from MWC 758 (Dong et al., ApJ, 860:124 (2018))

Reynolds Stress and Momentum Transport

- Rotation: Rossby waves Instability
- Vortices triggered by the Rossby wave instability (RWI).

Vortices constrain the properties of the disk and embedded planets.

Will the turbulence generate **zonal flow** in a compressible disk, via NL momentum transport (or gradient Reynolds stress)?

Chang-Chun Samantha Chen

Momentum/Energy Transport in Predator-Prey Model

• Reynolds Stress and angular momentum transport: $\rho \langle \widetilde{u}_r \widetilde{u}_{\phi} \rangle$

TTF May 04th 2023

Introduction—Astrophysical disk and **Edge Plasma Physics**

	Accretion Disk	Edge Plasma Physics
Linear wave	Rossby (-Alfven) wave	Drift wave
Pressure Bump (Free energy source)	Self-gravity: Trapped particles—> planet formation	Pedestal formation
B field	Weakly magnetized, compressible	Strong B field in Toroidal direction, Incompressible in $_$ direction
Conserved PV	(Compressible) PV = $\nabla \times \mathbf{u}/\rho$.	$PV = -\nabla^2 \phi + n$
Shear flow	Keplerian Shear $\sqrt{\frac{GM}{r}}$ (toroidal).	ExB shear flow (poloidal)
shear flow r shear flow r shear flow r shear flow r she		
Chang-Chun Samantha Chen	Momentum/Energy Transport in Predator-Prey N	Model TTF May 04 th 2023

Chang-Chan Samantha Chen

Chang-Chun Samantha Chen

Momentum/Energy Transport in Predator-Prey Model

Is there a self-regulation mechanism that can explain the physics of a steady state in an accretion disk, and sustain the environment for planetary formation?

TTF May 04th 2023

Find the Momentum Transport

- **Basic Equations** (cylindrical coordinate): 1. Continuity eq.: $\frac{\partial \rho}{\partial t} + (\mathbf{u} \cdot \nabla)\rho + \rho(\nabla \cdot \mathbf{u}) = 0$
 - 2. Momentum eq. in rotating fluid:

 ∂l ди Дi $\frac{\partial p}{\partial t}$

- **Compressible**: basic equations— Induction eq. + continuity equation $\Rightarrow \frac{D}{Dt} (\frac{\zeta}{\rho}) = 0$
- **Pressure bumps**: Condensation of mass due to self gravitation (or planet formation).

Shear background—Pressure modified Keplerian Velocity

$$\frac{d_r}{dt} + (\mathbf{u} \cdot \nabla)u_r = -\frac{1}{\rho} \frac{\partial p}{\partial r}$$
$$\frac{d_{\phi}}{dt} + (\mathbf{u} \cdot \nabla)u_{\phi} = 0,$$
$$\frac{\partial p}{\partial t} + (\mathbf{u} \cdot \nabla)p = -\gamma p(\nabla \cdot \mathbf{u})$$

$$\langle u_{\phi} \rangle_{pmv}(r,t) = \sqrt{r \frac{\nabla_r \langle p \rangle(t)}{\langle \rho \rangle(t)} + \frac{G}{r}}$$

Pressure bump

Momentum/Energy Transport in Predator-Prey Model

GM

TTF May 04th 2023

Ζ

Phenomenologically

Weak Turbulence— QL approximation

$$\begin{cases} \frac{\partial u_r}{\partial t} + (\mathbf{u} \cdot \nabla) u_r = -\frac{1}{\rho} \frac{\partial p}{\partial r} \\ \frac{\partial u_{\phi}}{\partial t} + (\mathbf{u} \cdot \nabla) u_{\phi} = 0, \\ \frac{\partial p}{\partial t} + (\mathbf{u} \cdot \nabla) p = -\gamma p (\nabla \cdot \mathbf{u}) \\ \bullet & u_r = \langle u_r \rangle + \widetilde{u}_r \\ u_{\phi} = \langle u_{\phi} \rangle + \widetilde{u}_{\phi} \\ p = \langle p \rangle + \widetilde{p} \end{cases}$$

• Zonal flow definition: $\langle u_{\phi} \rangle = \langle u_{\phi} \rangle_{pmv}(r,t) + u_{ZF}$

Chang-Chun Samantha Chen

Momentum/Energy Transport in Predator-Prey Model

TTF May 04th 2023

Detailed Calculations

Zonal Flow Evolution

$$\frac{\partial}{\partial t} \langle PV \rangle = \frac{\partial}{\partial t} (\nabla \times \frac{u_{pmv} + u_{zon}}{\rho}) + \frac{\partial}{\partial t} (u_{pmv} + u_{zon}) = -\nabla_r (\langle PV \rangle \langle u_r \rangle) - \nabla_r \langle \widetilde{u}_r \widetilde{PV} \rangle$$

Derive from PV conservation:

TTF May 04th 2023

What are new Cats/Rats?

Chang-Chun Samantha Chen

• Compressibility: Mass density p must be play a role.

Incompressible:

$$\frac{D}{Dt}(\nabla \times v) = 0$$
Compressible:

$$\frac{D}{Dt}(\nabla \times v) = 0$$

Candidates:

new Predator:
$$\frac{u_{zon}}{\rho}$$
,
new Prey:
 $|\widetilde{u}_r|^2 + |\frac{u_{\phi}}{\rho}|^2$

Chang-Chun Samantha Chen

Predator-Prey oscillations explain the turbulence saturation on a 2D pure fluid disk!

Momentum/Energy Transport in Predator-Prey Model

TTF May 04th 2023

Phenomenologically

$$= \left\langle \frac{1}{2} v_k (\frac{c_s}{v_k})^2 r \frac{\partial}{\partial r} \right| \ln \frac{\rho(r, \phi, t)}{\langle \rho \rangle(r, t)}$$

Simulation Results— Bump (Blob) on Shear Flow

Simulation Results: **Self-binding** (coherency) of the blob

Critical Balance:

$$(\omega - kV_0) \widetilde{P}_{k,\omega} = i\widetilde{u}_{r,k,\omega} \frac{\partial}{\partial r} [\langle P \rangle + \delta P]$$

$$\frac{\partial_r P}{V'_0} \propto [(V_{ph} - V_0)^{-1} V'_0 \Delta r]$$
Rossby parameter

$$\beta \to \beta_{0,(r)} + \delta \mu$$
shear² $\propto \partial_r P$ - shear² $\propto \frac{\beta + \delta \beta}{\Delta r_{blob}} \propto \mathcal{N}$

$$\mathcal{N} \equiv L_{0,P}/L_P \propto \frac{1}{\Delta r_b}$$

Critical Balance:

$$(\omega - kV_0) \widetilde{P}_{k,\omega} = i\widetilde{u}_{r,k,\omega} \frac{\partial}{\partial r} [\langle P \rangle + \delta P]$$

$$\frac{\partial_r P}{V'_0} \propto [(V_{ph} - V_0)^{-1} V'_0 \Delta r]$$
Rossby parameter

$$\beta \to \beta_{0,(r)} + \delta \mu$$
shear² $\propto \partial_r P$ - shear² $\propto \frac{\beta + \delta \beta}{\Delta r_{blob}} \propto \mathcal{N}$

$$\mathcal{N} \equiv L_{0,P}/L_P \propto \frac{1}{\Delta r_b}$$

More Related work: **Patrick Diamond**—> Today 2:15pm: Blob/void on shear, Self-coherence

Phenomeno-

logically

Chang-Chun Samantha Chen

Simulation Results— Bump (Blob) on Shear Flow

Self-binding (coherency) of the blob explains the pressure bump's length and its oscillation.

Chang-Chun Samantha Chen

Momentum/Energy Transport in Predator-Prey Model

TTF May 04th 2023

Limit Cycle in Turbulence and Zonal Flow

Vortices

Zonal flow constrain the properties of pressure bump (where planets embedded), sustaining the planet-forming region in a steady state!

Chang-Chun Samantha Chen

Takeaways

- Adding to Balbus & Hawley (1998), we now consider the pressure/density variation in transport, and found that in a compressible disk, $\tilde{\rho}$ will play an important role.
- We derive the **compressible Taylor Identity**: $\langle \widetilde{u}_r \widetilde{PV} \rangle \simeq \frac{1}{\langle \rho \rangle} \langle \widetilde{u}_r \partial_r \widetilde{u}_\phi \rangle + \frac{1}{r \langle \rho \rangle} \langle \widetilde{u}_r \widetilde{u}_\phi \rangle - \frac{1}{\langle \rho \rangle^2} \langle \widetilde{u}_r \widetilde{\rho} \rangle \partial$

Momentum/Energy transport via Reynolds stress at edge plasma physics.

background.

• Self-binding pressure \rightarrow Gradient Relaxation/SOL Broadening

We found the Predator-Prey oscillation. This explains the turbulence/instability **saturation** on an proto-planetary disk. Experiments show the self-regulating mechanism—the predator-prey cycle in DIII-D

(Schmitz et al., PRL 108, 155002 (2012)).

$$\partial_r \langle u_{zon} \rangle - \frac{1}{r \langle \rho \rangle^2} \langle \widetilde{u}_r \widetilde{\rho} \rangle \langle u_{zon} \rangle$$

We analytically explain the self-binding mechanism of a blob on a shear flow

