Theory of mean E×B shear in a stochastic magnetic field for L-H transition: ambipolarity breaking and radial current

Weixin Guo¹, Min Jiang², P. H. Diamond^{2, 3},

C.-C. Chen³, Mingyun Cao³, Hanhui Li¹, Ting Long²

¹ HUST, Wuhan, China
 ² SWIP, Chengdu, China
 ³ UCSD, San Diego, USA

Plasma Phys. Control. Fusion 64 (2022) 124001

US Transport Task Force Workshop 2023-05-04

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - Key issues
- Mean field model for turbulent transport induced by stochastic magnetic fields
 - ▶ How works? Stochastic field \Rightarrow radial current $\langle J_r \rangle$
 - > How calculate $\langle J_r \rangle$? Ambipolarity breaking
 - Effects of stochastic field on
 - \rightarrow particle transport via $\langle \tilde{b}_r J_{\parallel} \rangle$,
 - $\rightarrow \langle V_{\theta} \rangle$ evolution via $\langle J_r \rangle B_t$
 - $\rightarrow \langle V_{\phi} \rangle$ evolution via $\langle J_r \rangle B_{\theta}$
 - ightarrow also involve heat flux
 - $\succ \quad \text{Effects of } \langle E_r \rangle \leftrightarrow \langle J_r \rangle$
- Implications and conclusions

3D non-axisymmetric configuration

- 3D magnetic perturbations (MPs) like error field, toroidal field ripple, RMP, spontaneous MHD insta., is ubiquitous → break axisymmetry of ideal tokamaks → affect confinement → need study associated mechanism of confinement in 3D configuration
- Classification of magnetic configurations by 3D MPs

Results for 3D MPs with type (a), (b) configuration

Stochastic magnetic field

- Stochastic field : chaos of magnetic field lines
- Important for boundary MHD control in fusion device
- Very fundamental problem:
 - Interaction and co-existence of stochastic magnetic field and turbulence, eg: RMP, island, stellarator

• Need theory for turbulent transport in stochastic B field!5/19

Effects of stochastic B fields in the literature

- From theory, stochastic B fields \tilde{b} affects ¹Rechester, Rosenbluth PRL 1978 ²C-C. Chen, PoP 2021
 - Cast of thousands: electron heat transport¹
 - Dephasing effect² \rightarrow quenches poloidal Reynolds stress
 - Direct effect of stochastic field on turbulence³
- From experiments, RMP induces

⁴L. Schmitz et al NF 2019 ⁵Kriete, PoP 2020

³M. Cao, PPCF 2022

- Increase of toroidal (co)rotation⁴, but reduce of mean poloidal velocity⁵
- > E_r well $\rightarrow E_r$ hill, and edge E_r shear layer sits in stochastic field region⁴

• Point is that most \tilde{b} theory is χ_e and electrons, but experiments demand that ion and flow physics be addressed 6/19

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - Key issues
- Mean field model for turbulent transport induced by stochastic magnetic fields
 - ▶ How works? Stochastic field \Rightarrow radial current $\langle J_r \rangle$
 - > How calculate $\langle J_r \rangle$? Ambipolarity breaking
 - Effects of stochastic field on
 - \rightarrow particle transport via $\langle \tilde{b}_r J_{\parallel} \rangle$,
 - $\rightarrow \langle V_{\theta} \rangle$ evolution via $\langle J_r \rangle B_t$
 - $\rightarrow \langle V_{\phi} \rangle$ evolution via $\langle J_r \rangle B_{\theta}$
 - ightarrow also involve heat flux
 - $\succ \quad \text{Effects of } \langle E_r \rangle \leftrightarrow \langle J_r \rangle$
- Implications and conclusions

Our goal – understand effects of stochastic field on $\langle E_r \rangle$

• More specific: how stochastic B-field affects $\langle v'_E \rangle$?

$$E_{r} = \frac{1}{enB} \frac{\partial}{\partial r} P_{i} + v_{\phi}B_{\theta} - v_{\theta}B_{\phi}.$$

$$\langle v_{E}' \rangle \quad \text{Heat, particles} \quad \bot, \parallel \text{flows} \rightarrow \text{momentum}$$

$$\langle J_{r} \rangle \bigoplus \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle$$

- ✓ Study heat, particle and momentum transport to ascertain change of $\langle E_r \rangle$ due to stochastic B field in this work
- ✓ Goal is towards $\langle J_r \rangle \langle E_r \rangle$ relation effective "Ohm's law"
- ✓ Stochastic B-field, which is externally excited but selfconsistent within plasma, enters $\langle J_r \rangle$
- How calculate $\langle J_r \rangle$ induced by stochastic field ? And, what is its effect on turbulent transport? $\Rightarrow V'_E$

Ambipolarity breaking $\Rightarrow \langle J_r \rangle$ induced by \widetilde{B}_r is a key

• Ambipolarity breaking due to stochastic field $\Rightarrow \langle J_r \rangle$

$$\langle J_r \rangle = \langle \vec{J}_{\parallel} \cdot \vec{e}_r \rangle = \frac{\langle \tilde{J}_{\parallel} \widetilde{\mathbf{B}}_r \rangle}{B} \qquad \langle J_{\parallel} \rangle = \langle J_{\parallel,e} \rangle + \langle J_{\parallel,i} \rangle$$

• From Ampere law: (Self- constraint)

$$\tilde{J}_{\parallel} = -\frac{c}{4\pi} \nabla^2 \tilde{A}_{\parallel}$$

Stochastic field produces currents in plasmas

Note: $\langle J_r \rangle$ tracks momentum, not heat transport. Recognized, but what set phases?

Phase in Maxwell stress

- Maxwell stress $\langle \tilde{B}_r \tilde{B}_\theta \rangle = \sum |\tilde{A}_k|^2 \langle k_r k_\theta \rangle$
 - ✓ phase set by k component correlation
 - Shear flow \checkmark **E**×**B** shear aligns phases, regardless of drive mechanisms
 - Magnetic potential \tilde{A}_k is tilted by developing $E \times B$ flow, and is scattered by fluctuations

$$\frac{\partial A}{\partial t} + V \cdot \nabla A = \mu \mathbf{J}$$
$$\frac{\partial A}{\partial t} + V'_E \frac{\partial A}{\partial y} + \tilde{V} \cdot \nabla A = \mu \mathbf{J}$$

$$\begin{aligned} k_{r} &= k_{r}^{(0)} - k_{\theta} V_{E}^{\prime} \tau_{c} \\ \tau_{c} : \begin{cases} shear \\ fluctuations \end{cases} \end{aligned}$$

eddies

 $k_r^{(0)}$ is the key difference with "test particle" calculation

Shear flow Fluctuation scattering

 $k_r^0 k_{\theta}$ contribution appears to capture stochastic field effects on electrons, while the $k_{\theta}^2 \langle V_E \rangle' \tau_c$ bit is due mainly to ion effects

Competition btw Reynolds and Maxwell stress

• If ignore $k_r^{(0)}$ due to focusing on ion dynamics, phases of Reynolds and Maxwell cross-phase align.

with
$$\tau_c = (\frac{k_\theta^2 V_E'^2 D_T}{3})^{-1/3}$$
, \tilde{B}_r/B_0 is around $10^{-4} \sim 10^{-3}$

- Stochastic field tends to **oppose** turbulent Reynolds stress due to the same phase
- ✓ E×B shear trends to align Reynolds stress of the turbulence with the Maxwell stress of the stochastic B field

Stochastic B-field affects electron density flux

• For electron density : $\frac{\partial n_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r\Gamma_e) = S_p$

with
$$\Gamma_e = -(D_{neo} + D_T) \frac{\partial n}{\partial r} + \Gamma_{e, stoch} \leftarrow$$

•
$$D_{neo} = (m_e/m_i)^{1/2} \chi_{i,neo}$$

•
$$D_T \sim b D_{GB}$$
 with b<1

$$S_p = \Gamma_a \frac{a - r + d_a}{L_{dep}^2} \exp(-\frac{(a + d_a - r)^2}{2L_{dep}^2})$$

• The stochastic field can induce particle flux
$$(n_e = n_i)$$
:

 $\Gamma_{e, stoch} = \frac{c}{4\pi eB} \langle \tilde{b}_r \nabla_{\perp}^2 \tilde{A}_{\parallel} \rangle + n \langle \tilde{V}_{\parallel,i} \tilde{b}_r \rangle$ with $\checkmark \frac{c}{4\pi eB} \langle \tilde{b}_r \nabla_{\perp}^2 \tilde{A}_{\parallel} \rangle = -\frac{cB}{4\pi e} \frac{\partial}{\partial r} \langle \tilde{b}_r \tilde{b}_{\theta} \rangle \checkmark \langle \tilde{b}_r \tilde{b}_{\theta} \rangle \text{ phasing via } V'_E \text{ tilt.}$ $\checkmark n \langle \tilde{V}_{\parallel,i} \tilde{b}_r \rangle: \text{ parallel ion flow along tilted field lines (hybrid)}$

 $\frac{\langle \tilde{b}_r \delta V_{\parallel} \rangle}{\langle \tilde{b}_r \delta V_{\parallel} \rangle} \approx -D_{st} \partial \langle P \rangle / \partial r \qquad D_{ST} = \sum_k c_s^2 |b_{r,k}|^2 / k_{\perp}^2 D_T$

12/19

Stochastic B-field affects $\langle V_{\theta} \rangle$

Poloidal momentum balance

Maxwell stressTurbulenceof stochastic fieldReynold stressperturbation

$$\frac{\partial \langle V_{\theta} \rangle}{\partial t} = -\mu(\langle V_{\theta} \rangle - V_{\theta,neo}) - \frac{\partial}{\partial r} \left(\left\langle \tilde{V}_{\theta} \tilde{V}_{r} \right\rangle - \frac{1}{4\pi\rho} \left\langle \tilde{B}_{r} \tilde{B}_{\theta} \right\rangle \right)$$

• For SS:
$$\langle V_{\theta} \rangle = V_{\theta,neo} - \frac{1}{\mu} \frac{\partial}{\partial r} \left(\left\langle \tilde{V}_{\theta} \tilde{V}_{r} \right\rangle - \frac{1}{4\pi\rho} \left\langle \tilde{B}_{r} \tilde{B}_{\theta} \right\rangle \right)$$

 $= V_{\theta,neo} - \frac{1}{\mu} \frac{\partial}{\partial r} \left(\frac{1}{B^{2}} \tau_{c} V_{E}' \frac{I}{1 + \alpha V_{E}'^{2}} - \frac{B^{2}}{4\pi\rho} \tau_{c}' V_{E}' |\tilde{b}_{r}|^{2} \right)$
with $\mu = \mu_{00} \left(1 + \frac{v_{CX}}{v_{ii}} \right) v_{ii} q^{2} R^{2}$ $V_{\theta,neo} \approx -1.17 \frac{\partial T_{i}}{\partial r}$ $\tau_{c}' = \tau_{c}$

□ V'_E phasing via tilt tends to align turbulence and stochastic B-field, which counteracts the spin-up of $\langle V_\theta \rangle$.

 $\Box \frac{\partial}{\partial r} |\tilde{b}_r|^2 \text{, i.e., profile of stochastic enters} \rightarrow \text{introduce stochastic} \\ \text{layer width as novel scale}$ 13

Stochastic B-field affects $\langle V_{\phi} \rangle$

• For
$$V_{\phi}$$
: $\frac{\partial \langle v_{\phi} \rangle}{\partial t} + \nabla \cdot \langle \tilde{V}_{r} \tilde{V}_{\phi} \rangle = \frac{1}{\rho c} \langle J_{r} \rangle B_{\theta} + S_{M}$
 $\langle \tilde{V}_{r} \tilde{V}_{\phi} \rangle = -\chi_{\phi} \frac{\partial}{\partial r} \langle V_{\phi} \rangle, \quad \chi_{\phi} = \chi_{T} = \frac{\rho_{s}^{2} C_{s}}{L_{T}}, \quad S_{M} = S_{a} \exp(-\frac{r^{2}}{2L_{M,dep}^{2}})$
Only consider diffusive term. G.B. Momentum source tracks heat (from core).
 $\Rightarrow \frac{\partial \langle v_{\phi} \rangle}{\partial t} = \frac{\partial}{\partial r} \left(\chi_{\phi} \frac{\partial}{\partial r} \langle V_{\phi} \rangle \right) + \frac{1}{4\pi\rho} \frac{B_{\theta}}{B} \frac{\partial}{\partial r} \left(\tilde{B}_{r} \tilde{B}_{\theta} \right) + S_{M}$
• For SS: $\frac{\partial}{\partial r} \left(\chi_{\phi} \frac{\partial}{\partial r} \langle V_{\phi} \rangle \right) = -\frac{V_{T_{i}}^{2} B_{\theta}}{\beta} \frac{\partial}{\partial r} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle - S_{M}$ Stochasticity affects edge toroidal velocity, shear
 $\Rightarrow \frac{\partial}{\partial r} \langle V_{\phi} \rangle |_{r_{sep}} = -\frac{1}{\chi_{\phi}} \int_{0}^{r_{sep}} S_{M} dr - \frac{V_{T_{i}}^{2} B_{\theta}}{\beta \chi_{\phi} B} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle |_{r_{sep}}$ $B_{\theta} \langle J_{r} \rangle$
Integrated external torque with $\langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle = V_{E}^{r_{c}'} |\tilde{b}_{r}|^{2}$
 \checkmark Force through radial current across separatrix.
 \checkmark Shear affected by stochasticity. 14/19

Ion heat flux with stochastic field

• Heat flux induced by stochastic field :

$$Q_i = -(\chi_{i,neo} + \chi_{i,T})\nabla T_i + Q_{i,stoch}$$

$$\chi_{i,neo} = \varepsilon^{-3/2} q^2 \rho_s^2 \nu_{ii}$$

•
$$v_{ii} = \frac{n_0 Z^4 e^4 \ln \Lambda}{\sqrt{3}6\pi \varepsilon_0^2 m_i^{1/2} T_{i0}^{3/2}}$$

• $\chi_{i,T} = \left(\frac{C_s^2 \tau_c}{1 + \alpha V_r^{1/2}}\right) * I$

 $\sim \chi_{GB} * I$

The stochastic field affects ion heat flux

$$Q_{i,stoch} = \int V_{\parallel} \langle \tilde{B}_r \delta f \rangle (V_{\parallel}^2 + V_{\perp}^2) = -\frac{\partial \langle T_i \rangle}{\partial r} \sqrt{\chi_{\parallel,i} \chi_{\perp,i}} \langle \tilde{b}_r^2 \rangle l_{ac} k_{\perp}$$
$$\propto -\nu_{th,i} D_{M,eff} \frac{\partial \langle T_i \rangle}{\partial r}$$

✓ Important as threshold power is directly related to heat flux.
 ✓ Power uptake determines turbulence and Reynolds force

Towards an Ohm's law for $\langle E_r \rangle$ and $\langle J_r \rangle$

• From Ohm's law, $\langle E_r \rangle$ and $\langle J_r \rangle$ are related :

$$E_r = \frac{1}{enB} \frac{\partial}{\partial r} P_{\rm i} + v_{\phi} B_{\theta} - v_{\theta} B_{\phi}.$$

$$\langle \tilde{J}_{\parallel} \tilde{B}_{r} \rangle \rightarrow \langle J_{r} \rangle \underbrace{ \begin{array}{c} n_{e} \operatorname{via} \left\langle \tilde{b}_{r} J_{\parallel} \right\rangle \\ \left\langle V_{\theta} \right\rangle \operatorname{via} \left\langle J_{r} \right\rangle B_{t} \\ \left\langle V_{\phi} \right\rangle \operatorname{via} \left\langle J_{r} \right\rangle B_{\theta} \end{array} }^{n_{e} \operatorname{via} \left\langle J_{r} \right\rangle B_{t}}$$

Elements for *E*×*B* shear:

✓
$$n \frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rQ_i) = S_H$$

Ion temperature
✓ $\langle V_{\theta} \rangle = V_{\theta,neo} + \frac{1}{\mu} \frac{\partial}{\partial r} (\frac{1}{B^2} \tau_c V'_E \frac{I}{1 + \alpha V'_E} - \frac{B^2}{4\pi\rho} \tau'_c V'_E |\tilde{b}_r|^2)$ Poloidal flow
✓ $\frac{\partial}{\partial r} \langle V_{\phi} \rangle |_{r_{sep}} = -\frac{1}{\chi_{\phi}} \int_0^{r_{sep}} S_M dr - \frac{V_{Ti}^2}{\beta\chi_{\phi}} \frac{B_{\theta}}{B} V'_E \tau'_c |\tilde{b}_r|^2 |_{r_{sep}}$ Toroidal flow
($V_E \rangle' = \frac{1}{eB} \frac{\partial}{\partial r} \langle \nabla P_i / n \rangle - \frac{\partial}{\partial r} \langle V_{\theta} \rangle + \frac{B_{\theta}}{B} \frac{\partial}{\partial r} \langle V_{\phi} \rangle$
 $= \frac{1}{eB} \frac{\partial}{\partial r} \langle \nabla P_i / n \rangle - \frac{\partial}{\partial r} \left[V_{\theta,neo} + \frac{1}{\mu} \frac{\partial}{\partial r} (\frac{1}{B^2} \tau_c V'_E \frac{I}{1 + \alpha V'_E} - \frac{B^2}{4\pi\rho} \tau'_c V'_E |\tilde{b}_r|^2) \right]$
 $+ \frac{B_{\theta}}{B} \left[-\frac{1}{\chi_{\phi}} \int_0^{r_{sep}} S_M dr - \frac{V_{Ti}^2}{\beta\chi_{\phi}} \frac{B_{\theta}}{B} V'_E \tau'_c |\tilde{b}_r|^2 |_{r_{sep}} \right]$ 16/19

Five radial scales in this problem

• Multi-scale problem

Scale	Physics	Impact
L_n , L_T	Profile gradient	Drive of turbulence
u'/u	Flow damping profile scale	Rotation shear, $\langle V_E \rangle'$
$\ell_{env,\phi}$	Drift wave intensity	Reynolds stress drive
l _{env,b}	Stochastic field envelope scale	Magnetic stress scale
k _r	Stochastic field radial	Magnetic stress
	wavenumber	phase

Conclusions

- The present conclusions:
 - ✓ Ambipolarity breaking $\Rightarrow \langle \tilde{b}_r \tilde{b}_\theta \rangle$, contribute to $\langle J_r \rangle$
 - ✓ Both amplitude and profile of $|b_r|^2$ matter.
 - ✓ V'_E phasing ⇒ stochastic $\langle \tilde{b}_r \tilde{b}_\theta \rangle$ opposes turbulence $\langle \tilde{V}_r \tilde{V}_\theta \rangle$, phase linked
 - ✓ Intrinsic toroidal torque, so that reversal or spin-up of edge $\langle V_{\phi} \rangle$ occur with RMP, $\langle \tilde{b}_r \tilde{b}_{\theta} \rangle$ enters edge $\langle V_{\phi} \rangle$
 - ✓ $|b_r|^2$ can modify T_i and n_e profiles
- Related to experiments: understand the relationship between the RMP effects on power threshold and micro-physics? RMP effects on evolution of the shear layer, LCO...

Acknowledgement to Profs. Xavier Garbet, Lu Wang, Lothar Schmitz, Minjun Choi, George Mckee, Zheng Yan, T S Hahm and Yunfeng Liang for many useful discussions.

> Plasma Phys. Control. Fusion 64 (2022) 124001 @Special Issue on L-H Transition Physics

Looking forward to your suggestions and comments. Appreciate remote presentation!