On Zonal flow - Turbulence - Corrugation Dynamics in Magnetized Plasmas

<u>Rameswar Singh</u> and P H Diamond

Department of Astronomy and Astrophysics, UCSD

65th APS DPP Conference Oct 30 - 03, 2023 Mini-conference: Magnetized turbulence IV Denver, Colorado

Acknowledgements: U.S. Department of Energy Award # DE-FG02-04ER54738.

- Zonal flows are ubiquitous —why?
- Introduction
- Motivation
 - Shearing effects-turbulence decorrelation, induced diffusion, modulational instability
- Unified theory of zonal flows and corrugations spectral closure
 - Noise + modulations
 - Zonal cross correlation- staircase
- Zonal noise effects on Feedback loops
- Conclusions

Outline

ZFs in Jupiter

ZFs in ocean Maximenko et al GRL 2005

Zonal flows are ubiquitous

ZFs in liquid interior of Earth outer core T Miyagoshi et al Nature 2010

ZFs in rotating liquid column experiment Lemasquerier et al JFM 2021

ZFs in tokamak

Why zonal flows are ubiquitous? GFD Perspective

• Mid latitude zonal circulation [G K Vallis]

Rossby waves on beta-plane Frequency $\omega = -\frac{\beta k_x}{k_x^2 + k_y^2}$, Group velocity $v_{gy,k} = = -\sum_{x} \frac{1}{2} k_{x} k_{y} \left| \psi \right|^{2}$ Momentum flux: $\langle v_y v_x \rangle =$ $= -\sum_{\vec{y}} v_{gy,k} \mathscr{P}_k$ •Outgoing waves \implies incoming wave momentum flux

zonal velocity

•Stirring in mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away.

•Momentum converges in the region of stirring, producing eastward flow there and weaker westward flow on its flanks.

Pseudomomentum

Introduction

- Zonal modes are modes of minimal inertia, transport and damping.
- fluctuation energy.
- Conversion of energy to zonal structures reduces transport and improves confinement.

• Zonal structures ($k_{\theta} = k_z = 0$) possible in different fields- (ϕ) , ($n, T_i, T_e...$

Zonal flow Profile corrugations

• DW-ZF turbulence has two components: drift waves("wavy" - $k_{\theta} \neq 0$) and zonal modes ($k_{\theta} = k_{z} = 0$)

• Symmetry precludes adiabatic electron response for zonal modes. Thus they are benign repositories of

Motivation

- ZF turbulence.
 - Zonal flows result from the inverse cascade of kinetic energy this is well known.
 - What about the density corrugations?
 - How are the zonal density and zonal flow correlated $? \rightarrow$ staircase?
- How do zonal flow and density corrugations feedback on turbulence?
 - Zonal flow shear induces diffusion of mean wave action density in k_x space. What about the turbulent kinetic energy and internal energy?
 - How does density corrugation feedback on turbulence?
- Effects of zonal noise on the predator prey dynamics?

• There are both zonal flows and density corrugations at the simplest level of description of DW-

Motivation

• Almost all theoretical models of zonal flow generation divide cleanly into:

Calculation of zonal flow dielectric or screening response, with occasional mention of wavy component beat noise [Rosenbluth -Hinton 1998]:

$$\frac{\partial}{\partial t} \left\langle \left| \phi_{q} \right|^{2} \right\rangle = \frac{2\tau_{c} \left\langle \left| S_{q} \right|^{2} \right\rangle}{\left| \epsilon_{neo} \right|^{2}} \xrightarrow{\text{Emission from polarization interaction}}$$

-ignores coherent modulational mechanism.

- What happens when the noise meets modulations? Langevin equation with -ve damping: $\frac{\partial \phi_q}{\partial t} - \gamma_q \phi_q = noise.$
- approach!

Modulational stability calculations consider response of a pre-existing gas of drift waves to an infinitesimal test shear: $\frac{\partial}{\partial t}\overline{\phi}_{q} = \int d\vec{k}k_{y}k_{x}\delta \left|\phi_{k}\right|^{2} = -q_{x}^{2}\int d\vec{k}k_{y}^{2}C_{k}\mathscr{R}_{k,q}^{(r)}k_{x}\frac{\partial\left\langle N_{k}\right\rangle}{\partial k_{x}}\overline{\phi}_{q} = \gamma_{q}\overline{\phi}_{q}$ -ignores incoherent noise emission.

Treat incoherent noise emission and coherent response on equal footing. -Needs spectral

Spectral evolution of zonal intensity

For the zonal mode $k_v = k_{\parallel} = 0$ and $k_x \neq 0$

- viscosity!
 - inhibit transfer to large scales !
- Cross transfer rate: $\eta_{2k}^{zonal,(r)} > 0$ ALWAYS for backward transfer when $\Re \langle n_k \phi_k^{\star} \rangle > 0$
- Noise: always +ve and of envelope scale! F Noise/Modulation = $q_x^2 I_q / k_x^2 I_k$ = Turbulent KE/ Zc

Zonal density - potential cross-correlation

- Zonal growth is maximum when the adiabaticity parameter $\alpha_q \to \infty \implies \text{Non-adiabatic fluctuations}$

or
$$\frac{\partial I_q}{\partial q_x} < 0 \implies$$
 Forward transfer when $\Re \left\langle n_k \phi_k^{\star} \right\rangle <$

Spectral evolution (

$$\left(\frac{\partial}{\partial t} + 2D_nk^2\right)\left\langle \left|n_k\right|^2\right\rangle + 2\zeta_{1k}\left\langle \left|n_k\right|^2\right\rangle$$

Corrugations
damping rate,
 $+ve \sim 1/\alpha_q^2$

- Corrugations become weaker as the response become more adiabatic. \bullet
- Corrugation is determined by noise vs diffusion balance.
- (inhomogeneous) mixing in real space.

of densi	ity corrug	sation
$\left 2\zeta_{2k} \left\langle n_k^{\star} \phi_k \right\rangle \right $	$] = F_{nk}$ [Singh, Diamono) n	PPCF 2021]
Cross transfer	Advection	
rate, +ve \sim	noise, +ve	${\mathcal X}$
$1/\alpha_q^2$	$\sim 1/\alpha_q^2$	

• Density cascade forward in k_{y} ! Unlike turbulent viscosity, turbulent diffusivity is always +ve.

• Important for the nonlinear dynamics underlying staircases. Forward cascade in k_x -space \rightarrow

Zonal cross-correlation(ZCC) [Singh, Diamond PPCF 2021]

- Significant for layering or staircase structure ZF and ∇T are aligned in staircase!
- When do zonal density and zonal potential align? $\Re \left\langle n_k \phi_k^{\star} \right\rangle = \frac{2\eta_{2k}^{(r)} \left\langle \left| n_k \right|^2 \right\rangle + 2\zeta_{2k}^{(r)} \left\langle \left| \phi_k \right|^2 \right\rangle}{-(u+D_r) k_r^2 - 2\xi_{1k}^{(r)}}; \quad \xi_{1k}^{(r)} = \eta_{1k} + \zeta_{1k}$
- Zonal density and potential are correlated (anti-correlated) when the modulational growth of zonal flow more (less) than modulational damping of corrugations.
- Imposing physically bounded solution for $\Im \langle n_k \phi_k^* \rangle =$ $(\mu + D_n) k_x^2 + 2\xi_{1k}^{(r)} > 0$. Thus $\Re \langle n_k \phi_k^{\star} \rangle < 0$.
- Hence ZCCs in real space are: $\langle \overline{n}\overline{\phi} \rangle < 0, \langle \overline{n}\nabla_x^2\overline{\phi} \rangle > 0, \langle$
- $\langle \nabla_x \overline{n} \nabla_x^3 \overline{\phi} \rangle > 0$: zonal density jumps are co-located with the zonal vorticity jumps.
- $\langle -\nabla_x \overline{n} \nabla_x \overline{\phi} \rangle > 0$: density gradient peaks are co-located with the zonal flow peaks.

$$= 0$$
 fixes the sign of

$$\nabla_x \overline{n} \, \nabla_x^2 \overline{\phi} \, \Big\rangle = 0$$

- correlated.
- <u>Convection speed</u> V_k : caused by density corrugations!
- modes!

• <u>K-space diffusivity</u> D_{kk} : depends on the relative alignment of zonal shear and profile corrugations. D_{kk} enhanced by density corrugations as zonal density and potential are anti-

• Nonlinear growth Γ_k : due to linear growth modulation by density corrugations. Injects energy back into turbulence, locally. Competes with turbulence saturation by random shearing of zonal

Without noise:

- Threshold in growth rate $\gamma > \eta \gamma_d / \sigma$ for appearance of stable zonal flows.
- Turbulence energy increases as γ/η below the threshold, until it locks at γ_d/σ , at the threshold.
- Beyond the threshold, turbulence energy remains locked at $\frac{\gamma_d}{-}$ while the zonal flow energy continues to grow as $\sigma^{-1}\eta (\gamma/\eta - \gamma_d/\sigma)$.

- Both zonal and turbulence co-exist at any linear growth rate - No threshold in growth rate for zonal flow excitation.
- Turbulence energy never hits the old modulational instability threshold, absent noise!
- Turbulence energy \downarrow and zonal flow energy \uparrow :-Noise feeds energy into zonal flow!

- Unified theory of zonal modes (zonal flows and density corrugations) encompassing both noise and modulations.
 - Vorticity flux corr. \rightarrow ZF noise. Density flux corr. \rightarrow corrugation noise.
 - but turbulent diffusivity +ve.
 - in k_r i.e., $\partial E/\partial k_r < 0$ and $\left| \frac{\partial E}{\partial k_r} \right| < \left| \frac{\partial E}{\partial k_r} \right|_{crit}$.
 - zonal vorticity jumps.
- stress!). The synergy of the two mechanisms is stronger than either alone.

Conclusions

- Bi-directional transfer: KE energy to large scales, internal energy to small scales. Turbulent viscosity -ve

- The effective zonal viscosity goes negative only for an energy spectrum which decays sufficiently rapidly

- Spectral ZCC $\Re \langle n_k \phi_k^* \rangle < 0 \rightarrow$ Spatial ZCC $\langle \nabla \overline{n} \nabla^3 \overline{\phi} \rangle > 0$ i.e., zonal density jumps are colocated with

• Polarization beat noise and modulational effects are comparable intrinsically (both driven by Reynolds

- Expands the range of zonal flow activity relative to that predicted by modulational instability calculations.

- Understanding interaction of corrugations with avalanches:
 - localized by accompanying shear flow?
 - sandpile?
- considered only in context of Mean Field theory.
- positions of corrugations and shear layer?

Future directions

- Corrugations in state of high Z_{cc} sustained as localized transport barriers, staircases etc.

- Corrugations in state of low Z_{cc} likely to overturn, and drive avalanches, as in running

• Theory should better understand the effect of noise on staircase, which have been

• Relation between Z_{cc} and the staircase structure: Does the physics of Z_{cc} set the relative

