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Abstract. We present a multi-scale model of quasi-mode evolution in a
stochastic magnetic field. The similarity between a quasi-mode and a ballooning
mode enables us to address the challenges arising from the disparate geometries
in the theories of ballooning modes in the presence of resonant magnetic
perturbations. We obtain useful insights into our understanding of ballooning
mode dynamics in a stochastic background. To maintain quasi-neutrality at all
scales, the beat between the quasi-mode and the stochastic magnetic field drives
microturbulence, which drives the turbulent background that promotes mixing
and damps the quasi-mode. As a result of the broad mode structure of the
quasi-mode, the turbulent viscosity and the turbulent diffusivity produced by the
microturbulence are larger than those in our related study on resistive interchange
modes. The stochastic magnetic field can also enhance the effective plasma inertia
and reduce the effective drive, thereby slowing the mode growth. A nontrivial
correlation between the microturbulence and the magnetic perturbations is
shown to develop. This could account for the reduction in the Jensen-Shannon
complexity of pedestal turbulence in the RMP ELM suppression phase observed
in recent experiments. Directions for future experimental and theoretical studies
are suggested.
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1. Introduction

Future magnetic confinement fusion reactors, such
as ITER [1], are designed to operate in the high-
confinement mode for good plasma performance. As a
result, dealing with the edge-localized mode (ELM)—
a “side effect” of the H-mode—is one of the major
concerns in fusion science today. In experiments,
a technique called resonant magnetic perturbation
(RMP) is widely adopted to mitigate and suppress
ELMs by generating a stochastic magnetic field at the
plasma edge [2, 3]. However, as turbulence evolution
and transport bifurcation now happen in a background
stochastic field, an increase in the L-H transition power
threshold has been observed on multiple machines [4,
5, 6]. To get insight into the tripartite trade-off
among confinement, heating power, and boundary
control, models of turbulence dynamics [7], zonal
flow evolution [8], and L-H transition [9] have been
reformulated in the presence of extrinsic stochasticity.
All these theories are either based on or closely relevant
to a fundamental question: how does an ambient
stochastic magnetic field modify plasma turbulence
and the underlying instability process? This paper
entrances previous work on this subject [10] by delving
deeper into the geometric complexities.

Experiments play a critical role in illuminating
this question. Many intriguing phenomena, such as the
significant reduction in the edge plasma density (den-
sity pump-out), form part of our current understanding
of plasma confinement with the influence of RMP. In
addition, there has been some progress in experimen-
tal studies on the effects of stochastic magnetic fields
on plasma turbulence. For instance, an increase in the
pedestal fluctuation level is observed in the RMP ELM
suppression phase [11]. However, due to the technical
difficulty in turbulence diagnostics, these studies pri-
marily rely on the spectral analysis, which alone fails
to fully capture the changes in the states of turbulence
when RMP is implemented. Given that plasma tur-
bulence is intermittent, more information is needed to
characterize the effects of stochastic magnetic fields on
its statistical behaviors.

In information theory, complexity-entropy anal-
ysis is a useful method that can quantify the pre-
dictability and structural intricacy of time series and
signals. In this approach, Jensen-Shannon complexity
CJS serves as a metric of a system’s complexity, which
is defined as

CJS = HQ. (1)

Here H is the permutation entropy, a measure of the
missing information of a system, and Q is the Jensen-
Shannon divergence, a measure of the distance of a
system from thermal equilibrium state. CJS, H and Q
are all functionals of the signals recorded. As a side

note, it can be proved that this permutation entropy
H coincides with the Kolmogorov–Sinai entropy for
piecewise monotone interval maps [12]. One important
feature of this approach is its user-friendliness.
For a time series obtained from experiments, the
calculation of its Jensen-Shannon complexity is much
simpler compared to other metrics, for example, the
Kolmogorov-Sinai entropy [13]. Another advantage
of this definition is that the number given by
CJS aligns with people’s intuitive perception of a
system’s complexity. For instance, the Jensen-Shannon
complexity metric reflects the widely-held notion
that both the white noise and perfect crystals are
‘simple’ systems. Specifically, the white noise has
a high entropy but low complexity, because there
is no discernible structure. In contrast, a perfect
crystal has low entropy and also low complexity,
as it is perfectly regular. Generally, deterministic
chaotic systems, such as the logistic map, always have
high complexity, while noisy signals, like Brownian
motion, are associated with low complexity [14].
This fact enables us to distinguish chaos from noise.
Consequently, complexity-entropy analysis has been
applied to various areas, including hydrology [15],
economy [16], semantics [17], etc. As a special case of
chaos, turbulence is intrinsically different from noise:
the former exhibits a spectral energy flux in the k-
space, while the energy emission and absorption in the
latter case are local in k. Given the significance of
turbulence in MFE, the complexity-entropy analysis
has also been noticed by the fusion community.
Using this approach, the chaotic nature of the edge
fluctuations in L-mode, H-mode, and I-mode has been
identified [18, 19, 20]. However, as reported by Choi
et al., the rescaled Jensen-Shannon complexity of the
temperature fluctuations at the pedestal top in the
RMP ELM suppression phase is reduced relative to
that in the natural ELM-free phase and the RMP ELM
mitigation phase [21]. This indicates that the edge
plasma turbulence becomes more “noisy” when ELM
is suppressed by RMP. A fundamental change in the
statistical dynamics of the turbulence due to stochastic
field is thus implied. Additionally—and somewhat
paradoxically—an increase in the bicoherence of the
pedestal turbulence was also observed when system
entered the RMP ELM suppression regime, as shown
in figure 1. These observations further underscore
the necessity of studying the fundamentals of plasma
instabilities and turbulence in a stochastic magnetic
field.

In our previous work [10], we probed this question
by developing a multi-scale model which maintains ∇·
J = 0 at all scales. The chosen object of that research
is the resistive interchange mode [22, 23, 24], primarily
due to its tractability. While that model provides
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Figure 1. Changes of the summed total bicoherence (a) and
rescaled complexity (b) of the electron temperature fluctuation
between the ELM mitigation and the initial suppression phases.
Reprinted from [21].

generic and valuable physical insights, its quantitative
results may not be especially convincing, due to the
geometric simplicity of the interchange modes. As
the peeling-ballooning mode is a probable candidate
for the origin of ELM [25], the ballooning mode is
a more relevant instability to examine. However,
apart from the inherent higher complexity of the
ballooning mode (compared to the interchange mode),
there is another hard nut to crack: while models
for ballooning modes in a tokamak are set up in
toroidal geometry [26], theories involving resonant
magnetic perturbations often are formulated in terms
of resonant surfaces in a cylindrical geometry [27]. To
develop a comprehensive theory that encompasses both
the ballooning mode and RMP, these two different
geometries must be reconciled. For a stellarator,
due to the lack of the toroidal symmetry, system
is fully three-dimensional [28]. Therefore, theories
of ballooning mode [29, 30] and resonant magnetic
perturbations [31, 32] have been established in fully
three-dimensional geometries. Meanwhile, codes for
MHD simulations are extended to the stellarator
geometry, such as M3D-C1 [33], are developed.
While it may seem that there is no problem of
geometry disparity in the case of stellarator, a
direct theoretical study on the ballooning mode in a
stochastic magnetic field in a fully three-dimensional
geometry is intimidating and intractable. To get
results which may be readily understood, we need to
compromise on the geometric complexity and choose
to study this reduced problem. For the reasons given
above, in this work, we will work on the cylindrical
geometry model, and the strategy for the geometry
reconciliation is to replace the ballooning mode with

its counterpart in a cylinder, i.e., the quasi-mode.
Figure 2 is an illustration of the mode structures of
the quasi-mode and the ballooning mode. It can
be seen from figure 2(a) that a quasi-mode, denoted
by red envelope curves, is composed of vertically
localized (resistive) interchange modes, represented by
yellow columns. Likewise, as shown in figure 2(b), a
ballooning mode, denoted by the red dotted curve, is
a coupling of localized poloidal harmonics (blue hills).
Hence, we conclude that a quasi-mode in a cylinder
resembles a ballooning mode in a torus. As both the
quasi-mode and the stochastic magnetic field reside
in a cylindrical geometry, studying a quasi-mode in a
stochastic magnetic field is manageable.

Figure 2. The similarity between quasi-mode and ballooning
mode. (a) A depiction of the quasi-mode. The blue lines are
magnetic field lines. The yellow columns are fluid filaments of
gravitational interchange modes at different horizontal surfaces.
The red envelope curves of these fluid filaments represent the
convective cells of the quasi-mode. So a quasi-mode can be
viewed as a wave-packet of gravitational interchange modes. (b)
A simple sketch of the ballooning mode. The blue hills are
poloidal harmonics localized at a sequence of resonant surfaces.
Ballooning mode (red dotted curve) is a coupling of these
harmonics due to toroidicity effect.

In this paper, we present a theory of the quasi-
mode in a static, ambient stochastic magnetic field.
We need to emphasize that here we mainly focus on
the strong chaos regime, in which the Chirikov island
overlap parameter is large, i.e.,

σChirikov =
δm,n + δm′,n′

∆m,n;m′,n′
≫ 1, (2)
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where δm,n and δm′,n′ are the half width of the
magnetic islands at q(rm,n) = m/n and q(rm′,n′) =
m′/n′ resonant surfaces, and ∆m,n,m′,n′ is the distance
between these two surfaces. This assumption indicates
RMP current is relatively high in experiments. Hence,
while the flux surfaces in the core remain unperturbed,
the edge stochastic magnetic field can be regarded
as strongly chaotic. In reality, however, with the
application of RMP, there is no such thing as a sharp
boundary separating the core region filled with nested
flux surfaces from the edge region where field lines
are chaotic. Between these two regions, there is an
intermediate region, referred to as ”critical chaos”,
in which structures like island chains and cantori
(broken KAM surfaces) exist [34]. As island chains can
degrade confinement and cantori can serve as effective
barriers to field-line transport [35], these structures
usually have non-negligible effects. To maintain the
analytical tractability of our model, we suppose the
field lines in the chaotic layer are truly chaotic and
don’t take the effects of island chains and cantori
into consideration. The structure of our model can
be summarized by the flowchart in figure 3. At the
large-scale, a quasi-mode is driven by the magnetic
curvature and the mean density gradient. When a
background stochastic magnetic field is imposed, to
maintain ∇ · J = 0, small-scale convective cells, also
referred to as the microturbulence, are driven by the
beat of the quasi-mode with the stochastic magnetic
field. This microturbulence has a finite correlation with
the magnetic perturbations, which can account for the
reduced complexity observed in Choi’s experiments.
We can think of it as the suppression of the instability
characteristic of a chaotic system by external noise [36].
The microturbulence further leads to the emergence
of a turbulent viscosity and a turbulent diffusivity.
The effects of the stochastic magnetic field on the
quasi-mode are mainly reflected in three distinct
ways: (1) stochastic magnetic fields can enhance the
effective plasma inertia and reduce the effective drive,
thus opposing the mode growth; (2) the turbulent
viscosity and the turbulent diffusivity produced by
the microturbulence can damp the quasi-mode by
increasing mixing; (3) the microturbulence can react to
the evolution of the quasi-mode, consequently leading
to the formation of a feedback loop in the system.
Though this reaction tends to destabilize the quasi-
mode, its effect can be proved to be negligible as
compared to (1). Combining (1), (2), and (3), the net
effect of stochastic magnetic field on the quasi-mode is
to slow the mode growth.

The remainder of this paper is organized as
follows. In section 2, we briefly review the basics
of the quasi-mode and demonstrate the resemblance
between the quasi-mode and the ballooning mode. The
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Figure 3. Multi-scale feedback loops of quasi-mode and small-
scale convective cells.

model of the quasi-mode in an externally prescribed
stochastic magnetic field is then formulated in section
3. Quantitative results, including the correction to
the growth of the quasi-mode mode, the correlation
⟨ṽxb̃⟩, and the scaling of the turbulent viscosity νT ,
are also given in this section. In section 4, we pin
down the sign of the growth rate correction and discuss
its underlying physics. The consistency between our
theory and existing simulations and experiments is
also discussed there. This paper concludes with
the lessons we have learned about the dynamics of
the quasi-mode and what we can infer about the
dynamics of the ballooning mode, and with suggestions
for future experimental and theoretical investigations.
Expressions for the operators in this work, as well as a
detailed calculating procedure of the Jensen-Shannon
complexity, are attached in the Appendix.

2. Revisiting of the Quasi-mode

As mentioned in section 1, one challenge in studying
the ballooning mode in a stochastic magnetic field is
the difference in geometries upon which theories of the
ballooning mode and resonant magnetic perturbations
are based. The similarities between the quasi-
mode and the ballooning mode allow us to study
quasi-mode first and then extend the results to the
ballooning mode. To elucidate the validity of this
idea, fundamentals of the quasi-mode and the relation
between the quasi-mode and the ballooning mode are
discussed quantitatively in this section.

2.1. Physical picture of the quasi-mode

The quasi-mode was first identified by Roberts and
Taylor in 1965 [37]. In a nutshell, a quasi-mode is
an effective wave-packet of gravitational interchange
modes in a sheared magnetic field, as depicted in figure
2. The term “quasi-mode” implies that it is not an
eigenmode, so it will eventually disperse. But as will
be discussed in section 2.3, the interchange modes
constituting the quasi-mode are highly degenerate. So
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the quasi-mode is capable of maintaining its shape
before entering the nonlinear regime, and it is fair
to treat quasi-mode as a “true mode”. Unlike the
gravitational interchange mode, which is localized at
a specific horizontal surface, the convective cells of the
quasi-mode (red envelopes in figure 2) have a broad
mode structure in the x (vertical) direction. Since the
main magnetic field has a small but finite shear, the
fluid filaments or ”flux tubes” (yellow columns in figure
2) must rotate around the vertical axis x when rising
or falling. This rotation allows them to keep aligned
with the local magnetic field so as to minimize the field
distortion. Another name for the quasi mode, ”twisted
slicing mode”, originates from this twisted interchange
motion of the fluid filaments.

When the system is infinitely extended in the
z direction, the quasi-mode, unlike gravitational
interchange modes which are spatially periodic in z,
exhibits a finite mode length in the direction of the
main field. As illustrated in figure 4, the vertical
and twisted sheets, filled alternately in red and blue,
represent the envelope surfaces of the convective cells
of the quasi-mode at various positions along the main
field line. These convective cells correspond to the
red envelope curves shown in figure 2. The colors
red and blue represent the upward and downward
motions of the plasma, respectively. The darker the
shade, the faster the motion. From the change in
color, it is evident that the plasma motion slows down
(exponentially) as it moves away from the origin along
the z axis. The length and direction of each arrow
in figure 4 denote the magnitude and direction of the
velocity field at the corresponding spatial position.

Figure 4. The velocity field of the quasi-mode and the graphic
example of one of the magnetic perturbations. The vertical
twisted sheets are envelope surfaces of the convective cells of
the quasi-mode. The arrows are the visualization of the velocity
field. The horizontal plane is a simple sketch of the magnetic
perturbation at one particular resonant surface.

The finite mode length of the quasi-mode in
the main field direction can be explained from the
viewpoint of energy conservation. In the presence of
magnetic shear, fluid filaments will rotate with respect

to x axis as they move vertically. The rotational
kinetic energy of these filaments would diverge if their
mode length is equal to the length of the system
(i.e., infinity). Hence, the mode length of the quasi-
mode automatically adjusts to a finite value ∆. This
adjustment is dictated by a balance among the rate
of the release of the gravitational potential energy,
the rate of the resistive dissipation, and the rate of
the increase of the rotational kinetic energy. The
underlying rationale is that to have a finite rotational
kinetic energy, the quasi-mode must possess a finite
length in z. This condition subsequently leads to an
increase in the resistive dissipation. The increase in
the rotational kinetic energy and dissipation is at the
expense of the gravitational potential energy.

2.2. Quantitative description of the quasi-mode

The dynamics of both the gravitational interchange
mode and the quasi-mode are governed by the same
set of equations, i.e., resistive MHD equations. In
this work, an incompressible plasma subject to a
uniform gravitational field in the negative x direction
is considered, as shown in figure 2. A uniform magnetic
field B0 is exerted in the z direction, along with a
transverse field By = sxB0, where s is a constant. The
magnetic shear is assumed to be weak, i.e., sx≪ 1.

The linearized equations for the quasi-mode are
the momentum equation, the induction equation, and
the continuity equation

ρ0
∂v

∂t
= −∇p+ 1

4π
(∇×B)×B0

+
1

4π
(∇×B0)×B + ρg,

(3)

∂B

∂t
= (B0 · ∇)v − (v · ∇)B0 +

η

4π
∇2B, (4)

∂ρ

∂t
= −v · ∇ρ0 = −vxαρ0. (5)

Note that the Ampère’s law ∇ ×B = 4πJ is used to
eliminate J in equation (3). In equations (3) through
(5), B0 = (0, sx, 1)B0 is the main field. g = −gx̂
is the “gravity”, which can be identified in terms of
the pressure p0 and the magnetic curvature Rc by g ∼
2p0/ρ0Rc. η is the plasma resistivity, which is assumed
to be uniform in the system. α characterizes the
gradient of the mean density, which acts as the source
of free energy. In this case, ρ0 increases linearly with
x, so α is a constant. The Boussinesq approximation
allow us to treat ρ0 as uniform in equations (3) and
(5). In equation (4), the ratio of ∂tB to η∇2B/4π is
of order β = 8πp0/B

2
0 . In the limit of β ≪ 1, we can

eliminate the term ∂tB, leading to the equation

B0 · ∇v +
η

4π
∇2B = 0, (6)
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where the term v · ∇B0 is also disregarded due to
the slow spatial variation of B0. Applying operator
(∇×∇×) to equation (3) yields

ρ0
∂∇2v

∂t
=

1

4π
B0 ·∇

(
∇2B

)
−
[
∇(∇ · ρg)−∇2ρg

]
.(7)

Substituting equation (5) and (6) into equation (7) and
taking the dot product with x̂, we obtain the following
eigenmode equation

ρ0η
∂2∇2vx
∂t2

+ (B0 · ∇)
2 ∂vx
∂t

− αgρ0η

(
∂2

∂y2
+

∂2

∂z2

)
vx = 0,

(8)

where B0 · ∇ = B0

(
∂
∂z + sx ∂

∂y

)
. In order to exploit

the linear magnetic shear and simplify the operator
B0 · ∇, a twisted coordinate system, defined by the
following transformation, is introduced:

ξ = x, χ = y − sxz, ζ = z. (9)

The operators appearing in equation (8) also need to
be transformed accordingly (see Appendix B). For
the quasi-mode, instead of employing the Fourier
expansion in the z direction, a more generalized form
of the solutions is adopted, as shown below:

vx = v(ζ) exp(γkt+ ikxξ + ikyχ). (10)

Plugging equation (10) into equation (8), we get(
1 + ϵ2q

) 1

k2y

∂2v

∂ζ2
− 2ϵ2qisξ

ky

∂v

∂ζ
− ϵ2

[
q
(
1 + s2ξ2

)
+
γ2k
αg
s2ζ2 − γ2k

αg

(
k2x
k2y

− 2sζ
kx
ky

)]
v = 0,

(11)

where

ϵ2 =
αgρ0η

γkB2
0

, q =
γ2k
αg

− 1. (12)

In the regime where ϵ ≪ 1 (long mode length of the
quasi-mode in the z direction), kx/ky ≪ 1 (broad
mode structure of the quasi-mode in the x direction),
and sξ ≪ 1 (weak magnetic shear), equation (11) is
simplified to

d2v

dζ2
− γkτA

S
(sky)

2
ζ2v

+
γkτAk

2
y

S

(
αg

γ2k
− 1

)
v = 0,

(13)

where S is the Lundquist number defined as the ratio
of the resistive diffusion time, τR = 4πa/η, to the
Alfvén time, τA = a/(B0/4πρ0)

1/2. As equation (13) is
similar in form to the equation for a quantum harmonic
oscillator, its solutions are given by

v = vj(ζ) = 2−
j
2Hj

(
ζ

∆

)
exp

(
− ζ2

2∆2

)
, (14)

where Hj are the Hermite polynomials, ∆ is the
characteristic mode length along the main field. In the

case of the slow interchange, i.e. γ2k ≪ αg, the growth
rate of this mode is

γ
(j)
k = (αg)

2
3

(
τAk

2
y

Ss2

) 1
3

(2j + 1)−
2
3 , (15)

and the corresponding ∆ is

∆j =
1

(αg)
1
6

(
S

τAk2y

) 1
3 1

s
1
3

(2j + 1)
1
6 . (16)

As the wavenumber kx is irrelevant in equations (15)
and (16) due to the fact that kx ≪ ky, the x-
dependence of the solutions can be replaced by any
slowly varying function g(x), leading to the solutions
of equation (13) in the form of

vx(x, y, z) = g(x)vj(z) exp [iky(y − sxz)] . (17)

In section 3, the function g(x) is taken as a constant,
which is a reasonable approximation as long as we are
not close to the system boundary.

2.3. Relation between quasi-mode and ballooning mode

The quasi-mode can be used as a surrogate for the
ballooning mode because their share similar mode
structures. More specifically, both of them are
composed of localized modes. It can be shown that
the expression for the quasi-mode given by equation
(17) is just a linear superposition of the vertically
localized gravitational interchange modes. Now we
seek solutions of equation (8) that are periodic in z
and of the form

vx = vg(x) exp (γ̃kt+ ikyy + ikzz) . (18)

By adopting this form and solving equation (8), the
eigenmodes are given by

vg(X) = uj(X) = 2−
j
2Hj

(
X

δk

)
exp

(
−X2

2δ2k

)
, (19)

with their growth rates in the slow interchange limit
given as

γ̃
(j)
k = (αg)

2
3

(
τAk̃

4

Ss2k2y

) 1
3

(2j + 1)−
2
3 , (20)

where

X = x+
kz
sky

, δk =

(
γkτA
Ss2k2y

) 1
4

, k̃2 = k2y + k2z .(21)

These modes are localized around resonant surfaces
where k · B0 = 0. For two modes with the same
ky but localized at different heights separated by x0,
their growth rates differs only by δγ/γ ∼ (sx0)

2 ≪ 1.
The strong degeneracy of these localized gravitational
interchange modes leads to a long “life-time” of the
quasi-mode. Consequently, the sum of a series of
interchange modes in the “ground state” (j = 0), each
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sharing the same ky but centered at various resonant
surfaces, can be written as

u(x,y, z, t) = exp (ikyy)×∫
f (kz) exp

[
ikzz −

(x− x0)
2

2δ20

]
exp(γkt)dkz,

(22)

where f(kz) is a slowly varying weight function, and
x0 = −kz/sky. If we let f(kz)dkz = −g(x0)dx0,
equation (22) reduces to

u(x, y, z, t) ∼=

δ
√
2πg(x) exp

[
iky(y − sxz)− (skyδ0z)

2

2
+ γt

]
.
(23)

The equivalence between equation (17) and equation
(23) clearly exhibits the relation between the quasi-
mode and the gravitational interchange mode. Note
that 1/∆ ∼= skyδk ≪ ky, suggesting that the narrower
the interchange mode, the longer the quasi-mode.

Analogous to the quasi-mode, which acts as a
wave-packet of the interchange modes, the ballooning
mode is a coupling of poloidal harmonics localized
at a sequence of resonant surfaces (see figure 2).
There are two different but equivalent methods to
investigate the ”land of ballooning”: ballooning mode
representation [38] and Bloch eigenmode equation [39].
Here the former one is adopted to illuminate the
similarity between the ballooning mode and the quasi-
mode.

The most persistent instabilities in toroidal
axisymmetric plasmas are those characterized by a
short wavelength perpendicular to the magnetic field
and a long wave lengths parallel to it, such as the
ballooning mode. The ordinary representation of this
kind of modes is in the eikonal form [40]

φ(r, χ, ϕ) = F (r, χ) exp

[
in(ϕ−

∫ χ

νdχ)

]
, (24)

where χ is a poloidal, angle-like coordinate, F (r, χ) is
a slowly varying function, ν is a parameter containing
the information of magnetic geometry and related
to the ‘safety factor’ by q = 2π

∮
νdχ. Note that

the expression for the quasi-mode, given by equation
(17), indeed takes this eikonal form. But in equation
(17), the poloidal wavenumber ky takes the place
of the toroidal mode number n in equation (24).
This is because in a torus, the toroidal symmetry is
preserved whereas the poloidal symmetry is broken
by the toroidicity effect. Hence, only the toroidal
mode number n continues to be a valid ”quantum”
number. It can be proved that in the presence of
magnetic shear, the eikonal form given by equation
(24) contradicts with the demand of periodicity in
the poloidal angle across all values of r, unless we
assume F (r, χ) is not a slowly varying function. To
reconcile this contradiction, in 1979, Connor, Hastie,

and Taylor proposed the following ballooning mode
transformation [38]

φ(r, θ) =

+∞∑
m=−∞

eimθ

∫ +∞

−∞
e−imηφ̂(r, η)dη, (25)

so that if φ̂(r, η) is a solution of

L(r, η)φ̂(r, η) = λφ̂(r, η), (26)

then φ(r, θ) will be a solution of

L(r, θ)φ(r, θ) = λφ(r, θ), (27)

where L(r, θ) and φ(r, θ) are periodic in θ. This
transformation effectively map the domain of θ ∈
(−π, π) onto the covering space of η ∈ (−∞,∞),
with η interpreted as the coordinate in the main
field direction. After eliminating the periodicity
requirement for φ̂, it is feasible to express it in the
eikonal form

φ̂(r, η, ϕ) = φ0(r, η) exp [−in (ϕ− qη)] , (28)

where
∫ η

νdη is approximated as qη (i.e., the phase
shift is neglected). Substituting equation (28) into
equation (24), we obtain [41]

φ(r, θ) =

+∞∑
m=−∞

φm(r, nq −m)eimθ, (29)

where φm is defined as

φm(r, nq −m) =

∫ +∞

−∞

dη

2π
φ0(r, η)e

i(nq−m)η. (30)

Since φ0 is a slowly varying function of η, its Fourier
transform φm is localized near the resonant surface
where q(rm,n) = m/n. Equation (29) indicates that
a ballooning mode φ(r, θ) can be viewed as a coupling
of a sequence of poloidal harmonics φm, as sketched
in figure 2. This clearly demonstrates the resemblance
between a quasi-mode wave-packet in a cylinder (or
slab) and a ballooning mode in a torus. Therefore, by
studying the quasi-mode in a stochastic magnetic field,
we can provide instructive insights into the effects of
stochastic magnetic field on ballooning mode.

3. Model Development

In this section, a multi-scale model for the quasi-
mode in a stochastic magnetic field is presented.
We show that the small-scale convective cells, i.e.,
the microturbulence, are driven when the stochastic
magnetic field is introduced to the dynamics of the
quasi-mode, so as to maintain ∇ · J = 0 at all scales.
The correlation between the velocity fluctuations and
the magnetic perturbations, the correction to the
growth rate of the quasi-mode, and the scaling of the
turbulent viscosity are also given.
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3.1. Generation of the microturbulence

Compared to the eigenmode equation (8), the vorticity
equation is better suited to demonstrate the generation
of the microturbulence, as it is actually the equation
∇ · J = 0 in detail [42], and thus naturally guarantees
quasi-neutrality. Taking the curl of the momentum
equation (3), the vorticity equation is written as

− ρ0
B2

0

∂

∂t
∇2

⊥φ︸ ︷︷ ︸
∇⊥·Jpol

−1

η
(b0 · ∇)

2
φ︸ ︷︷ ︸

∇∥J∥

+
g

B0

∂

∂y
ρ︸ ︷︷ ︸

∇⊥·JPS

= 0, (31)

where φ is the electrostatic potential. J∥ is eliminated
by exploiting the linearized Ohm’s law [43]

J∥ =
1

η
(b0 · ∇)φ =

1

4π
(∇×B)∥ , (32)

in the β ≪ 1 limit (electrostatic case). Combining it
with the continuity equation (5), we get

ρ0η
∂2

∂t2
∇2

⊥φ+
∂

∂t
B2

0 (b0 · ∇)
2
φ−αgρ0η

∂2

∂y2
φ = 0.(33)

Although there may appear to be a slight difference,
equation (33) is, in fact, equivalent to equation (8), as∣∣∣∣∣ρ0η∂2t (b0 · ∇)

2
φ

∂tB2
0 (b0 · ∇)

2
φ

∣∣∣∣∣ = ρ0ηγ

B2
0

= ϵ2
γ2k
αg

≪ 1,∣∣∣∣∂2zφ∂2yφ

∣∣∣∣ ∼= (sδ)
2 ≪ 1.

(34)

With the introduction of the magnetic perturbations,
magnetic field lines become chaotic. Following a
standard low-β, normal aspect ratio ordering, we have

b̃⊥ = B̃⊥/B0 ∼ ϵ, b̃∥ = B̃∥/B0 ∼ ϵ2,

∇⊥ ∼ 1, ∇∥ ∼ ϵ,
(35)

where ϵ is a small number [44]. Then we introduce
the stochastic magnetic potential Ã and rewrite the
perturbed magnetic as

b̃ = B̃/B0 = ẑ ×∇Ã+ b̃∥ẑ, (36)

whose divergence is then

∇ · b̃ = ∂∥b̃∥ ∼ ϵ3. (37)

Hence, with the neglect of B̃∥ and its effects, ∇ · b̃ = 0

remains accurate to the second order. Effects of B̃∥
need to be reconsidered in the case of stochasticity
in a spherical torus [45]. Then, the total magnetic
field is approximated as the sum of a main field B0

and a perturbed field B̃⊥, i.e., Btot = B0 + B̃⊥.
Here B̃⊥ is constituted by a series of high-k magnetic
perturbations that are highly localized at resonant
surfaces and densely packed, i.e., σChirikov ≫ 1 (strong
chaos). The horizontal plane in figure 4 depicts one
such perturbation at a specific resonant surface. The

stochastic magnetic field is incorporated into our model
by modifying the parallel gradient operator to

∇∥ = ∇(0)
∥ + b̃ · ∇⊥, (38)

where ∇(0)
∥ = ∂ζ is the gradient along the main field,

b̃ = B̃⊥/B0, and b̃ · ∇⊥ is the gradient along the
perturbed field. With this modification, the parallel
current density becomes

J∥ = −1

η

[
∇(0)

∥ + b̃ · ∇⊥

]
φ̄
(
b0 + b̃

)
, (39)

where φ̄ denotes the electrostatic potential of the low
k quasi-mode. Equation (39) implies that the plasma
flow along the chaotic magnetic field lines results in
a small-scale current density fluctuation J̃∥, whose
divergence is

∇ · J̃∥ = −1

η

[(
b̃ · ∇⊥

)
∇(0)

∥ φ̄+∇(0)
∥

(
b̃ · ∇⊥

)
φ̄
]
.(40)

Since the quasi-neutrality requires ∇ · J = 0 at all
scales, equation (40) is supposed to be equal to 0 if J̃∥
is the only contribution to the microscopic current. To
verify this point, we take the Fourier expansion of b̃
and φ̄, yielding

φ̄ = φ̄k(ζ) exp [γkt+ ikyχ] ,

b̃ =
∑
k1

b̃k1(x) exp [i (k1yy − k1zz)]

=
∑
k1

b̃k1

(
ξ̂k1

)
exp

[(
ik1yχ+ ik1∥ζ

)]
,

(41)

where k1∥ = sk1y ξ̂k1 , ξ̂k1 = ξ−ξk1 , ξk1 = k1z/k1y. The
twisted coordinate system (equation (9)) is employed
here. As mentioned in section 2.2, the quasi-mode is
assumed to be independent of ξ. Then by plugging
equation (41) into equation (40), we have(
b̃ · ∇⊥

)
∇(0)

∥ φ̄+∇(0)
∥

(
b̃ · ∇⊥

)
φ̄

=
∑
k1

{
2iky

[
−sζb̃xk1

(
ξ̂k1

)
+ b̃yk1

(
ξ̂k1

)] ∂φ̄k(ζ)

∂ζ

−skyk1y ξ̂k1

[
−sζb̃xk1

(
ξ̂k1

)
+ b̃yk1

(
ξ̂k1

)]
φ̄k(ζ)

+iky

[
−sb̃xk1

(
ξ̂k1

)]
v̄xk(ζ)

}
×

exp
[
γkt+ i (k1y + ky)χ+ ik1∥ζ

]
.

(42)

To simplify equation (42), we consider the “ground
state” of the quasi-mode given in equation (14) (j = 0),
and assume the stochastic magnetic potential Ã has a
Gaussian profile across the resonant surface, i.e.

φ̄k(ζ) = φ̄0 exp
(
−ζ2/2∆2

)
,

Ãk1

(
ξ̂k1

)
= Ã0k1 exp

(
−ξ̂2k1

/2o2k1

)
,

(43)
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where ok1 is the island width. By integrating equation
(43) into equation (42), we observe that for ∇ · J̃ = 0
to hold, the following equations(
2
ζ2

∆2
− 1

)
+
ξ2k1

o2k1

= 0,
2

∆2o2k1

− s2k21y = 0 (44)

must be satisfied for arbitrary k1, which is clearly
impossible. This brings us back to the narrative
we developed in our previous study on resistive
interchange modes in a stochastic magnetic field [10],
i.e., small-scale convective cells must be driven by
the beat of stochastic magnetic field with quasi-mode,
which further generate a current density fluctuation
J̃⊥ so as to keep ∇ · (J̃∥ + J̃⊥) = 0. Figure 5 provides
a heuristic illustration of the physical mechanism
underpinning the formation of small-scale convective
cells. According to the continuity equation of charge,
∇· J̃∥ ̸= 0 implies the accumulation of the polarization

charge. Consider the term ∇(0)
∥

(
b̃y∂yφ̄

)
on the R.H.S

of equation (40) as an example, which actually serves
as the main drive of the small-scale convective cells.
With the profiles provided in equation (43), it turns
out that this term leads to a polarization charge
fluctuation, whose profile across the resonant surface
is proportional to ξ2k1

/o2k1
exp(−ξ2k1

/2o2k1
). This

accumulation of polarization charge is responsible for
the emergence of the electrostatic potential fluctuation
φ̃ and the resulting convective cells ṽxk1

, as sketched by
the purple dotted line in figure 5. Since the generation
of small-scale convective cells is an outcome of the
introduction of b̃, it’s to be expected that there exists
a non-trivial correlation ⟨b̃ṽx⟩. This correlation is
further calculated in section 3.3.

Figure 5. The profiles of Ãk1
, b̃yk1

, ρ̃ek1
and ṽxk1

across the
resonant surface ξ = ξk1

. The stochastic magnetic field gives
rise to the polarization charge fluctuation, which further induces
a velocity fluctuation. Obviously, there is a non-zero correlation
between Ã and ṽx.

3.2. Formulation of a multi-scale system

As depicted in figure 6, a large-scale quasi-mode,
a background stochastic magnetic field, and the
microturbulence are the three main “players” in
our model. Hence, the vorticity equation and the

+ +

Figure 6. A sketch of the multi-scale model in this work:
a large-scale quasi-mode (red envelope curves), a small-scale
background stochastic magnetic field (blue curves), and small-
scale convective cells (orange cells).

continuity equation are modified to(
∂

∂t
− νT∇2

⊥

)
∇2

⊥(φ̄+ φ̃)+

S

τA

(
∂

∂ζ
+ b̃ · ∇⊥

)2

(φ̄+ φ̃)− gB0

ρ0

∂(ρ̄+ ρ̃)

∂y
= 0,

(45)

and(
∂

∂t
−DT∇2

⊥

)
(ρ̄+ ρ̃) = − (v̄x + ṽx)αρ0. (46)

Here ρ̄, φ̄, and v̄ are the plasma mass density,
electrostatic potential, and resultant E × B drift
velocity fluctuations of the quasi-mode, ρ̃, φ̃ and ṽ
are the density, electrostatic potential and resultant
E×B drift velocity fluctuations of the microturbulence.
The expressions for the operators in equation (45) and
(46) are given by equation (B.2) in Appendix B. With
the emergence of the small-scale convective cells, the
time derivative ∂t in equation (5) and (31) should
be modified to ∂t + ṽ · ∇ to account for the random
advection of the quasi-mode by small-scale convective
cells. This random advection ṽ ·∇ can be renormalized
as a diffusion operator −νT∇2

⊥ or −DT∇2
⊥ [46]. The

turbulent viscosity νT and the turbulent diffusivity
DT thus enter our model. In this work, the Schmidt
number Sc is set to 1, i.e., νT = DT , as their physical
mechanisms are the same.

In both section 2 and the prior work, the slow
interchange approximation is utilized for the large-scale
resistive interchange mode and the quasi-mode. So for
consistency and simplicity, the same setup is adopted
in our model, namely ky ≪ 1/δk, where δk is the width
of the localized interchange mode defined in equation
(21). Owing to the small spatial scales of b̃ and the fact
that ṽ emerges as a response to b̃, ṽ also exhibits small
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spatial scales. More specifically, as the wavenumbers of
b̃ and ṽ in the y direction are very large, it is reasonable
to posit that those small-scale convective cells are fast
interchange. It means k1y ≫ 1/δk1 , where δk1 is the
characteristic width of ṽk1 . In addition, based on the
definition, 1/∆ ∼= skyδk ≪ sk1yδk1

∼= k1∥. And by

requiring the magnitudes of b̃x and b̃y are of the same
order, it follows that k1y ∼= ok1 . According to the above
discussion, the spatial ordering of our system is∣∣∣∣ 1φ̄ ∂φ̄∂ξ

∣∣∣∣︸ ︷︷ ︸
=0

≪
∣∣∣∣ 1φ̄ ∂φ̄∂ζ

∣∣∣∣≪ ∣∣∣∣ 1φ̄ ∂φ̄∂χ
∣∣∣∣

≪
∣∣∣∣ 1φ̃ ∂φ̃∂x

∣∣∣∣≪ ∣∣∣∣ 1φ̃ ∂φ̃∂χ
∣∣∣∣ ,∣∣∣∣ 1φ̄ ∂

∂ζ
φ̄

∣∣∣∣≪ ∣∣∣∣ 1φ̃ ∂

∂ζ
φ̃

∣∣∣∣≪ ∣∣∣∣ 1φ̃ ∂

∂χ
φ̃

∣∣∣∣ .
(47)

In our prior work, it was highlighted that the growth
of small-scale convective cells, recognized as fast
interchange, is over-saturated by νT and DT . This
implies that the fast interchange growth rate γk1 =
(αg)1/2, is smaller than the turbulent damping rates
νT k

2
1y. In contrast, due to the small magnitude of the

magnetic perturbation, we can treat its effect on the
quasi-mode as a perturbation, and thus have νT k

2
y ≪

γk. Then the temporal ordering of our model is

νT k
2
y ≪ γk ≪ γk1

< νT k
2
1y. (48)

Inequalities (47) and (48) indicate a separation
of the spatio-temporal scales in this model. For such
as multi-scale system, we can employ the method of
averaging to separate the dynamics of different scales.
By adopting the spatial averaging defined as

⟨A⟩ = Ā =
1

Ly

∫ Ly/2

−Ly/2

e−ikyχAdχ, (49)

where χ is the coordinate defined in equation (9), the
full set of equations for this model is given as follows:(
∂

∂t
− νT∇2

⊥

)
∇2

⊥φ̄+
S

τA

∂2

∂ζ2
φ̄

+
B2

0

η


〈(

b̃ · ∇⊥

)2〉
φ̄︸ ︷︷ ︸

(a)

+

〈
∂

∂ζ

(
b̃ · ∇⊥

)
φ̃

〉
︸ ︷︷ ︸

(b)

+

〈(
b̃ · ∇⊥

) ∂

∂ζ
φ̃

〉
︸ ︷︷ ︸

(c)

− gB0

ρ0

∂

∂y
ρ̄ = 0, (50a)

(
∂

∂t
− νT∇2

⊥

)
∇2

⊥φ̃+
S

τA

∂2

∂ζ2
φ̃

+
S

τA

{
∂

∂ζ

(
b̃ · ∇⊥

)
φ̄+

(
b̃ · ∇⊥

) ∂

∂ζ
φ̄

}

−gB0

ρ0

∂

∂y
ρ̃ = 0, (50b)(

∂

∂t
−DT∇2

⊥

)
ρ̄ = −v̄xαρ0, (50c)(

∂

∂t
−DT∇2

⊥

)
ρ̃ = −ṽxαρ0. (50d)

As can be seen from these equations, dynamics of the
large-scale quasi-mode and the small-scale convective
cells are coupled to each other. On the one hand,
terms involving the beat of b̃ and φ̄ act as the source
of equation (50b), driving the microturbulence φ̃. On
the other hand, in equation (50a), terms involving φ̃
can react on the evolution of the quasi-mode φ̄.

The workflow of the remaining calculations in this
paper can be summarized by figure 7. After using
the method of averaging to separate the dynamics
at different scales, the next step is to get the linear
response of ṽx to the beat of b̃ with v̄x by solving the
small-scale dynamics. The correlation between ṽx and
b̃ is calculated by exploiting this linear response. Then,
upon plugging the linear response into equation (50a),
the revised eigenmode equation for the quasi-mode,
which includes all the effects of the stochastic magnetic
field, is obtained. Subsequently, the corrected growth
rate of the quasi-mode is computed via perturbation
theory. Finally, a simple nonlinear closure model
is used to compute the scaling of the turbulent
viscosity and the turbulent diffusivity arising from the
microturbulence.

• Define a proper 
spatial averaging.

• Split the dynamics 
of small and large 
scales.

Scale 
separation

• Get the response 

of 𝑣𝑥 to ෩𝒃 and ҧ𝑣𝑥.

• Get the 𝑣𝑥෩𝒃  

correlation.

Solve small-
scale dynamics

• Get the large-
scale eigenmode 
equations.

• Calculate the 
corrected growth 
rate.

Solve large-
scale dynamics

• Calculate the 
scaling of  𝜈𝑇 
generated by 
microturbulence.

Nonlinear 
closure

Figure 7. The workflow of the remaining calculation.

3.3. Correlation between ṽx and b̃

To determine the effect of the stochastic magnetic field
on the growth rate of the quasi-mode, the unknown
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quantity, φ̃, must be eliminated from equation (50a).
This requires us to find the response of φ̃ to b̃, which
can be obtained from equation (50b). Similar to the
Fourier series of b̃ given in equation (41), the Fourier
series of φ̃ and ρ̃ are

φ̃ =
∑
k1

φ̃k1

(
ξ̂k1 , ζ

)
exp

[
γkt+ ik1yχ+ ik1∥ζ

]
,

ρ̃ =
∑
k1

ρ̃k1

(
ξ̂k1 , ζ

)
exp

[
γkt+ ik1yχ+ ik1∥ζ

]
,

(51)

where φ̃k1 and ρ̃k1 are slowly varying functions of
ζ. Note that the growth rates of φ̃ and ρ̃ are the
slow interchange growth rate γk, rather than the fast
interchange growth rate γk1 . This is because the
growth of φ̃ and ρ̃ is over-saturated by the turbulent
viscosity νT and the turbulent diffusivity DT , and
adiabatically modulated by the growth of the quasi-
mode. As a result, both sides of equation (50b) grow
at the same rate.

Since the quasi-mode is not periodic in the main
field direction, it is challenging to define an appropriate
averaging over ζ. Therefore, the spatial averaging
employed in this work, as defined by equation (49),
differs from the one used for the resistive interchange
mode. In our previous work, the averaging was carried
out in both toroidal and poloidal directions. While
this averaging scheme is able to separate the dynamics
of large and small scales, it only provides the relation
between a spectrum of φ̃k1 with the same k1y and a

spectrum of b̃k2 with the same k2y, rather than the

response of a single φ̃k1 to a single b̃k2 . To address this
issue, we suppose that only magnetic perturbations
b̃k2 that are located at the same resonance surface as
φ̃k1 can drive φ̃k1 . In other words, only the coherent
response of φ̃k1 to b̃k2 is considered. Since both of φ̃k1

and b̃k2 are highly localized near the resonant surfaces,
this is a fair assumption. Substituting equation
(50d) and (51) into equation (50b), and simplifying it
according to the scale orderings given by inequalities
(47) and (48), we get

−2νT k
2
1y

∂2

∂ξ2
ṽxk1 +

S

τA
s2k21y ξ̂

2
k1
ṽxk1

−
(
αg

DT
− νT k

4
1y

)
ṽxk1

=
S

τA
ik1y

[
−sb̃k2 (2ζ∂ζ + 1) + 2b̃yk2

∂ζ

]
v̄xk

− S

τA
k1yk2∥

[
−sζb̃xk2

+ b̃yk2

]
v̄xk,

(52)

where ṽxk1 = −ik1yφ̃k1/B0, v̄xk = −ikyφ̄k/B0, and
k1 and k2 satisfy relations

k1y = k2y + ky,
k2z
sk2y

=
k1z
sk1y

. (53)

The extra Fourier factor exp(−iskyζξ̂k1) on the R.H.S
is set to unity as the scale skyζ ∼ sky∆ ∼ 1/δk

is irrelevant to the small-scale dynamics. It is more
straightforward to see the significance of the drive
by the beat of b̃ and v̄x from equation (52). If we
retain the temporal variation of ṽxk1 , divide it by
k21y, and exploit the spatial-temporal ordering given
by inequalities (47) and (48), equation (52) can be
rewritten into the following heuristic form

∂

∂t
ṽxk1 + λṽxk1 = D̂

[
b̃v̄x

]
, (54)

where

λ = νT k
2
1y −

αg

DT k21y
≈ νT k

2
1y − (αg)

1/2
, (55)

D̂ denotes the drive by b̃v̄x beats on the R.H.S of
equation (52). The first term in the expression for λ
represents the turbulent damping, and the second term
is the linear drive by the mean density gradient. As
small-scale convective cells grow fast under the drive
of mean density gradient, the nonlinear effect, i.e.,
the renormalized turbulent viscosity, will also increase
so that at a point νT becomes large enough to over-
saturate the linear drive, i.e., λ > 0. The processes of
the linear growth and the over-saturation of ṽxk both
happen on a very short time scale ∼ O(1/γk1). On
the longer time scale ∼ O(1/γk), as the quasi-mode
v̄xk varies with time, the drive D̂ on the R.H.S of
equation (54) will modulate the microturbulence ṽxk1

adiabatically. One may notice that equation (54) is
similar in structure to a Langevin equation, which
further suggests a fluctuation-dissipation balance. The
stochastic magnetic field b̃ thus has dual identities:
on the one hand, it serves as the drive (recall the
random kicks in Brownian motion) to excite the
microturbulence; on the other hand, the turbulence
viscosity arising from b̃ damps the growth of the small-
scale convective cell, akin to the drag term in the
Langevin equation.

Observing that the L.H.S of equation (52) is
homogeneous in φ̃k1 and resembles the equation for
the quantum harmonic oscillator, the corresponding
Green’s function of equation (52) is [47]

G
(
ξ̂k1 , ξ̂

′
k1

)
=
∑
l

ψl
k1

(
ξ̂k1

)
ψl
k1

(
ξ̂′k1

)
Λl
k1

− Λk1

, (56)

where

ψl
k1
(ξ̂k1) =

Hl

(
ξ̂k1

w′

)
π

1
4w′ 12

√
2ll!

exp

−1

2

(
ξ̂k1

w′

)2
 ,

Λk1k1
l =

4ρ0νT k
2
1y

w′2

(
l +

1

2

)
≪ Λk1 = −ρ0νT k41y,

w′ = wk1 =

(
2τAνT
Ss2

) 1
4

.

(57)

Note that wk1/δk1 = (2νT k
2
1y/γk1)

1/4 > 1, which
indicates the turbulent viscosity can broaden the width
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of φ̃k1 . But as wk1/δk = (νT k
2
y/γk)

1/4 < 1,
the spatial ordering given by equation (47) remains
valid. Utilizing this Green’s function, we obtain the
approximate solution of equation (52) given as follows

ṽxk1 ≈ ṽ
(l=0)
xk1

+ ṽ
(l=1)
xk1

,

ṽ
(l=0)
xk1

≈ S

τAνT k41y

√
2ok2Ã0k2

w′

[−2sk1yk2yζ∂ζ v̄xk(ζ)] exp

[
−1

2

(
ξ̂k1/w

′
)2]

,

ṽ
(l=1)
xk1

≈ − S

τAνT k41y

√
2ok2Ã0k2

w′ [2ik1y∂ζ v̄xk(ζ)

+is2k1yk
2
2yo

2
k2
ζv̄xk(ζ)

] 2x
w′ exp

[
−1

2

(
ξ̂k1/w

′
)2]

.

(58)

Without loss of physics and for simplicity, only the
first two terms of the Green’s function (i.e., l = 0
and l = 1 terms) are retained, representing the even
and odd parity of the solution, respectively. With this
solution, the correlation between ṽx and b̃, which is a
function of ζ, can be expressed as

⟨ṽxb̃x⟩ =
∑
k1

ṽx(k−k1)b̃xk1

=
iLyLz

(2π)
2

∫
dk1y

s2kyS
∣∣∣Ã0k1

∣∣∣2
τAνT |k1y|

12
√
πo2k1

w′ ζ∂ζ v̄xk,

⟨ṽxb̃y⟩ =
∑
k1

ṽx(k−k1)b̃yk1

= − iLyLz

(2π)
2

∫
dk1y

s3kyS
∣∣∣Ã0k1

∣∣∣2
τAνT |k1y|

12
√
πo4k1

w′3
ζv̄xk,

(59)

where the summation over k1 is transformed into an
integral over k1y and ξk1 , i.e.∑
k1

=
LzLy

(2π)2

∫
dk1ys |k1y|

∫
dξk1 . (60)

This is a fair transformation as magnetic perturbations
b̃k1 at different resonant surfaces are densely packed.

The non-trivial correlation between ṽx and b̃
given in equation (59) could serve as a cause for the
reduction in the Jensen-Shannon complexity of the
edge turbulence during the RMP ELM suppression
phase. ⟨ṽxb̃⟩ ̸= 0 means that when RMP is
applied, high-k fluctuations are generated and coupled
to the stochastic magnetic field. In other words,
the microturbulence “locks on” to the ambient
stochasticity, and thus the statistical characteristics
of the edge turbulence are changed by the externally
prescribed magnetic perturbations. As mentioned in
section 1, noisy signals have lower complexity. If
we think of the magnetic perturbations as external
noise, then the non-trivial correlation ⟨ṽxb̃⟩ makes
statistics of edge turbulence more akin to those of

noise, which is manifested as the reduction in its
complexity in experiments. This can be interpreted
as the suppression of the instability characteristic of
a chaotic system by external noise [36]. Of course,
we acknowledge that stochastic magnetic fields are not
noise in the strict sense, but rather deterministic chaos.
The effects of the stochastic magnetic field on the
statistics of edge turbulence indeed provides a possible
explanation for the experimental phenomena. A deeper
approach for further justification for our claim would
be to study the changes in complexity when two chaotic
systems are superposed. This will be discussed in more
detail in section 4.3 as a direction for future study.

3.4. Correction to the quasi-mode growth rate and
scaling of the turbulent viscosity

Using the spatial averaging defined by equation (49),
the Fourier series of b̃ and φ̃ given in equation (41) and
(51), the response of ṽx to b̃ given in equation (58), and
replacing the summation over k1 by integral, the three
correlations in equation (50a) are equal to

(a) =

〈(
b̃ · ∇⊥

)2〉
φ̄

=
[
−s2ζ2k2y

∣∣∣b̃2x∣∣∣+ 2sζk2y

∣∣∣b̃xb̃y∣∣∣− k2y

∣∣∣b̃2y∣∣∣] φ̄xk,

(61)

(b) + (c)

=
〈
∂ζ

(
b̃ · ∇⊥

)
φ̃+

(
b̃ · ∇⊥

)
∂ζφ̃

〉(l=0)

+
〈
∂ζ

(
b̃ · ∇⊥

)
φ̃+

(
b̃ · ∇⊥

)
∂ζφ̃

〉(l=1)

,〈
∂ζ

(
b̃ · ∇⊥

)
φ̃+

(
b̃ · ∇⊥

)
∂ζφ̃

〉(l=0)

≈ −LzLy

(2π)2

∫
dk1y


Ss3k2y

∣∣∣Ã0k1

∣∣∣2
τAνT |k1y|

×

8
√
π |ok1 |

2

w′

}
ζ∂ζφ̄k,〈

∂ζ

(
b̃ · ∇⊥

)
φ̃+

(
b̃ · ∇⊥

)
∂ζφ̃

〉(l=1)

≈ −LzLy

(2π)2

∫
dk1y


Ss3k2y

∣∣∣Ã0k1

∣∣∣2
τAνT |k1y|

×

8
√
π |ok1 |

4

w′3

}
(φ̄k + ζ∂ζφ̄k) .

(62)

Since

[(b) + (c)]
(l=0)

[(b) + (c)]
(l=1)

∼ |ok1 |
2

w′2 ∼ 1

k21yw
′2 ≪ 1, (63)

we can use the l = 0 term to approximate the sum
of correlation (b) and (c). After substituting equation
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(50c), (61) and (62) into equation (50a), the large-scale
vorticity equation becomes

Ĥ0φ̄k = Ĥ1φ̄k, (64)

where

Ĥ0 =
∂2

∂ζ2
− γkτA

S
s2ζ2k2y +

γkτAk
2
y

S

(
αg

γ2k
− 1

)
, (65)

Ĥ1 =
[
s2ζ2k2y

∣∣∣b̃2x∣∣∣− 2sζk2y

∣∣∣b̃xb̃y∣∣∣+ k2y

∣∣∣b̃2y∣∣∣]
+
LzLy

(2π)2

∫
dk1y

Ss3k2y

∣∣∣Ã0k1

∣∣∣2
τAνT |k1y|

8
√
π |ok1 |

2

w′ ζ∂ζ

+
αgτADT k

4
y

(
1 + s2ζ2

)
Sγ2k

+
τA
S
νT k

4
y

(
1 + s2ζ2

)2
.

(66)

Clearly the L.H.S of equation (65) is exactly the
equation (13). By using perturbation theory, the first

order growth rate correction γ
(1)
k is given by

γ
(1)
k =

∫∞
−∞ φ̄

(0)
k (ζ) Ĥ1φ̄

(0)
k (ζ) dζ∫∞

−∞ φ̄
(0)
k (ζ)

[
∂
γ
(0)
k

Ĥ0

]
φ̄
(0)
k (ζ) dζ

. (67)

Plugging the expressions for Ĥ0, Ĥ1, and the 0th-

order solution φ̄
(0)
k into equation (67), the growth rate

correction of the quasi-mode is

γ
(1)
k =−5

6
νT s

2∆2k2y

(
1 +

8

5

1

s2∆2

)
︸ ︷︷ ︸

1○

− 1

3

S

τA

[ ∣∣∣b̃2x∣∣∣︸︷︷︸
2○

− f
∣∣∣b̃2x∣∣∣︸ ︷︷ ︸
3○

+
2

s2∆2

∣∣∣b̃2y∣∣∣︸ ︷︷ ︸
4○

]
,

(68)

where

f =

〈(
b̃ · ∇⊥∂ζ + ∂ζ b̃ · ∇⊥

)
φ̃
〉

〈
(b̃ · ∇)(b̃ · ∇)φ̄

〉
∼ 8

νT k
2
y

γ
(0)
k︸ ︷︷ ︸
f1

αg

ν2T k
4
1y︸ ︷︷ ︸

f2

|ok1 |
w′︸ ︷︷ ︸
f3

.

(69)

The sign of γ
(1)
k will be determined in section 4.1.

Another useful output of our calculation is the scaling
of the turbulent viscosity νT . As discussed in section
3.2, the turbulent viscosity νT and the turbulent
diffusivity DT originate from the microturbulence.
Hence, the scaling of νT and DT can be calculated
through the following closure model [48, 49]

νT =
∑
k1

|ṽxk1 |
2
τk1 . (70)

Here τk1 is the turbulence correlation time, which can
be estimated as 1/γk1 . Substituting equation (58) into
equation (70) yields the following scaling of νT

νT ∼=

LzLy

(2π)2

∫
dk1y

s3S2
∣∣∣Ãk1

∣∣∣2
τ2A |k1y|3

×

4
√
π |ok1 |

2
v̄xk(0)

2

w′(αg)1/2

 2︸︷︷︸
old

+

(
k1yo

2
k2

kyδkw′

)2

︸ ︷︷ ︸
new




1
3

.

(71)

4. Discussion and Conclusion

Given the fact that here a quasi-mode is a wave-
packet consisting of localized resistive interchange
modes, it’s not surprising that this study would
yield results somewhat similar to our prior research
on the resistive interchange mode. Nevertheless,
due to the difference in the mode structure between
the quasi-mode and the interchange mode, certain
distinctions result. In this section, we analyze the
results obtained in section 3, with an emphasis on the
differences. This paper concludes with a list of lessons
that can deepen our comprehension of the effects of
stochastic magnetic fields on the ballooning mode.
In addition, suggested experiments and directions for
future theoretical studies are provided.

4.1. Analysis of results

The term 1○ of the growth rate correction given by
equation (68) is negative definite and proportional to
νT . Except for an increment proportional to 1/(s∆)2,
this term matches the first term of the growth rate
correction for the resistive interchange mode given in
our prior work [10]. The physics behind this term
can be interpreted as the damping by the turbulent
viscosity. Specifically, since the small-scale convective
cells drive a turbulent background, the resultant
turbulent viscosity νT and turbulent diffusivity DT can
promote mixing, thereby damping the growth of the
quasi-mode. It can be observed that inside the braces
of the scaling of νT , there are two terms labeled as
“old” and “new” respectively. If only the “old” term
is retained, the scaling of νT reverts to that given by
equation (38) in [10]. In this study, due to the changes
in the mode structure and the spatial scaling ordering,
both b̃x and b̃y enter the calculation of the scaling of
νT . This leads to the emergence of the “new” term in
equation (71), which is positive. The resultant new νT
is larger than that obtained in our previous research on
the resistive interchange mode.

While term 2○ and term 4○ are negative definite,
term 3○ is positive. Since term 3○ stems from the
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terms (b) and (c) in equation (50a), it implies that
the microturbulence has a destabilizing effect on the
quasi-mode, in contrast to the case of the resistive
interchange mode. Again, this is due to the fact
that the quasi-mode is much broader radially than the
resistive interchange mode. Therefore, the sign of the
sum of terms 2○, 3○, and 4○ in equation (68) depends
on the magnitude of parameter f , which is defined as
the ratio of the sum of term (b) and term (c) to term
(a) appearing in equation (50a). Equation (69) is an
approximate expression for f , which is composed of
three dimensionless factors, f1, f2, and f3. The first
factor f1 is the ratio of the turbulent viscosity damping
rate to the zeroth-order growth rate of the quasi-
mode. As indicated in formula (48), due to the small
magnitude of the magnetic perturbations, the effect
of the stochastic magnetic field on the quasi-mode
is considered as a small perturbation, which yields

νT k
2
y ≪ γ

(0)
k and thereby f1 ≪ 1. The second factor

f2 is equal to the square of the ratio of the 0th-order
growth rate to the turbulent viscosity damping rate of
the small-scale convective cells. As discussed in section
(3.3), the growth of the small-scale convective cells
is over-saturated by the turbulent viscosity and the
turbulent diffusivity, which indicates f2 < 1. As for the
third factor f3, given that we assume the magnitudes
of b̃x and b̃y to be of the same order, the island width
ok1 is comparable to 1/k1y. Consequently, f3 can be
approximated as 1/(k1yw

′), which is much smaller than
unity, as the fast interchange approximation applies
to the small-scale convective cells. The constant 8
multiplying these three factors originates from two
sources: the Gaussian integrals in the calculation of the
linear response of ṽx to b̃, and the fact that the number
of terms involving both b̃ and ṽx (terms (b) and (c)) is
double that of the terms involving b̃ alone (term (a)) in
equation (50a) . Since f1 ≪ 1, f2 < 1, and 8f3 ≤ 1 (or
at least ∼ O(1)), it follows that f ≪ 1, indicating the
sum of term 2○, 3○ and 4○ is also negative definite.
Therefore, we can conclude that the net effect of the
stochastic magnetic field on the quasi-mode is to slow
its growth.

The stabilization effect of term 2○ and term 4○
becomes clearer if only the term (a) are retained in
equation (50a). Then the eigenmode equation for the
quasi-mode reduces to

∂2

∂ζ2
v̄xk − ρeffη

B2
0

γkk
2
ys

2ζ2v̄xk +
ρ0η

B2
0

αeffg

γk
k2y v̄xk = 0,(72)

where expressions for effective plasma inertia ρeff and
effective drive αeff are

ρeff = ρ0

(
1 +

S

τAγk

∣∣∣b̃2x∣∣∣) > ρ0,

αeff = α

(
1− Sγk

τAγ2k1

∣∣∣b̃2y∣∣∣
)
< α.

(73)

The |b̃xb̃y| cross term is omitted since it has no
contribution to the growth rate correction. Here, ρeff
and αeff are defined as the effective mass density and
the effective density gradient, respectively. According
to equation (73), it is evident that stochastic magnetic
fields can stabilize the mode growth by enhancing
the effective plasma inertia and reducing the effective
drive. Furthermore, by balancing the stochastic
bending term to the linear bending term, the critical
island width for which this stabilization effect becomes
significant is given as

ok1 ∼ δk

(
ky
k1y

)1/2

. (74)

This result is a reminiscent of Rutherford’s 1973 work
on the nonlinear tearing mode [50]. In that paper,
the growing perturbed magnetic field can generate a
torque that drives the tearing mode against plasma
inertia. But when the system enters the nonlinear
regime, the nonlinear force induced by the perturbed
magnetic field will produce another torque opposing
the mode growth. The magnitudes of the torque
produced by the linear and nonlinear forces become
comparable when the island width is comparable to
the width of the tearing layer, i.e., when ok1 ∼ δk.
As compared to Rutherford’s model, equation (74)
contains an additional factor of (ky/k1y)

1/2, which is a
footprint of the multi-scale nature of our model. The
same criterion was also derived in our previous work.

4.2. Lessons learned for ballooning mode in a
stochastic magnetic field

In this study, we constructed a comprehensive model
for the dynamics of a low-k quasi-mode in a high-k
stochastic magnetic field. For such an intrinsically
multi-scale system, a standard procedure based on
the quasi-linear theory is employed. By exploiting
the resemblance between the quasi-mode and the
ballooning mode, we can circumvent the difficulty
posed by the differences in geometries between that
used in theories of the ballooning mode and stochastic
fields in a cylinder. Ultimately, we gain valuable
physical insights into the dynamics of the ballooning
mode in a stochastic magnetic field. These insights are
consistent the existing simulations and experiments.
The key takeaways from our study are:

(i) To maintain quasi-neutrality (∇ · J = 0) at
all scales, small-scale convective cells must be
driven by the beat of the magnetic perturbations
with the ballooning mode. In the simulation
of the electrostatic resistive ballooning mode in
a stochastic magnetic field by Beyer et al. [51],
small-scale structures in the pressure fluctuation
profile were observed. The emergence of these
small-scale structures can be explained by the
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microturbulence predicted by our theory. In
addition, these small-scale convective cells could
potentially allow for the possibility of enhanced
nonlinear transfer by increasing the number of
triad interactions. This picture provides another
interpretation of the increase in the bicoherence
of the pedestal temperature fluctuations in the
stochastic layer, in addition to Waelbroeck et al.’s
theory [52].

(ii) As indicated by equation (59), a non-trivial corre-
lation develops between the velocity fluctuations
ṽx and the magnetic perturbations b̃. Note that
due to the change in the spatial ordering, a non-
vanishing correlation ⟨b̃y ṽx⟩ appears in this work.
Thus was absent in our previous work. In other
words, the microturbulence “locks on” to the ex-
ternally prescribed stochastic magnetic field, and
thus the edge plasma turbulence becomes more
“noisy”. This theoretical prediction is consis-
tent with the reduction of the Jensen-Shannon
complexity of the temperature fluctuations dur-
ing the RMP ELM suppression phase [21]. As
previously discussed in section 1, the Jensen-
Shannon complexity provides a metric for a sys-
tem’s predictability. Consequently, a decrease in
the Jensen-Shannon complexity indicates an in-
crease in the system’s randomness. In other words,
the chaotic behavior of the edge plasma turbu-
lence is suppressed by an external noise, i.e., the
stochastic magnetic field.

(iii) According to our discussion in section 4.1, it is
reasonable to expect the stochastic magnetic field
to impede the growth of the ballooning mode.
This is also borne out by Beyer’s simulation, in
which a suppression of the large-scale fluctuations
is observed [51]. More specifically, the stochastic
magnetic field can slow the mode growth in three
different ways: enhancing the effective plasma
inertia (magnetic braking effect), reducing the
effective drive, and boosting turbulent damping.
The second channel is newly discovered in this
work. The multi-scale nature of the system
lowers the threshold for the magnitude of magnetic
perturbations at which the magnetic braking
effect becomes prominent, as compared with
Rutherford’s criterion [50].

(iv) In equation (3), mode coupling (represented by
the convective term v · ∇v) is omitted to first
order accuracy. However, the appearance of the
microturbulence restores the time derivative ∂t
to a nonlinear operator ∂t + ṽ · ∇, which is fur-
ther renormalized as ∂t − νT∇2

⊥. In other words,
the microturbulence drives a turbulent background
in which plasma instabilities—including the bal-
looning mode—reside. This conclusion remains

unchanged from our previous research. Yet, the
broad radial structure of the ballooning mode al-
ters the influence of the microturbulence on the
mode itself. Firstly, the magnitude of the turbu-
lent viscosity νT and the turbulent diffusivity DT

is larger than what we obtained in our study on
the radially-localized resistive interchange mode.
Secondly, the electrostatic scattering caused by
the microturbulence tends to destabilize the bal-
looning mode, which is opposite to our conclusion
for the resistive interchange mode. This destabi-
lizing effect has been proved to be much weaker
than the magnetic braking effect.

4.3. Suggested experiments and future plan

While this paper focuses primarily on the quasi-mode,
our findings are broadly applicable to other models,
such as drift waves and ITG, as ∇ · J = 0 is a
universal constraint for all types of modes. Thus,
regardless of what the dominant mode at the edge
is, when RMP is switched on, the microturbulence
is inevitably driven, and the correlation between the
microturbulence and the magnetic perturbations will
be encountered. This further reinforces the validity
of using our theory to explain the reduction in the
complexity. However, as Jensen-Shannon complexity is
a somewhat abstract concept, it is necessary to relate
it to dynamical quantities, for practical purposes.
Therefore, to validate our theory and enhance our
understanding of plasma dynamics in a stochastic
magnetic field, the following RMP experiments are
suggested:

(i) Beam emission spectroscopy (BES) velocimetry
is a high-resolution plasma diagnostic for plasma
velocity fluctuations [53]. By using the BES
velocimetry, we are able to calculate the of ratio
of the turbulent heat flux to the total heat flux
across the separatrix as a function of the strength
of the magnetic perturbations (or, equivalently,
the RMP coil current). The total heat flux
could be obtained from the power budget. With
the increase of the RMP coil current, the heat
transport along the stochastic magnetic field
would increase. At the same time, since we predict
that the stochastic magnetic field can suppress the
plasma instability, the turbulent heat flux would
decrease. Hence, the decrease in the complexity
of the edge turbulence should be accompanied by
a reduction in the ratio of turbulent heat flux to
the total heat flux.

(ii) Since Choi et al. used the electron cyclotron emis-
sion imaging (ECEI) as their pedestal turbulence
diagnostic [54], their complexity analysis is based
on electron temperature fluctuations. It might be
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enlightening to perform a similar analysis for the
data of velocity fluctuations collected from BES
velocimetry during both the RMP ELM suppres-
sion phase and the natural ELM-free phase. This
is not only complementary to Choi’s results, but
also a straightforward verification of our theory.
Considering both Choi’s observations and the non-
trivial correlation ⟨ṽxb̃⟩ in our theory, a decrease in
the Jensen-Shannon complexity in the RMP ELM
suppression phase is anticipated.

(iii) Direct examination of the presence of the correla-
tion ⟨ṽxb̃⟩ also warrants further investigation. Us-
ing the velocity fluctuations gathered from BES
and the magnetic fluctuation obtained from either
simulations or experiments, we can calculate the
correlation between ṽx and b̃, and compare it to
our theoretical prediction given by equation (59).

In addition to the experiments suggested above, two
potential directions for future theoretical research have
also been identified.

(i) One may notice that zonal flow, a critical player in
L-H transition, is missing from our model. In fact,
it has been found that the stochastic magnetic
field can indeed affect the zonal flow and the
radial electric field [8, 55]. Many phenomena in
RMP experiments, such the increase in the L-H
transition power threshold, can be attributed to
the weakening of the shear flow. Hence, our next
step will be to incorporate the zonal flow into our
model. As is well known, zonal flow is driven
by the Reynolds stress, which is represented as
⟨ṽxṽy⟩. A non-vanishing Reynolds stress indicates
a non-trivial correlation between kx and ky, i.e.,
⟨kxky⟩ ̸= 0. In the predator-prey model for zonal
flow and drift wave turbulence [56], a non-trivial
⟨kxky⟩ can develop from an initial weak velocity
shear, i.e.,
dkx
dt

= −⟨vE⟩′ky. (75)

For years velocity shear has been recognized as
the primary seed of zonal flow. However, kx
and ky can also develop a non-trivial correlation
from magnetic shear. With the presence of the
magnetic shear, we have the equation
dkx
dz

= −sky, (76)

which is similar in form to equation (75). This
fact gives us some insights into future studies in
this direction.

(ii) In section 3.3, the quasi-linear theory [57] is
utilized to obtain the linear response of ṽx to b̃.
While doing so, we must be aware that the validity
of the quasi-linear theory requires

Ku ≈
(
lac
lc

)2

< 1. (77)

Here Ku is a dimensionless number known as
Kubo number. lac and lc denote the auto-
correlation length and decorrelation length of the
stochastic magnetic field, respectively. However,
the reality in tokamak is Ku ∼ 1 [58]. Currently,
almost all theories concerning stochastic magnetic
fields are limited to the case where Ku < 1, while
the Ku > 1 case is rarely studied. Therefore,
another potential direction for future research is
to investigate the effects of the stochastic magnetic
fields on plasma instabilities and turbulence in the
Ku ≫ 1 regime. Then, by decreasing Ku, we
can approach the Ku ∼ 1 regime asymptotically.
In such cases, the quasi-linear theory is no longer
available so we must look for new paradigms.
Taylor and McNamara’s work on 2D guiding
center plasma and purely random array of discrete
charged rods [59, 60] could be a good starting
point. The behavior of their system is more like
percolation process rather than diffusion process.
Hence, it would be beneficial to seek inspiration
from percolation theory [61, 62]. This work
is expected to enhance our understanding of
the actual situation by providing a perspective
entirely different from the ku < 1 case.

(iii) As discussed in section 3.3, we use the non-
trivial correlation ⟨ṽxb̃⟩ and the idea of the
suppression of the instability characteristic of a
chaotic system by external noise to explain the
reduction in the complexity of the edge turbulence
in the RMP ELM suppression phase. But we
should recognize that the stochastic magnetic field
is actually not noise, but deterministic chaos.
Therefore, a deeper approach to justify our claim
is to study how one chaotic system can affect
the complexity of another. For simplicity, we
can take 1D as a starting point. Suppose there
are two different chaotic systems with different
Lyapunov exponents, each producing a signal. We
can then calculate the Jensen-Shannon complexity
for each of these signals, as well as for their
superposition. The point is to see whether the
complexity of this superposed signal is reduced
relative to the complexity of each individual
signal, under certain conditions. This numerical
experiment can be easily done and would serve as
a further justification of our conclusion.
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Appendix A. Calculation of the
Jensen-Shannon complexity

Given a series of data with N data points, we can use
a sliding window of length d to capture the segments of
the data. For instance, as shown in figure A1, when d =
3, consecutive segments such as (a1, a2, a3), (a2, a3, a4),
(a3, a4, a5) can be extracted. We can then map an
arbitrary segment (s) ≡ (as−2, as−1, as) at time s to
an “ordinary” pattern, which is a permutation π =
(b1, b2, b3) of (0, 1, 2) defined by (as−b3 ≤ as−b2 ≤
as−b1). If a2 = 7, a3 = 8, a4 = 9, a5 = 6, then the
corresponding “ordinary patterns” of (a2, a3, a4) and
(a3, a4, a5) are (0, 1, 2) and (1, 2, 0), respectively. In the
case of d = 3, there are d! = 6 possible permutations.
By executing this mapping to all the segments, we can
obtain a probability distribution P = {p(π)} defined
by

p(π) =
#{s|d ≤ s ≤ N ; map(s) = π}

N − d+ 1
, (A.1)

where # is the number of segments satisfying condition
inside the braces. For the distribution function to
be meaningful, N should be significantly larger than
d!. Using this distribution function, the normalized
Shannon entropy is equal to

H[P ] = −
d!∑
i=1

pi ln(pi)/Smax, (A.2)

where Smax = ln(d!) is the entropy of the uniform
distribution Pe = {pi = 1/d!}. And the Jensen-
Shannon divergence is calculated as

Q = Q0{S[(P + Pe)/2]− S[P ]/2− S[Pe]/2}, (A.3)

where Q0 is a normalization constant. The Jensen-
Shannon complexity CJS is defined by equation (1),
namely, the product of H and Q.

In Choi et al.’s work, CJS is rescaled by the
complexity of fractional Brownian noise or fractional
Gaussian noise C0 as

Ĉ =
CJS − C0

|Cbdry − C0|
, (A.4)

where Cbdry is the maximum (if CJS > C0) or minimum
(if CJS < C0) Jensen-Shannon complexity at the given
H. The rescaled Ĉ ranges from −1 to 1.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8

N data points

window of length d

Figure A1. The sketch of the calculation of the Jensen-Shannon
complexity for signal data

Appendix B. Expressions for the operators in
this work

The derivatives in twisted slicing coordinate are

∂

∂x
=

∂

∂ξ
− sζ

∂

∂χ
,

∂

∂y
=

∂

∂χ
,

∂

∂z
=

∂

∂ζ
− sξ

∂

∂χ
.

(B.1)

The expressions for the operators used in this paper
are

∇2 =
∂2

∂ξ2
+

∂2

∂χ2
+

∂2

∂ζ2

+s2ξ2
∂2

∂χ2
+ s2ζ2

∂2

∂χ2
− 2sξ

∂2

∂χ∂ζ
− 2sζ

∂2

∂ξ∂χ
,

∇2
⊥ =

∂2

∂ξ2
+

∂2

∂χ2
+ s2ζ2

∂2

∂χ2
− 2sζ

∂2

∂ξ∂χ
,

∂2

∂y2
+

∂2

∂z2
=

∂2

∂χ2
+

∂2

∂ζ2

+s2ξ2
∂2

∂χ2
− 2sξ

∂2

∂χ∂ζ
,

B0 · ∇ =
∂

∂z
+ sx

∂

∂y
=

∂

∂ζ
,

b̃ · ∇⊥ = b̃x

(
∂

∂ξ
− sζ

∂

∂χ

)
+ b̃y

∂

∂χ
.

(B.2)
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