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ABSTRACT
Nonlinear closure models of the two-dimensional magnetohydrodynamic equations predict that the turbulent

diffusivity of magnetic fields in high magnetic Reynolds number flows will be strongly suppressed below the
value predicted by simple kinematic models. The consequences of such “resistivity quenching” for models of
dissipation and transport in astrophysical plasmas are profound. However, to date there has been little examination
of the underlying assumption implicitly made by such models—that the quenching is associated with a reduction
in the cross-phase between the velocity and the magnetic potential, rather than a suppression of the turbulence
itself. In this Letter, we revisit the two-dimensional problem in an attempt to address this issue. The object of
our scrutiny is the normalized cross-phase and its dependence on the initial magnetic field strength. This parameter
is a useful diagnostic of turbulent transport and is insensitive to the decay of magnetic field. We present the
results of numerical simulations that are consistent with the current picture of resistivity quenching as primarily
a suppression of transport of magnetic potential rather than turbulence intensity.
Subject headings: magnetic fields — MHD — turbulence

1. INTRODUCTION

Astrophysical flows are frequently both turbulent and mag-
netized, and modeling the processes of dissipation and transport
in such flows represents a major challenge to our understanding
of magnetic fields in astrophysical objects. In the magnetized
case, the usual intuition about turbulent diffusion of a passively
advected field in hydrodynamic flows is of limited utility, how-
ever, because the magnetic field can influence the turbulence
itself via the Lorentz force. This magnetic “back-reaction” is
a crucial feature of hydromagnetic turbulence, and can pro-
foundly influence the nature of the turbulent diffusion of mag-
netic fields in astrophysical contexts.

In estimating the magnetic field required for a significant
back-reaction, it is tempting to take the equipartition value, i.e.,
the value for which there is an equal amount of energy in the
flow u and the field B. Surprisingly, however, the presence of
a large-scale, slowly varying mean field significantly lowersABS
this threshold field. Using a combination of physical intuition
and numerical simulation, Cattaneo & Vainshtein (1991) argued
that in two-dimensional magnetohydrodynamic turbulence in
a periodic domain the turbulent resistivity will be suppressedhT

below its kinematic value by a factorhkin

2 !1h /h p (1 " Re X ) , (1)T kin m

where is the usual magnetic Reynolds number,Re p h /hm kin

is the kinematic diffusivity, represents an2 …h p Au St A Skin c

ensemble or spatial average, and is the velocity autocorre-tc

lation time (Monin & Yaglom 1971). The large-scale field
is measured in equipartition units. For a mean2 1/2X p ABS/Au S

field magnitude larger than a fraction of the equipartition!1/2Rem

value, the turbulent resistivity will be suppressed below the
kinematic estimate.

Given the (literally) astronomical values of in astro-Rem
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physical contexts ( in the solar convection zone, for in-710
stance), this suppression can be significant indeed. It is not
surprising, then, that the result of Cattaneo & Vainshtein (1991)
engendered considerable debate in the community, particularly
when it was extended to the a-effect in three dimensions
(Kleeorin & Ruzmaikin 1982; Zel’dovich et al. 1983; Kulsrud
& Anderson 1992; Gruzinov & Diamond 1994; Cattaneo &
Hughes 1996). Notwithstanding the important implications of
the a-quench for mean-field dynamo theories, it can be argued
that the more constrained two-dimensional problem (concerned
as it is with the suppression of the scalar rather than thehT

psuedotensor ) represents the more telling phenomenon, anda ij

it is to this problem that we restrict our attention in the present
Letter.

While the seminal work of Cattaneo & Vainshtein (1991)
convincingly demonstrated the existence of a quench of flux
transport in two-dimensional magnetohydrodynamic turbulence
in a periodic domain, the precise mechanism of this quench
was not identified. In particular, it was not established whether
the quench is due to a reduction in turbulence intensity or spatial
transport. The distinction is an important one because theo-
retical models of resistivity quenching have, to date, implicitly
assumed the latter, by calculating the turbulent resistivity di-
rectly via a closure of the turbulent flux of magnetic potential.
In this Letter, we present the results of numerical simulations
that indicate that it is primarily the normalized cross-phase in
the flux of magnetic potential, rather than the turbulence in-
tensity, that is reduced by the imposition of a large-scale mean
field.

2. THE THEORY OF RESISTIVITY QUENCHING
IN TWO DIMENSIONS

The usual equations of forced incompressible magnetohy-
drodynamics in two dimensions are

2 2 2 2 2 ˜!∇ w p {w, ∇ w} ! {A, ∇ A} " n∇ ∇ w " f,t

2! A p {w, A} " h∇ A, (2)t
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where the magnetic field B and velocity field u are described,
respectively, by the magnetic potential function andA(x, y, t)
the stream function such that andˆw(x, y, t) B p !A " z

. The braces represent the Jacobianˆu p !w " z {U, V}
, n and h are the molecular viscosity and re-! U! V ! ! V! Ux y x y

sistivity, and is an imposed forcing.f̃
We separate B into a mean component, , say, andˆABS p B y0

a fluctuating component . Likewise, the magnetic po-b(x, y, t)
tential separates into a mean and fluc-A(x, y, t) AAS p A (x)0

tuating component , such that anda(x, y, t) B p !! A0 x 0

. We further assume that there is no mean flow soˆb p !a " z
.AuS p 0

Averaging the equation for A in equation (2) over small
scales and imposing periodic boundary conditions yields the
equation of motion for the mean potential:

2! A " ! Au aS p h! A . (3)t 0 x x x 0

We make the usual assumption that the effect of the turbulent
small-scale fields u and b is to induce a turbulent down-gradient
flux of the mean potential so that . Equa-A Au aS p !h ! A0 x T x 0

tion (3) then becomes

2 2( ) ( )! A p h " h ! A p 1 " Nu h! A , (4)t 0 T x 0 m x 0

where is a magnetic analog of the Nusselt number.Nu p h /hm T

In general, we expect , or, equivalently, ,h ≤ h Nu ≤ ReT kin m m

where equality corresponds to the kinematic case.
Multiplying both sides of the equation of motion for the

fluctuating component a, averaging, and again imposing pe-
riodic boundary conditions, one obtains

1 2 2! Aa S " B Au aS p hAb S. (5)t 0 x2

Stationarity then implies that

2h Ab STNu p p . (6)m 2h B0

This well-known relation, frequently referred to as the
“Zel’dovich theorem,” is ultimately a consequence of Alfvén’s
theorem. Equation (6) implies that most of the magnetic energy
is contained in the small-scale fields. This is because, even
when quenched, is typically much larger than unity. ThisNum

observation led Cattaneo & Vainshtein (1991) to postulate that
it is the small-scale field b, rather than the mean field , thatB0

reduces the turbulent diffusion. Extrapolating from equation
(6) (with ) and the kinematic estimate2 2Au S p Ab S Nu ≈ Rem m

then leads to the quenching result given in equation (1).
It is worthwhile noting that any scheme intended to circum-

vent the resistivity quench must grapple with this very robust
result. Ultimately, this means a relaxation of the assumptions
made in the derivation of equation (6): for instance, by the
imposition of a boundary flux of magnetic potential (Blackman
& Field 2000; Silvers 2006), or another source of microscopic
irreversibility, such as nonlinear wave-wave interactions (Keat-
ing & Diamond 2008). We will not pursue these topics here.

Numerical simulations have, for the most part, firmly estab-
lished the existence of resistivity quenching in two-dimensional
magnetohydrodynamic turbulence (Cattaneo 1994; Silvers
2005, 2006). Less certain is the nature of the physical mech-
anism underlying this phenomenon. Cattaneo (1994) identified

a subtle modification of the Lagrangian energy spectrum and
attributed this to the emergence of nondiffusive behavior as-
sociated with the development of long-term memory in the
system.

To date, theories of resistivity quenching have implicitly
assumed a suppression of the turbulent flux of magnetic po-
tential , rather than the turbulence intensity. In these the-Au aSx

ories, a direct calculation of the flux is made via closure cal-
culations, such as the eddy-damped quasi-normal Markovian
approximation (Pouquet et al. 1976; Pouquet 1978; Gruzinov
& Diamond 1994, 1996). These yield expressions of the form

2 2( )Au aS p B t Au S ! Ab S , (7)!x 0 k k k
k

where is the decorrelation time of the fluid and the field.tk

For simplicity we replace by its spectral average t, droppingtk

the spectral summations. Substituting for in equation (7)2Ab S
and using the Zel’dovich theorem given in equation (6) yields
the quenching formula of Cattaneo & Vainshtein (1991) written
here in terms of the magnetic Nusselt number:

RemNu p . (8)m 21 " Re Xm

Note that equation (7), which is a generic result independent
of the particular closure scheme used, implies that, at least for
high and roughly unit magnetic Prandtl number, the tur-Rem

bulent resistivity , whereh p Au aS/B ≈ h " h h ≈T x 0 kin mag kin

is the contribution to the turbulent resistivity from the2Au St
velocity field, and is the magnetic contribution,2h ≈ !Ab Stmag

strictly negative. The form of equation (7) therefore suggests
an appealing physical picture of resistivity quenching as a strug-
gle between two competing cascades, or, equivalently, two
competing couplings. In scale space, the velocity field, which
tends to strain apart isocontours of a, is characterized by a
forward cascade of to smaller scales. On the other hand,2a
the Lorentz force causes like-signed current filaments to be
attracted to one another, leading to the coagulation of blobs of
magnetic potential. This tendency leads to an inverse cascade
of to larger scales. These two cascades are parameterized2a
by turbulent diffusivities of opposite sign, as in equation (7).
In real space, the competing couplings exactly cancel for fully
“Alfvénized” turbulence, for which there is an equipartition of
kinetic and magnetic energy. This paints a picture, comple-
mentary to the one described above, of resistivity quenching
as a consequence of the conversion of eddy energy into Alfvén
wave energy.

The scenarios just described are, of course, strongly depen-
dent on the assumption that the physical content of resistivity
quenching is a reduction in the flux of magnetic potential. To
test this hypothesis, we examine the normalized cross-phase,
defined as

2 2"P p Au aS u a . (9)G H G HZx x

As is clear from this definition, the cross-phase and the tur-
bulent flux are closely related. One important difference is that,
unlike the flux, which inevitably decays as the magnetic field
dissipates, remains normalized during the time evolution ofP
the system. This permits one to directly compare the cross-
phase for a variety of large-scale fields. By contrast, such a
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TABLE 1
Results from Numerical Simulations for

Different Initial Fields

X2 Pav Pmax Pmin DP

1.0 . . . . . . . . . 0.0001 0.007 !0.009 0.0048
0.1 . . . . . . . . . 0.0005 0.025 !0.023 0.0129
0.03 . . . . . . . 0.0008 0.045 !0.022 0.0163
0.015 . . . . . . 0.0012 0.048 !0.043 0.0200
0.01 . . . . . . . 0.0035 0.064 !0.033 0.0240
0.002 . . . . . . 0.0144 0.036 !0.039 0.0236
0.0 . . . . . . . . . 0.0290 0.146 !0.078 0.0337

Fig. 1.—Log-log plot of the time-averaged normalized cross-phase vs.P
the square of the initial field strength measured in equipartition units 2X p

. The measured slope of !0.86 is in close agreement with the predicted2 2B /Au S0

value of !1.0.

survey is not possible for the turbulence intensity, which will
also decay.

We assume that , where is2 1/2 2 1/2 2 2Aa S ≈ AB S l AB S ≈ B Remax max 0 m

the maximum value of the magnetic field immediately prior to
decay (Zel’dovich 1957) and is the gradient length-scale ofl
the magnetic potential, here assumed to be the scale on which
the system is forced. In addition, we assume isotropy, so that

. The cross-phase can then be expressed in terms12 2Au S ≈ Au Sx 2

of the magnetic Nusselt number with the use of Fick’s law
, which yieldsAu aS p h Bx T 0

!3/2P ≈ Nu Re , (10)m m

where we have ignored numerical factors of order unity. Equa-
tion (8) then implies that

!1/2RemP ≈ . (11)21 " Re Xm

3. RESULTS

Equations (2) were solved using a second-order pseudos-
pectral scheme in space and an integrating factor method in
time. In nondimensional variables, and are of the same1/n 1/h
order as the Reynolds number and magnetic Reynolds num-Re
ber : as in Cattaneo & Vainshtein (1991) we set these toRem

be and , respectively. The system was1/n p 500 1/h p 1000
driven by random excitation of wavenumbers in the range

via two overlapping functions (see Silvers 2006 for5 ! k ! 6
more details).

Owing to the difficulty of obtaining a stationary state in two-
dimensional magnetohydrodynamic turbulence, numerical sim-
ulations were carried out for a variety of initial (zero mean)
field strengths , rather than a large-scale mean field, and theB0

subsequent decay was investigated. This is the same approach
taken by Cattaneo & Vainshtein (1991). Initial field strengths
were chosen so that the initial magnetic energy per unit volume,

21 B0ME p dV, (12)0 #V 2V

took the values , where , 0.1, 0.03, 0.015, 0.010,2 2EX X p 1
and 0.002. The equipartition energy of the flow, E, was obtained
by averaging the kinetic energy per volume over 100 time units
prior to the introduction of the magnetic field. The initial mag-
netic field was introduced via the magnetic potential

M"A p 4E cos y. (13)0 0

For the purposes of comparison, the kinematic case was also
examined.

In all cases, an initial rapidly growing phase was observed:
this is due to the generation of small-scale gradients in a and
the corresponding stretching of field lines (Zel’dovich 1957).
Decay then follows: for sufficiently strong initial field the decay
is initially ohmic followed by decay at the kinematic rate. For
weak fields the decay is purely kinematic. This qualitative be-
havior closely matches that observed by Cattaneo & Vainshtein
(1991).

Also observed in each case was a temporary suppression of
the kinetic energy after the introduction of the magnetic field.
A similar suppression was observed by Cattaneo (1994): it is
important to note, however, that this suppression can be at-
tributed to coupling with Alfvén waves generated when the
magnetic field is first switched on and not to any quenching
of the velocity field directly.

As the magnetic field decays to zero, so too does the cross-
phase. However, the magnitude of the normalized cross-phase
remains of roughly constant amplitude, even as the field decays.
For this reason, the cross-phase is a more useful diagnostic
than the turbulence intensity itself.

Table 1 contains the results of our numerical simulations.
For each , the normalized cross-phase was observed to2X P
fluctuate greatly and, indeed, even changed sign, as can be seen
from the maximum and minimum measured values Pmax and
Pmin. The time-averaged value Pav, however, indicates a sys-
tematic down-gradient diffusion of magnetic potential. Also
shown in Table 1 is the standard deviation for each case.DP
Owing to the turbulent nature of the simulations, these values
are larger than the time-averaged value of by as much as anP
order of magnitude. This is unfortunate but unavoidable, and
it is important that the results of all investigations of this kind
be considered in this light.

Figure 1 depicts a log-log plot of the time-averaged nor-
malized cross-phase against the square of the initial field
strength expressed in equipartition units, measured during the
initial part of the decay. A fit is obtained with slope !0.86, in
good agreement with the Cattaneo & Vainshtein (1991) pre-
diction of !1.0 in the limit (see eq. [11] above).2Re X k 1m

Although it is difficult to accurately determine in decayRem

problems such as this one, it is likely of the order of 1/h p
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. Using this estimate, the mean fields considered here are1000
at most only weakly supercritical, and this fact may be re-
sponsible for the relatively minor discrepancy between the pre-
dicted and fitted values for the slope.

Not shown in Figure 1 is the kinematic case , which2X p 0
might be considered the extreme weak field case. For very
weak fields such that , equation (8) implies that2Re X K 1m

. Substituting this value into equation (10) yieldsNu ≈ Rem m

. If we estimate , we find that the cross-!1/2P ≈ Re Re ≈ 1000m m

phase should level off at about . We found closeln (P) ≈ !3.45
agreement between this value and the numerically obtained
value of .ln (P) p !3.54

4. CONCLUSIONS

We have shown that the cross-phase, or, equivalently, the
transport of magnetic potential at fixed amplitude, is reduced
by a mean field, as demonstrated by the dependence of the
normalized cross-phase on (Fig. 1) which is the principleB0

result of this Letter. The reduction in cross-phase is sufficient
to explain the suppression of predicted by Cattaneo & Vain-hT

shtein (1991), indirectly implying that resistivity quenching is
not due to a reduction in the turbulence intensity. Note that

this study does not discount the existence of a quench of the
velocity, only that such a quench, if it exists at all, is not
responsible for resistivity quenching in two-dimensional MHD
turbulence. This result adds weight to existing theoretical mod-
els of resistivity quenching (Gruzinov & Diamond 1994, 1996).

Finally, we note that the subtle, but crucial, distinction be-
tween suppression of turbulence and suppression of transport
is not confined to magnetohydrodynamics. An analogy can be
made with polymer hydrodynamics (Lumley 1973; Tabor &
DeGennes 1986; Gruzinov & Diamond 1996; Groisman &
Steinberg 2001), where the introduction of polymer additives
to turbulent pipe flow can suppress cross-pipe momentum trans-
port. Indeed, the analogy is a particularly suggestive one, as
the reduction in drag is associated with an equipartition of
mechanical and elastic energy, just as resistivity quenching
seems to be associated with the conversion of eddy energy to
Alfvén wave energy, for which there is an equipartition of
mechanical and magnetic energy.

We wish to thank David Hughes for many useful discussion
on this topic. This work was supported by the US Department
of Energy under grant number FG02-04ER54738.
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