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Why this Problem ?



What is a tokamak ?

• Crucial element – plasma boundary

– Profile gradient at separatrix key indicator of 

confinement state
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Profiles  à energy content



Evolution of MFE Theory
• Beginnings: 60’s ~ 1980

Trieste

Micro-stability

Neoclassical theory

Disruption models

Taylor Relaxation

T3

Alcator A

PLT

TFR

• Understanding Good Confinement: 1980 ~ 2010

ExB shear, ZF’s

Transport Bifurcations

Gyrokinetics, Simulation

AE modes

Intrinsic Rotation

ASDEX    à H-mode

Alcator C, C-Mod  à pellet, n-limit

TFTR, JET   à D-T

DIII-D   à ETBs, ITBs

JT-60U  à ETBs, ITBs

[Self-Organization]

Prehistory: 3D



Evolution of MFE Theory

• Good Confinement + Good Power Handling à ITER:
2010 – Present, and beyond

ELMs, Peeling-Ballooning

RMP, QH-mode

Multi-scale problems

Core-Edge coupling, 

Turbulence Spreading

Disruptions (?)

SOL Heat Loads (?)

DIII-D, AUG

Alcator C-Mod

LHD

W7X

RFX-QSH

EAST, KSTAR

...

...

è Theory must address trade-offs
N.B.: 
Return to 3D !



Theoretical Problem: LàH Transition

• What of LàH ? à Converging, though still open questions 

• Fundamentals:

– Transport bifurcation

– Bistability essential – S curve

– Robust feeadback channel – ExB shear flows

– Insulation layer at the edge...

−
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• Subtleties

– What is the “trigger”?  à i.e.,

– What physics allows  to steepen?

• Coupling of energy to edge zonal flow

– Interplay of  ,  , 
–  crit. needed, 

measured (Tynan)

– Crucial to note  ×  flow

Kim, PD, PRL’03
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I-phase



40 Years of H-mode - Lessons
• Saved MFE from Goldston scaling

Also:

• Introduced transport barrier, bifurcation à state ‘phases’ and transitions

• Role of flow profile in confinement (BDT ’90)

• Dynamical feedback loops à Predator-Prey cycles, Zonal flows, etc. 

(PD+’94,05; K-D ‘03)

• Consequences of marked transport reduction

• Need for transport regulation, not transport elimination



ELMs and RMP – A Primer
• ELM = Edge Localized Mode     (Mode ?!)

• RMP = Resonant Magnetic Perturbation - 
– Stochastic edge layer

– Pump out - density

– Mitigate, suppress ELMs, 

with good confinement

H-mode

ETB




ß ELM cycle

ITER: Δ  ~ 20   !

à Heat loads on PFC !?

ELM

ETB
destroyed

to ITER



*

*



Benefit and Cost

• Need make LàH Transition with RMP !

• Increase in  for LàH !?

–  /  for 

LàH Power increase

– Significant !

• Issues:

– Why LàH threshold ↑ due RMP

– What physics defines  /  ?

– Turbulence in stochastic magnetic field!

“First ELM 
the largest”

(resonant vs.
non-resonant)
Kriete et. al.
DIII-D



The Problem:
è MHD turbulence in ambient 

stochastic magnetic field



Some Evidence –

KSTAR Fluctuation Studies

Key Question: Stochasticity of Applied Field?



Previous exp. observations implying a stochastic layer  
§ RMP ELM suppression was achieved 

when the resonant rational surface 
is close to pedestal top ( )

[Wade, Nucl. Fusion 55, 023002 (2015)] [Nazikian, PRL 114, 105002 (2015)]

§ Localized temperature flattening near  during the RMP ELM suppression

§ Another way to identify a stochastic layer?



Pedestal  fluctuation diagnostics & analysis methods

§ Localized  fluctuation near the pedestal top can be measured using 
the 2D electron cyclotron emission imaging (ECEI) diagnostics
[Yun, Rev. Sci. Instrum. 85, 11D820 (2014)]
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§ Statistical method
– The Complexity-Entropy analysis

[Rosso, Phys. Rev. Lett. 99, 154102 (2007)]

Background figure 
copied from
[Hu, Nucl. Fusion 60, 
076001 (2020)]

§ Spectral methods
– Cross power spectrum, frequency/wavenumber power 

spectrum (two-points method),
wavelet bicoherence [van Milligen, Phys. Plasmas 2, 3017 (1995)]

[Beall, J. Appl. Phys. 53, 3933 (1982)]



(Information theoretic) meaning of Complexity and Entropy
§ Meaning of Entropy : a measure of missing (unknown) information

– Shannon Entropy [] = − ∑  ln  where  =  ,…,
– Normalized Shannon Entropy  = /  where   = ln  for the equiprobable distribution

[Lopez-Ruiz, Phys. Rev. A 209, 321 (1995)]§ Meaning of Complexity : disequilibrium () x information ()
– Disequilibrium : distance from the equiprobable distribution ( = { = 1/})

Information Disequilibrium Complexity
Perfect crystal Small Large Small
Ideal gas Large Small Small

Two examples of a “simple” (not complex) system in physics : a perfect crystal or ideal gas

§ What state for ? How to measure ?



Rescaled complexity of  fluctuation at the pedestal top
§  fluctuation amplitude increases with 

ELM mitigation-suppression transition
– It has a broad wavenumber range 

( < 0.4)
– It is larger than the inter ELM period level

ELM mitigation à ELM suppression #18945

§ Rescaled complexity of  fluctuation 
decreases with the ELM suppression–  becomes less complex (more stochastic)

§ Parameters to calculate  & 
– Time step between points = 2 us
– Size of each segment = 5 points (10 us ~ /)

• Structures of 10—100 kHz
– 2500 (>> 5!) segments to calculate one BP PDF

Time

+ +
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- § Result of stochastic fields?



Comparison with a natural ELM-free case
§ The natural ELM-free phase 

– The broadband  fluctuation increases and its rescaled complexity also increases
– Turbulence w/o RMP field develops to have a complex  pattern rather than to be stochastic
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Bicoherence analysis of  fluctuation at the pedestal top
§  fluctuation amplitude increases with 

ELM mitigation-suppression transition
– It has a broad wavenumber range 

( < 0.4)
– It is larger than the inter ELM period level

ELM mitigation à ELM suppression #18945

§ Rescaled complexity of  fluctuation 
decreases with the ELM suppression–  becomes less complex (more 

stochastic)

§ Bicoherence of  fluctuation increases
– Triad coupling between , ,  =  + 

§ Contradictory result?



Distinguished in real and frequency space
§ 2D structures of bicoherence and rescaled 

complexity change are different

Summed tot. 
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§ Bicoherence exists in < 25 kHz, and 
RC analysis is sensitive to higher frequency 
fluctuation (~100 kHz)

Rescaled
complexity change with
25—100 kHz fluctuations

From mitigation to suppression 

Upper channels
suffer from
more noise

Bicoh. increase RC decrease



– Enhancement of high-k (high-f) fluctuation 
– Turbulence can lock on to stochastic fields, 

i.e.  ≠ 0

Our interpretation and a clue for origin of fluctuation incr.
§ A partially stochastic island at the pedestal top can explain both bicoherence and 

rescaled complexity changes 

  ~ a few s <  < ∗ [Beyer, Phys. Plasmas 5, 4271 (1998)]
[Cao & Diamond, APTWG 2021]

Bicoh. increase RC decrease

– Low-k and low-f nonlinear coupling 
between a magnetic island and 
fluctuation à Bicoherence increase

– The nonlinear resonance condition for 
drift wave emission might be satisfied 
in the RMP ELM suppression 
experiment

[Waelbroeck, Phys. Rev. Lett. 87, 215003 (2001)]

– High-k stochastic fields around the 
island change fluctuation characteristics 
à Rescaled complexity decrease



Summary

§ Main Results of our analyses 
– CH analysis shows that both pedestal top  fluctuation and particle flux at the divertor striking 

point become less complex (more stochastic) with a RMP field 
• Response of the former seems to be more nonlinear

– Turbulence dynamics with a RMP field is suggested based on CH and bicoherence analyses 
• Low-k island onset at pedestal top à island drives low-k turbulence nonlinearly 
à high-k turbulence generated by stochastic fields around islands

§ Analysis of characteristics of plasma turbulence/transport with the RMP field
– Previous analyses : kinetic profiles (transport), fluctuation spectra (turbulence intensity, dispersion)
– In this work, the Complexity-Entropy analysis is adopted to identify/distinguish a state of plasma 

turbulence/transport and to improve understanding of the state

Preprint at https://arxiv.org/abs/2102.10733 

[Waelbroeck, Phys. Rev. Lett. 87, 215003 (2001)][Cao & Diamond, APTWG 2021]



Towards a Theory à

Resistive Interchange (Turbulence)

in a Stochastic B-field

à Single Cell Problem and Beyond

N.B.: After FKR and Braginsky-Meytlis



INTRODUCTION OF MODEL

Key point: small scale potential fluctuations are generated due to stochastic magnetic field

• maintain  ⋅  =  at all scales

Model must:
• connect micro and macro scales • be tractable        resistive interchange

mean field



INTRODUCTION OF MODEL

1. Classical resistive interchange:
• Linearized vorticity equation

• Electrostatic Ohm’s law of resistive MHD

• Linearized pressure equation

2. Magnetic perturbations:

 ⋅  = 0Where we start:

 = / =  ,    ,
Since  =  + , now the parallel gradient is ∥ = ∥  +  ⋅ .

Compared to mode, the profile of stochastic field evolves much slowly in space.

Sketch of the mode and stochastic magnetic field

− / ⋅ − / ⋅ +  ⋅ ∥∥∥ = 0
∥ = −∥ = ∥∥

 −  ×  / ⋅  = 0



INTRODUCTION OF MODEL

Need maintain: we want to keep  ⋅  = 0 at all scales.
If there are only  and ,  ⋅  = 0 is not guaranteed!
At micro scale:

Insights from a classic: Kadomtsev and Pogutse’781:

Electron heat flux is divergence free at all scales                 ⋅  = 0

1. B. B. Kadomtsev, and O. P. Pogutse, 1979. 
Multi-Scale Microturbulence Small-scale current

∥ = ∥ +  = − 1∥  ⋅   − 1∥ ∥  ∥∥ = − 1∥ ∥   ⋅   +  ⋅  ∥   ≠ 0



INTRODUCTION OF MODEL
The full set of equations is +  ⋅  ‾ = −  [∥()‾ +  ⋅ ⟨̃̃⟩ ⋅ ‾() + ∥()̃ ⋅ ̃() + ̃ ⋅  ∥()̃() ] −  ‾ ,

 +  ⋅  ̃ = −  [∥()̃ + ̃ ⋅  ∥()‾() + ∥() ̃ ⋅  ‾() ] −  ̃ , +  ⋅  ‾ − ‾ ×̂ ⋅  = 0, +  ⋅  ̃ − ̃× ⋅  = 0, − or 
Some observations:

• : low , slow interchange approximation 1/ ≫ 
•  : high , fast interchange approximation 1/ ≪  
• The beat of  and  serves as the drive of  while  modifies , thus 

small scale and large scale are now connected.

• Feedback loop:  ,   → 

Turbulent viscosity
Turbulent diffusivity

 = ̅ = 12      
④

①

②

③

Relate  to 
replaced by

Three players: , , and 



BIG PICTURE I

•  ⋅  = 0 is maintained at all scales, which reveals 

that electrostatic convective cells must be driven by  beat. This indicates a turbulent background is 

generated, even in ‘single mode’ idealization

• Large scale and small scale interact. As small-scale 

convective cells are modulated by large-scale mode, 

large-scale mode is modified by small-scale cells 

through turbulent viscosity and electrostatic 

scattering.

• N.B.: Electrostatic ‘micro-bursts’ recently reported in 

DIII-D RMP experiments

Multi-scale feedback loops



BIG PICTURE II

• Stochastic magnetic field produces a magnetic braking 

effect, which enhances the effective inertia and exerts 

a drag on large-scale mode. This is similar in structure 

to Rutherford’s  nonlinear  ×  forces1, but in our 

case, it’s produced by stochastic magnetic 

perturbations.

• We calculate a non-trivial ⟨⟩. The velocity 

fluctuations  ‘lock on’ to the magnetic perturbations .

à Complexity reduction result ?!
Multi-scale feedback loops

1. P. H. Rutherford, 1973. 



QUANTITATIVE RESULTS I

Specific results of this work are as follows:

• The increment in the growth rate of the large-scale mode is calculated:

() = − 56 ̂ 
 ̃ − 13  ̃  − 2 23 ̂̃  .

As  is negative definite, the net effect of  is to reduce resistive interchange growth.
ßà contrary to expectation of enhanced breaking of Alfven Thm

• The scaling of the turbulent viscosity (or turbulent thermal diffusivity) is calculated:

 =    ̃ 
 ‾(0)∫   ()

 .



QUANTITATIVE RESULTS II

• The criterion when magnetic braking effect becomes significant is given. When the 

width of magnetic islands satisfies 

 ∼  (Δ)  .
Unlike Rutherford’s result, extra factor / , which reflects the multi-scale 

nature of this problem.

• Correlation  is calculated explicitly:
envelope



COMPARISON: SIMULATIONS & EXPERIMENTS

• Previous simulation by Beyer, et al1:

• Electrostatic resistive ballooning modes in a 

stochastic magnetic field. 

• With RMP, large-scale structures are stabilized, 

and spatial roughness increases.

• Testable prediction:  , comparison

• Recent experimental studies by Choi, et al2:

• Change in pedestal temperature fluctuation 

predictability with RMP switched on and off.

• Stochasticity reduces the predictability of the 

pedestal turbulence

• Explanation:  ≠ 0, generation of  . plasma pressure in a sector at the low 
field side without (a) and with (b) RMP1

1. P. Beyer, X. Garbet, and 
P. Ghendrih, 1998

2. M.J. Choi, et al., 2021. 



Discussion

• Stochastic field + Resistive Interchange à ‘micro-bursts’, etc.        

à multi-scale, turbulent state

• Fluctuations ‘lock-on’ to imposed magnetic perturbations  ≠ 0
è

How understand resistive interchange turbulence in this system?

ßà competing mechanisms 


