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Continuous plasma coherent emission is maintained by repeti-
tive Langmuir collapse driven by the nonlinear evolution of a
strong electron two-stream instability. The Langmuir waves are
modulated by solitary waves in the linear stage and electro-
static whistler waves in the nonlinear stage. Modulational insta-
bility leads to Langmuir collapse and electron heating that fills in
cavitons. The high pressure is released via excitation of a short-
wavelength ion acoustic mode that is damped by electrons and
reexcites small-scale Langmuir waves; this process closes a feed-
back loop that maintains the continuous coherent emission.

electron beams | nonlinear wave interaction | Langmuir collapse |
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E lectron beams accelerated by solar flares and nanoflares
are believed to be responsible for several types of solar

radio bursts observed in the corona and interplanetary medium,
including flare-associated coronal type U and J and interplane-
tary type III radio bursts, and nanoflare-associated weak coronal
type III bursts (1–4). In 1958, Ginzburg and Zhelezniakov first
proposed a basic framework for such bursts, which was subse-
quently refined by others (refs. 5 and 6 and references therein).
In essence, the scenario is one in which the electron two-stream
instability (ETSI), driven by electron beams, generates Langmuir
waves that are converted into plasma coherent emission via non-
linear three-wave coupling [e.g., two Langmuir waves and one
ion acoustic wave (IAW)]. However, the mechanism whereby
the nonlinear ETSI produces coherent emission with a duration
of several orders of magnitude longer than the linear saturation
time is not well understood (6–9). Nonlinear evolution of ETSI
is a fundamental problem in nonlinear wave theory in which
disparate three-wave couplings dominate the energy transport
and dissipation (10). It has broad applications in plasma physics,
planetary physics, and astrophysics, such as terahertz emission in
laser beam experiments, radio bursts from Jupiter, pulsars, and
the formation of exotic astrophysical objects.

In the classical Kolmogorov turbulence scenario, the balance
between energy input and its final absorption is controlled by a
nonlinear cascade from large spatial scales (the region of exter-
nal forcing) to viscosity-dominated short wavelengths. In plas-
mas, the source of instability is often beams of charged particles
that generate Langmuir waves. At shorter wavelengths, the natu-
ral candidate to provide the sink of wave energy is Landau damp-
ing. However, nonlinear disparate wave interactions, it follows
from direct calculation of basic three-wave coupling, can only
lead to inverse cascades (to longer wavelengths) through mod-
ulational instability (11), and away from the Landau damping
region of the spectrum. The eventual nonlinear process capable
of overriding this inverse cascade was suggested by Zakharov,
namely Langmuir collapse (LC), which is analogous to a self-
focusing of the Langmuir waves packets, or cavitons (12, 13). LC
has been discovered in both experiments and space observations
(14–16); in particular, LC has been observed in association with
solar radio bursts (15–17).

There are several problems with the current models of type
III radio bursts. The most important physics missed is the feed-
back of LC that, we will show, plays a critical role in maintain-
ing continuous coherent emission. Second, the existing models
(ref. 6 and references therein) use a common assumption that we
call “weak turbulence condition,” specifically, the growth rate of
Landau fluctuation driven by an electron beam is much smaller
than that of the ETSI, or vte,c < vb << (nc/nb)2/3vte,b , where vb
is the electron beam drift, vte,c and vte,b are the thermal velocity
of core background electrons and beams, respectively, and nc/nb

is the core-beam density ratio. However, recent observations sug-
gest that the electron beam density near coronal source regions is
comparable to the background density (18). Thus, the weak tur-
bulence condition can be significantly violated. Third, the models
assume that the emission is produced by coupling between Lang-
muir waves and IAWs, but IAWs are expected to be heavily
damped in the nearly isothermal plasma of the corona.

We here present a mechanism based on a model of cyclic
LC and Langmuir wave regeneration. The results of massive
particle-in-cell (PIC) simulations of the ETSI show how the non-
linear ETSI produces coherent emission that lasts five orders of
magnitude longer than the linear saturation time. As shown in
Fig. 1, the extended emission time is a consequence of repeated
LC, which regenerates Langmuir waves through resonance with
intermediary short-wavelength IAWs. The short-wavelength
IAW is produced due to the release of the ions inside the caviton
caused by LC. Near the linear saturation of the ETSI, LC is ini-
tiated by the interactions between the high-frequency Langmuir
waves produced in the background and the low-frequency Lang-
muir waves in the solitary wave-trapped electrons. As the ETSI
enters the nonlinear decay, LC regenerates Langmuir waves,
interacts with electrostatic (ES) whistler waves, and reinitiates
LC, thus forming a feedback loop. ES whistler waves are sus-
tained by electromagnetic (EM) kinetic Alfvén waves (KAWs)
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Fig. 1. Schematic diagram showing how LC, occurring during the nonlin-
ear stage of the ETSI, forms a feedback loop (within the blue-dashed line
box) that produces coherent emission continuously. H.P., high pressure; L,
Langmuir wave; Lh, Langmuir wave with higher frequency produced by the
background electrons; Ll, Langmuir wave with lower frequency produced
by the trapped electrons in solitary waves; M.I., modulational instability; W ,
Whistler wave.

and whistler waves that are produced simultaneously with the
Langmuir waves. The structure of this paper is as follows: we first
present the simulation results on the generation and regenera-
tion of LC and emission during the nonlinear stage of ETSI. We
then give the governing equations and condition for LC. Finally,
we show how LC regenerates Langmuir waves.

Simulation Results of Cyclic Emission
The initialization of 2.5D PIC simulation is described in the
caption of Fig. 2. The ratio between the initial beam velocity
and the thermal velocity vbd,0/vte,0≈ 12> (nc/nb)2/3≈5, where
vte,0 is the initial thermal velocity of both core and beam elec-
trons, guarantees a strong ETSI. The total simulation time is
ωpe,0t = 14,400, during which ETSI experiences a linear and
nonlinear stage, saturation, and nonlinear decay, and eventu-
ally reaches turbulent equilibrium, where the energy exchange
between particles and waves reaches balance (19).

The growth stage of ETSI includes the linear and non-
linear stage (ωpe,0t = 0 to 200). The saturation stage is
from ωpe,0t ≈ 200 to 1,000. The linear stage only lasts for
ωpe,0t = 2 as defined by the growth rate of the ETSI from
quasi-linear theory [i.e., γ=

√
3/2(nb0/nc0)1/3ωpe,0≈ 2ωpe,0].

During the growth stage, the large beam drift suppresses
the generation of Langmuir waves (20). The fastest-growing
mode of the solitary wave has kxλDe,0≈ vte,0/vbd,0≈ 0.1 and
ω/ωpe,0≈ (nb0/nc0)1/3ωpe,0≈ 0.5ωpe,0 as shown in Figs. 2A and
3A. Quickly, the ETSI loses ∼85% of the kinetic energy of the
beams and reaches saturation with the beam drift vdb being about
2 times the core thermal velocity∼2vte,c to∼30vA,0. The thermal
velocity of the electron beams vte,b increases to 40 vA and a bump
forms at the tail of the core electron velocity distribution function
(21). The core-beam density ratio changes to nb/nc ≈ 0.05. The
ratio vbd/vte,b ≈ 0.7 < (nc/nb)2/3 ≈ 3 indicates that the ETSI
becomes weak turbulence. The bump starts to excite Langmuir
waves as well as coherent emission (Figs. 2B and 3B). The back-
ward propagating Langmuir waves with frequency near ωpe,0 are
excited in the background plasma while the propagating forward
Langmuir waves with frequency near 0.6ωpe,0 are excited by the

trapped electrons due to the low density and high temperature in
the electron potential well (22). These two Langmuir waves sat-
isfy the following dispersion relation (normalized by the initial
ωpe,0 and λDe,0):

ω

ωpe,0
=

(
n2
e

n2
0

+
Tcene

Tce,0n0
γk2

x λ
2
De,0

)1/2

, [1]

where γ = 3, as the electron heating caused by the solitary wave,
is nearly adiabatic (23).

The coalescence of the two antiparallel Langmuir waves drives
modulational instability and leads to LC (11, 12), accompanied
by a harmonic emission with ≈ 1.6ωpe,0 (Supporting Informa-
tion). The emission is shown in Fig. 3B, propagating much more
strongly forward than backward and satisfying the dispersion
relation

ω

ωpe,0
=

(
n2
e

n2
0

+
c2

v2
te

k2
x λ

2
De,0

)1/2

. [2]

The LC leads to the contraction of the modulated Lang-
muir envelope and the formation of ion density cavitons
(see Movie S1). We plot a sample of parallel electric
field Ex in Fig. 4 A–C at three moments: ωpe,0t = 72, 320,
and 680. At ωpe,0t = 72, the solitary waves with wavelength
near the fastest-growing mode reach the peak. The critical
condition for LC E2/8πn0Te >

1
4
k2
x λ

2
De is satisfied because

(E2/8πn0Te)
1/2≈ 0.4 with E/E0≈ 50 is larger than the fastest-

growing mode of the ETSI kλDe/2≈ vte,0/2vdb,0≈ 0.05. At
ωpe,0t = 320, the modulated wave envelopes decrease from 50
to 30 λDe,0, and ion density cavitons form. In Fig. 4D, we show
an example of caviton in the xy plane for the Langmuir envelope
plotted in red in Fig. 4B (see Movie S1). Contraction of the

A

C D

B

Fig. 2. The ω/ωpe,0–kxλDe,0 diagrams of the parallel propagating high-
frequency electric field component Ex at four time intervals: (A) ωpe,0t =
0–100, (B) ωpe,0t = 320–420, (C) ωpe,0t = 2,880–2,980, and (D) ωpe,0t =
10,560–10,580. Also shown are the dispersion relations (Eq. 1) of the back-
ground electrons (solid lines), trapped electrons (dashed lines), and the
short-wavelength IAW (dash-dotted lines). For the waves in space, see Figs.
S1–S3. The 2.5D PIC simulation is initialized with a homogeneous plasma and
uniform magnetic field B = B0x̂. The initial ion velocity distribution function
is a single Maxwellian and the electron velocity distribution function is core–
beam bi-Maxwellian (19). The initial density ratio of the beam and core is
nb0/nc0 = 0.1, and the core and beam temperatures Tb,0 = Tc,0. The initial
drifts of the core vcd,0 and the beam vbd,0 satisfy (1 − δ)vcd,0 =− δvbd,0

to maintain null current; vbd,0 = 12vte,0 = 60vA,0, where vA0 is the initial
Alfvén speed and vte,0 = (kTc,0/me)1/2. The speed of light c = 100vA,0 and
mi/me = 100. The ion temperature Ti,0 = Tc,0. The boundaries are periodic,
and the box size Lx = Ly = 3,200λDe,0 (λDe,0≡ vte,0/ωpe,0), where ωpe,0 is
the initial electron plasma frequency. The electric field is normalized by
E0 = vA,0B0/c; β = 16πkTc,0/B2

0 = 0.25.
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Langmuir wave envelopes efficiently dissipates the Langmuir
wave energy into electron thermal energy because the rate
of Landau damping is proportional to nbω

3
pe/n0v

2
te,bk

2 (20).
The electron temperature along the magnetic field Tex inside
the caviton is shown in Fig. 4E. The increased pressure inside the
caviton releases the excess density and produces an intermediary
short IAW with frequency ωpi (dash-dotted line in Fig. 2B). The
time scale for the growth of caviton is consistent with the mod-
ulation instability growth rate ωpi(〈E2〉/8πn0Te)

1/2 ≈ 0.01ωpe .
At ωpe,0t = 680, some wave envelopes continue to contract to
wavelengths about 10 λDe,0, whereas some collapses lead to the
vanishing of cavitons.

With the onset of LC, ETSI enters the nonlinear decay stage
at ωpe,0t ≈ 1,000. The LC in saturation stage causes the two
antipropagating Langmuir waves to merge into a single Lang-
muir wave with frequency ≈ ωpe,0 (Fig. 2C). Simultaneously,
both whistler and kinetic KAW are generated, which were inves-
tigated in a previous study (19). The whistler wave dispersion
relation ω = v2

Akk‖/Ωci + Ωci (24) indicates that the whistler
wave has ES component with a frequency of ∼0.001ωpe,0 and is
strongly affected by density (Fig. 5 A and B). In Fig. 5 C and D,
we show both the electron and ion density fluctuations in (ω, k)
phase space and find that both agree with the dispersion relation
of ES whistler waves (Ws). Plasma fundamental emission (Fig.
3C) is produced through both coalescenceL+Ws→T and decay
L → T + Ws , where T is the transverse emission. A new Lang-
muir wave L′ is produced through L+Ws 
 L′. The coalescence
L+L′ 
 T is much weaker because it is a second-order process.
As a result, harmonic emission in this stage is not identifiable.

The ETSI reaches nonlinear saturation aroundωpe,0t ≈ 10,000.
The wavelength of Langmuir wave and ion caviton becomes
longer and EM emission is produced in a broad range of frequen-
cies and wavenumbers (Figs. 2D and 3D), which is a consequence
of repeating LC maintained by the feedback loop shown in Fig. 1
(see Movie S2). The turbulent fluctuations of density and elec-
tric field in phase space increase to levels comparable to that
of the Langmuir waves and emissions. The emission reaches its
balance between the plasmons of Langmuir waves and whistler
waves—the Manley–Rowe relation—and the coupling becomes
L + Ws 
 T (25, 26). During this stage, electrons are strongly
heated and scattered, and the initial anisotropic electron beams
become an isotropic halo population superposed over the core
electron distribution function (21).

A

C D

B

Fig. 3. The ω/ωpe,0–kxλDe,0 diagrams of parallel propagating high-
frequency Ey are shown for the same four time intervals as for Fig.
2. (A) ωpe,0t = 0–100, (B) ωpe,0t = 320–420, (C) ωpe,0t = 2,880–2,980, and
(D) ωpe,0t = 10,560–10,580. Dashed lines denote dispersion relation of
plasma emission with frequency ≈ ωpe,0. Dash-dotted line in B is dispersion
relation of plasma emission with frequency ω/ωpe,0 = 1.6.

A

D

E

B

C

Fig. 4. (A–C) The parallel electric field Ex cuts for x ∈ [0, 200]λDe,0 and
y = 100λDe,0 at (A) ωpe,0t = 72 when the ETSI nearly saturates and hot elec-
trons excites Langmuir waves; (B) ωpe,0t = 320 when the modulational insta-
bility grows, LCs start, and cavitons form; and (C) ωpe,0t = 648 when LCs
continue. (D) The ion density in xy plane, i.e., the caviton, and (E) the elec-
tron temperature in x direction Tex inside the caviton corresponding to the
Langmuir envelope in red in B (see Movie S1).

L–Ws Coupling and LC
The ES component of whistler wave, that is, the ES whistler
wave with frequency of several Ωci and wavelength kλDe << 1,
defines a slow time scale and a large spatial scale, whereas
the Langmuir wave defines a fast time scale and small spatial
scale kλDe ≈ 1. The coupling between ES whistler waves and
Langmuir waves drives modulational instability that leads to
the formation of long-wavelength Langmuir envelopes EL(x, t)
and cavitons. Langmuir waves exert a low-frequency pondero-
motive force on the motion of electrons and ions and medi-
ate their interaction with whistler waves in a manner similar to
L–IAW coupling (11, 12). The difference here is that whistler
waves are produced in magnetized plasmas whereas IAWs are
less sensitive to magnetic fields. The ES whistler wave is asso-
ciated with EM whistler wave and cannot independently exist.
In the following, we show this difference and why it does not
significantly affect the critical condition for LC. Assuming per-
turbations E = Es + EL, ve = vs + vL, ne =n0 + δnL + δns and
δni ≈ δns , where the subscripts L and s represent fast and slow
time scales, respectively. Neglecting the high-frequency inter-
actions, we have the same driven equation as for the L–IAW
coupling (12),

i

ωpe,0

∂EL

∂t
+

γv2
te

4ω2
pe,0

O2EL −
δns

2n0
EL = 0. [3]

On the slow time scale, ions play the same role as electrons
in maintaining the cavitons. In Fig. 5, both the ion and elec-
tron density fluctuations propagate at the phase speed of whistler
waves ∼3vA,∼6vti , and ∼0.2vte . The slow component of elec-
tron and ion motions in a magnetized plasma can be described
by the following equations:

∂vs
∂t

+ (vs · ∇)vs +
e

me
Es +

e

mec
vs × B0 +

γeTe

n0me
∇δns

+
1

men0
∇φpm = 0, [4]
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∂vi
∂t

+ (vi · ∇)vi −
e

mi
Es −

e

mic
vi × B0 +

γeTi

n0mi
∇δns

+
me

m2
i n0
∇φpm = 0, [5]

where φpm ≡ |EL|2/16π, and∇φpm is the ponderomotive force.
Eliminating Es and using the approximation mevs/mi + vi ≈ v,

together with the ion continuity equation, ∂(me + mi)δns/∂t +
n0(me + mi)∇ · v) = 0, we obtain

∂2

∂t2

δns

n0
− c2

s∇2 δns

n0
−M = ∇2 φpm

n0mi
, [6]

where M = B0 · ∇ × j/(min0c) is the modulation of the
magnetic field that excites the whistler wave, j = en0(vi −
vs) is the current density, and c2

s ≈ (γeTe + γiTi)/mi is
the phase speed of the IAW. In a homogeneous plasma,
to first order, the current density is caused by the polariza-
tion drift, i.e., j≈ [(me + mi)n0/B

2
0 ]∂Es/∂t . The curl in M

implies that ES whistler waves originate from the perpendic-
ular EM components of whistler waves and KAWs (22). In
other words, the density fluctuations on the slow time scale
are mediated predominantly by the EM whistler and KAW
waves, and the influence of M is small. We will neglect M
when discussing the modulational instability and the critical
condition of LC.

Fig. 5. The ω/ωpe,0–kxλDe,0 diagram of parallel propagating low-
frequency fluctuations of Bz, Ex , density ne, and density ni . The data are
from ωpe,0t = 720 to 14,400. Solid line denotes the dispersion relation of
whistler wave; Dashed line denotes the dispersion relation of parallel prop-
agating KAW. The details on the generation of KAWs and whistler waves by
the nonlinear ETSI can be found in ref. 19.

From Eqs. 3 and 6, the maximum growth rate for modulational
instability is γm = ωpi(〈E2

L〉/8πn0Te)
1/2, and the critical condi-

tion for LC is (12)

E2
L

8πneTe
>

1

4
k2
x λ

2
De . [7]

In the nonlinear stage, the time scale of the modulational insta-
bility becomes longer than it is in linear saturation, due to the
decrease of the electric field, but (E2/8πneTe)

1/2≈ 0.2 is still
larger than the typical Langmuir wavenumber kλDe/2≈ 0.05 for
the ES whistler waves, indicating LC can repeatedly occur.

Regeneration of Langmuir Waves
LC transfers energy from large to small scales, inverse to the
modulational instability. Repeating LC requires regeneration of
Langmuir waves so that L–Ws coupling can continue to produce
emission (Fig. 1).

In Eq. 6, ions fill the cavitons and excite short-wavelength
IAWs (27) when the balance between the thermal pressure and
radiation pressure is lost and Langmuir envelopes collapse. The
dispersion relation of IAWs with thermal correction under the
condition vti < w/k < vte is

1 +
1

k2λ2
De

−
ω2
pi

ω2

(
1 +

3k2v2
ti

ω2

)
= 0, [8]

where the term 3k2v2
ti/ω

2 in the bracket comes from the first-
order expansion of the ion zeta function Z (w/k/2vti), a higher
order correction for the case w/k/vti > 1, but not� 1.

For short-wavelength IAWs with kλDe ≈ 1 in a plasma with
Ti ≈ Te , the dispersion relation becomes

ω2 ≈ ω2
pi

1 +
√

3Ti/Te

4
+

√
3Te

Ti
k2v2

ti , [9]

and, for long-wavelength kλDe << 1,

ω = ±
√

Te

mi
k . [10]

Eq. 9 shows that the phase speed of short-wavelength
IAWs satisfies ω2/k2/v2

ti ≈ 1/k2λ2
De , and thus, for the short-

wavelength IAW with a few tenths kλDe , the exponential
ion damping rate is comparable to electrons, and the rate
is γia ≈ (me/mi)

1/2ωpi/k
3λ3

De . The dissipation of the short-
wavelength IAW is slower by a factor of γia/γm ≈ (me/mi)

1/2

than the modulational instability, and thus this wave can be
observed (Fig. 2 B–D). On the other hand, the damping rate of
long-wavelength IAW is too strong to maintain L–IAW coupling
and is suppressed by L–W s coupling.

During LC, the wave energy is transferred from long-
wavelength Langmuir waves to short-wavelength IAWs and then
is returned to the newly generated short-wavelength Langmuir
waves. Such energy transfer can be shown in the phase space
(ω, k) using quasi-particle (plasmon) description. The plasmon
number is defined as N =Ek/ωk , where Ek is the energy density
of Langmuir envelope and N (k , x , t) is the number of plasmons
(26). The evolution of the mean plasmon number 〈N (k , x , t)〉 in
phase space during wave interactions is determined by the wave
self-interactions and wave-wave interactions,

d〈Ek 〉
dt

= −vg · D ·
∂〈N 〉
∂k

, [11]

where the group velocity vg = ∂ω/∂k, phase space diffusion coef-
ficient D = qq

∫ ∫
q,Ωiω

2
pe,0δn

2
s /(Ω − q · vg + i Γ̂)dqdΩ, Γ is the

self-interaction of Langmuir wave, the primary part 〈Γ〉 is asso-
ciated with the mean plasmon number 〈N 〉, and Γ̂ is the first-
order self-nonlinearity of Langmuir wave, such as linear growth
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Table 1. Model predictions and observational evidence

Model predictions Observations Refs.

In the solar corona, emission duration Coronal type J and U radio bursts (3, 4, 31)
≈ 105ω−1

pe ≈ 1− 10 ms Weak coronal type III radio bursts
Langmuir waves and whistler waves Interplanetary type III radio bursts (16, 32, 33)
Langmuire collapse and short wavelength IAW Interplanetary type III radio bursts (15, 34, 35)

or damping, where q and Ω are the wave vector and frequency of
IAWs, respectively.

In the case of linear growth Γ̂ ≈ 0, a second instability can
occur at Ω ' q · vg . If q · ∂〈N 〉/∂k|Ω > 0, we have dEk/dt < 0,
indicating the energy transfers from the Langmuir wave to IAWs.
The Langmuir wave is depleted by the Landau damping of cavi-
ton trapped wave-scattering, and the short-wavelength IAWs
repopulate the energy of the short-wavelength part of the energy
distribution. If q · ∂〈N 〉/∂k|Ω < 0, we have dEk/dt > 0, indicat-
ing the regeneration of Langmuir waves. The short-wavelength
IAW is damped by electrons, and the hot electrons reproduce
the short-wavelength Langmuir waves.

The short-wavelength IAW acts as an intermediary wave
in the regeneration of Langmuir waves. The Langmuir wave
energy gain by modulational instability and loss by LC
can reach a balance, i.e., γiaWia = γmWL, where the short-
wavelength IAW wave energy density Wia =n0Te

∑
k δn

2
s,k/n0,

the short-wavelength Langmuir wave energy density WL =

〈E2
L〉(k0/k)3/2/8π, and k0 = 1/λDe(〈E2

L〉/8πTe)
1/2—the critical

Langmuir wavenumber corresponding to LC at which the short-
wavelength IAW energy is transferred into short-wavelength
Langmuir waves (27).

The electron resonance with the short-wavelength IAWs reex-
cites Langmuir waves with a frequency shift, and Eq. 3, when
modified to include the short-wavelength IAW excitation (27),
becomes

i

ωpe,0

∂EL

∂t
+

γv2
te

4ω2
pe,0

O2EL −
δns

2n0
EL =

δns,new

2n0
EL

= −ωpe

12

∑
k

|δnk
s |2

n2
0k

2λ2
De

(
1 + i

2

3

γk
ωpek2λ2

De

)
EL, [12]

where γk is the damping rate of short-wavelength Langmuir wave
with wavenumber k . The first term on the right-hand side of
Eq. 12 is the frequency shift of a plain Langmuir wave by the scat-
tering of the ion density fluctuations driven by short-wavelength
IAWs. The second term corresponds to the damping of long-
wavelength Langmuir waves due to their conversion to short-
wavelength IAWs. The frequency shift is

δω = −ωpe

12

∑
k

|δnk
s |2

n2
0k

2λ2
De

. [13]

This shift is the same for the entire Langmuir wavepacket spec-
trum and has no influence on the modulational instability.

After each LC, the frequency of the new Langmuir wave
will decrease by a shift ≈ωpen

2
s /n

2
0/12≈ 0.01ωpe assuming

kλDe ≈ 1. We assume that the interval for LC is comparable to
the time scale of modulational instability 100ω−1

pe ; the whole sim-
ulation is about 10,000 ω−1

pe . Thus, the total frequency shift is
about ωpe . This agrees with what is shown in Fig. 2 in which Lang-
muir wave finally shifts to kλDe << 1.

Concluding Remarks
PIC simulations were conducted to explore how the evolu-
tion of the strong ETSI produces Langmuir waves and plasma

coherent emission. We found that LC plays a critical role in
the process, which enables regeneration of Langmuir waves and
maintains a feedback loop for emission beyond the linear ETSI
saturation (Fig. 1). The onset of LC is introduced by the L–L
wave coupling at the ETSI linear saturation stage and maintained
by L–W s coupling from the nonlinear decay stage to the non-
linear saturation. The low-frequency KAWs and whistler waves
generated near the ETSI peak finally reach equilibrium with
the non-Maxwellian electron velocity distribution function (e.g.,
core–halo structure), as found in previous studies (19, 21).

In our simulations, the ETSI nonlinear saturation time is
∼1.5× 104ω−1

pe . Because the modulational instability nearly
dominates the entire process, the nonlinear saturation time is
approximately proportional to (mi/me)1/2, and, for the phys-
ical mass ratio, the ETSI nonlinear saturation time should be
∼105ω−1

pe , which is significantly longer than the ETSI linear sat-
uration time (n0/nb)1/3ω−1

pe ≈ 2ω−1
pe . Note that our simulation

assumes instantaneous injection of the electron beam, whereas,
in the corona, the electron acceleration time is finite and the
beam will propagate out of the region of initial generation. The
acceleration time also affects the actual duration of the bursts
(28, 29). The overall scenario is that coronal bursts produce
nonthermal electrons that escape into space and produce inter-
planetary bursts (3) with accompanying waves. Our simulation
assumes the beam energy is about 100 times that of the coro-
nal thermal energy. For nanoflares, the beam energy is about
a few kiloelectron volts if the corona temperature is ∼10 eV.
For flares, the electron beam energy can reach about a few
megaelectron volts. The larger beam energy will change the
results slightly because the ETSI growth rate does not rely on
the velocity once the threshold is reached, but the turbulence
becomes stronger and the decay lasts longer. On the other hand,
we can estimate the emission power from Fig. 3 B–D, in which the
intensity ratio of the Ey of the radiation and the Langmuir wave
is about 0.01 to 0.001, and thus the emission power is about a
factor of 10−4 to 10−6 of the Langmuir wave power. Such energy
loss is negligible dynamically. Therefore, the mechanism we have
explored can provide a complete and self-consistent solution
to the long-standing puzzle of why the duration of solar radio
bursts is much longer than the linear saturation time of the ETSI
[“Sturrock’s dilemma”(30)].

The short-wavelength IAWs and ion cavitons are two charac-
teristics of LC, and can be detected by in situ solar wind obser-
vations. In particular, the forthcoming Solar Probe Plus mission
will be capable of in situ detection of such radiation at 10 R�
from the Sun. The newly launched Magnetospheric Multiscale
Mission is capable of in situ detections of Langmuir waves and
cavitons in magnetosphere and solar wind at 1 AU.

We summarize some basic observations, which are consistent
with our model predictions, in Table 1.
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