Interfaces as Transport Barriers in 2D MHD

P.H. Diamond

with: Xiang Fan; Luis Chacon

KITP: Interfaces Working Group

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738. Ackn: D.W. Hughes, F. Cattaneo, A.V. Gruzinov, Shane Keating, S.M. Tobias, A. Pouquet

Ref: Phys. Rev. E Rap. Comm. 99, 041201 (2019) + references therein

→ Continues Wednesday discussion...

Physics: Active Scalar Transport

- Magnetic diffusion, ψ transport are cases of active scalar transport
- (Focus: 2D MHD) (Cattaneo, Vainshtein '92, Gruzinov, P. D. '94, '95)

scalar mixing - the usual

$$\partial_t A + \nabla \phi \times \hat{z} \cdot \nabla A = \eta \nabla^2 A$$

$$\partial_t \nabla^2 \phi + \nabla \phi \times \hat{z} \cdot \nabla \nabla^2 \phi = \nabla A \times \hat{z} \cdot \nabla \nabla^2 A + \nu \nabla^2 \nabla^2 \phi$$
turbulent resistivity
back-reaction
Seek $\langle v_x A \rangle = -D_T \frac{\partial \langle A \rangle}{\partial x} - \eta \frac{\partial \langle A \rangle}{\partial x}$
Point: $D_T \neq \sum_{\vec{k}} |v_{\vec{k}}|^2 \tau_{\vec{k}}^K$, often substantially less

- Why: <u>Memory</u>! \leftrightarrow Freezing-in
- Cross Phase

•

Conventional Wisdom

- [Cattaneo and Vainshtein 1991]: turbulent transport is suppressed even for a <u>weak</u> large scale magnetic field is present.
- Starting point: $\partial_t \langle A^2 \rangle = -2\eta \langle B^2 \rangle$
- Assumptions:
 - Energy equipartition: $\frac{1}{\mu_0 \rho} \langle B^2 \rangle \sim \langle v^2 \rangle$
 - Average B can be estimated by: $|\langle \mathbf{B} \rangle| \sim \sqrt{\langle A^2 \rangle} / L_0$
- Define Mach number as: $M^2 = \langle v_A \rangle^2 / \langle \tilde{v}^2 \rangle = \langle v^2 \rangle / v_A^2 = \langle v^2 \rangle / \frac{1}{\mu_0 \rho} \langle B^2 \rangle$
- Result for suppression stage: $\eta_T \sim \eta M^2$
- Fit together with kinematic stage result:
- Lack physics interpretation of η_T !

Origin of Memory?

- (a) flux advection vs flux coalescence
 - intrinsic to 2D MHD (and CHNS)
 - rooted in inverse cascade of $\langle A^2 \rangle$ dual cascades
- (b) tendency of (even weak) <u>mean</u> magnetic field to "Alfvenize" turbulence [cf: vortex disruption feedback threshold!]
- Re (a): Basic physics of 2D MHD

Forward transfer: fluid eddies chop up scalar A.

Memory Cont'd

• V.S.

Inverse transfer: current filaments and A-blobs attract and coagulate.

- Obvious analogy: straining vs coalescence; CHNS
- Upshot: closure calculation yields:

$$\Gamma_{A} = -\sum_{\vec{k}'} [\tau_{c}^{\phi} \langle v^{2} \rangle_{\vec{k}'} - \tau_{c}^{A} \langle B^{2} \rangle_{\vec{k}'}] \frac{\partial \langle A \rangle}{\partial x} - \sum_{\vec{k}'} \tau_{c}^{A} \langle A^{2} \rangle_{\vec{k}'} \frac{\partial \langle J \rangle}{\partial x}$$
flux of potential
flux of potential
competition
scalar advection vs. coalescence ("negative resistivity")
(+)
(-)
N.B.: Coalescence \rightarrow Negative diffusion
Hyper-resistivity $\rightarrow \langle A^{2} \rangle$ conservation
cf: Pouguet '78. DHK Du

cf: Pouquet '78, DHK Durham Volume 2005

Conventional Wisdom, Cont'd

• Then calculate $\langle B^2 \rangle$ in terms of $\langle v^2 \rangle$. From:

$$\partial_t A + \mathbf{v} \cdot \nabla A = -v_x \frac{\partial \langle A \rangle}{\partial x} + \eta \nabla^2 A$$

• Multiplying by A and sum over all modes:

$$\frac{1}{2}[\partial_t \langle A^2 \rangle + \langle \nabla \cdot \langle \mathbf{v} A^2 \rangle \rangle] = -\Gamma_A \frac{\partial \langle A \rangle}{\partial x} - \eta \langle B^2 \rangle$$

Dropped stationary case Dropped periodic boundary \rightarrow introduce nonlocality?!

- Therefore: $\langle B^2 \rangle = -\frac{\Gamma_A}{n} \frac{\partial \langle A \rangle}{\partial x} = \frac{\eta_T}{n} B_0^2$
- Define Mach number as: $M^2 \equiv \langle v^2 \rangle / v_{A0}^2 = \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} B_0^2)$
- Result:

$$\eta_T = \frac{\sum_{\mathbf{k}} \tau_c \langle v^2 \rangle_{\mathbf{k}}}{1 + \mathrm{Rm}/M^2} = \frac{ul}{1 + \mathrm{Rm}/M^2}$$

• This theory is not able to describe $B_0 \rightarrow 0$, though may be extended (?!)

UC San Diego

Is this story "the truth, the whole truth and nothing but the truth'?

→ A Closer Look

Two Stage Evolution:

- 1. The <u>suppression stage</u>: the (large scale) magnetic field is sufficiently strong so that the diffusion is suppressed.
- 2. The <u>kinematic decay stage</u>: the magnetic field is dissipated so the diffusion rate returns to the kinematic rate.
- Suppression is due to the memory induced by the magnetic field.

New Observations

• With no imposed B_0 , in suppression stage:

Field Concentrated!

3200

2800

2400

2000

1600

1200

800

400

1.0

• Same run, in kinematic stage (trivial):

New Observations Cont'd

- Nontrivial structure formed in real space during the suppression stage.
- *A* field is evidently composed of "<u>blobs</u>".
- The low A^2 regions are 1-dimensional.
- The high B^2 regions are strongly correlated with low A^2 regions, and also are 1-dimensional.
- We call these 1-dimensional high B^2 regions ``<u>barriers</u>'', because these are the regions where mixing is reduced, relative to η_K .
- → Story one of 'blobs and barriers'

2D CHNS and 2D MHD

• The A field in 2D MHD in suppression stage is strikingly similar to the ψ field in 2D CHNS (Cahn-Hilliard Navier-Stokes) system:

Evolution of PDF of A

Probability
 Density
 Function (PDF)
 in two stage:

- Time evolution: horizontal "Y".
 - The PDF changes from double peak to single peak as the system evolves from the suppression stage to the kinematic stage.

UC San Diego

Revisiting Quenching

The problem of the mean field $\langle B \rangle$ \rightarrow What does mean mean? – Question of the ages...

- $\langle B \rangle$ depends on the averaging window.
- With no imposed external field,
 B is highly intermittent, therefore the (B) is not well defined.

New Understanding

- Summary of important length scales: $l < L_{stir} < L_{env} < L_0$
 - System size *L*₀
 - Envelope size $L_{env} \rightarrow$ emergent (blob)
 - Stirring length scale L_{stir}
 - Turbulence length scale l, here we use Taylor microscale λ
 - Barrier width $W \rightarrow$ emergent
- Quench is not uniform. Transport coefficients differ in different regions. Differs from uniform B_0 studies
- In the regions where magnetic fields are strong, Rm/M^2 is dominant. They are regions of <u>barriers</u>.
- In other regions, i.e. Inside blobs, Rm/M'^2 is what remains. $M'^2 \equiv \langle V^2 \rangle / \left(\frac{1}{\rho} \langle A^2 \rangle / L_{env}^2\right)$

New Understanding, cont'd

- From $\partial_t \langle A^2 \rangle = -\langle \mathbf{v}A \rangle \cdot \nabla \langle A \rangle \nabla \cdot \langle \mathbf{v}A^2 \rangle \eta \langle B^2 \rangle$
- Retain 2nd term on RHS. Average taken over an envelope/blob scale.
- Define diffusion (closure):

$$\begin{split} \langle \mathbf{v} A \rangle &= -\eta_{T1} \nabla \langle A \rangle \\ \langle \mathbf{v} A^2 \rangle &= -\eta_{T2} \nabla \langle A^2 \rangle \end{split}$$

- Plugging in: $\partial_t \langle A^2 \rangle = \eta_{T1} (\nabla \langle A \rangle)^2 + \nabla \eta_{T2} \cdot \nabla \langle A^2 \rangle \eta \langle B^2 \rangle$
- For simplicity: $\langle B^2 \rangle \sim \frac{\eta_T}{\eta} (\langle B \rangle^2 + \langle A^2 \rangle / L_{env}^2)$
- where L_{env} is the envelope size. Scale of $\nabla^2 \langle A^2 \rangle$.
- Define new strength parameter: $M'^2 \equiv \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} \langle A^2 \rangle / L_{env}^2)$

• **Result:**
$$\eta_T = \frac{ul}{1 + \text{Rm}/M^2 + \text{Rm}/M'^2} = \frac{ul}{1 + \text{Rm}\frac{1}{\mu_0\rho}\langle \mathbf{B} \rangle^2 / \langle v^2 \rangle + \text{Rm}\frac{1}{\mu_0\rho}\langle A^2 \rangle / L_{env}^2 \langle v^2 \rangle}$$

Formation of Barriers/Interfaces

• How do the barriers form? $\eta_T = \sum_{\mathbf{k}} \tau_c [\langle v^2 \rangle_{\mathbf{k}} - \frac{1}{\mu_0 \rho} \langle B^2 \rangle_{\mathbf{k}}]$

• From above, strong B regions can support negative incremental $\eta_T = \delta \Gamma_A / \delta(-\nabla A) < 0$, suggesting clustering

- $\langle \eta_T \rangle > 0$
- Positive feedback: a twist on a familiar theme

Formation of Barriers, Cont'd

- Negative resistivity leads to barrier formation.
- The S-curve reflects the dependence of Γ_A on B.
- When slope is negative \rightarrow negative (incremental) resistivity.

Describing the Barriers

- How to measure the barrier width W ?
- Starting point: $W \sim \Delta A/B_b$
- Use $\sqrt{\langle A^2 \rangle}$ to calculate ΔA
- Define the barrier regions as: $B(x,y) > \sqrt{\langle B^2 \rangle} * 2$
- Define barrier packing fraction: $P \equiv \frac{\text{\# of grid points for barrier regions}}{\text{\# of total grid points}}$
- Use use the magnetic fields in the barrier regions to calculate the magnetic energy: $\sum B_b^2 \sim \sum B^2$
- Thus $\langle B_b^2 \rangle \sim \langle B^2 \rangle / P$
- So barrier width can be estimated by:
- → N.B. All magnetic energy in the barriers

$$W^2 \equiv \langle A^2 \rangle / (\langle B^2 \rangle / P)$$

threshold

system

Describing the Barriers

- Time evolution of *P* and *W*:
 - P, W collapse in decay phase
 - M' rises
- Sensitivity of *W*:

0.06

0.05

0.04

0.02

0.01

2 0.03

• A_0 or $1/\mu_0 \rho$ greater $\rightarrow W$ greater;

0.040

0.035

0.030

0.025

0.015

0.010

0.005

0.000

 10^1

 f_0

(b)

₹ 0.020

0.040

0.035

0.030

0.025

0.015

0.010

0.005

0.000

 10^{-2}

 $1/\mu_0
ho$

(C)

 10^{-1}

- f_0 greater, W smaller; (ala' Hinze)
- W not sensitive to η or ν .

 A_0

(a)

'Staircase' (inhomogeneous Mixing, Bistability)

- 'Staircases' emerge spontaneously! <u>Barriers</u>
- Initial condition is the usual cos function (bimodal)
- The only major sensitive parameter (from runs above) is the forcing scale is k=32 (for all runs above k=5).
- Resembles the "staircase" in MFE.

Conclusions / Summary

ul

"Inhomogeneous Mixing"

 $\overline{1 + \operatorname{Rm} \frac{1}{\mu_{0}\rho} \langle \mathbf{B} \rangle^2 / \langle v^2 \rangle + \operatorname{Rm} \frac{1}{\mu_{0}\rho} \langle A^2 \rangle / L_{env}^2 \langle v^2 \rangle}$ blobs, weak B, $\nabla^2 \langle A^2 \rangle$ remains barriers, strong B • Barriers form due to negative resistivity: $\eta_T = \sum_{\mathbf{k}} \tau_c [\langle v^2 \rangle_{\mathbf{k}} - \frac{1}{\mu_0 \rho} \langle B^2 \rangle_{\mathbf{k}}] \qquad \text{flux coalescence}$ $-\langle B \rangle$

• Formation of "magnetic staircases" observed for some stirring scale

Possible Future Work

- Extension of the transport study in MHD:
 - Numerical tests of the new η_T expression ?
 - What determines the barrier width and packing fraction ?
 - Why does layering appear when the forcing scale is small ?
 - What determines the step width, in the case of layering
 - The transport study may also be extended to 3D MHD ($\langle A \cdot B \rangle$ important instead of $\langle A^2 \rangle$)
- Other similar systems can also be studied in this spirit. e.g. Oldroyd-B model for polymer solutions. (drag reduction)
- Reduced Model of Magnetic Staircase

Back-Up

Unimodal Initial Condition

- One may question whether the bimodal PDF feature is purely due to the initial condition. The answer is <u>No</u>.
- Two non-zero peaks in PDF of A still arise, even if the initial condition is unimodal.

$$\eta_T = V l / \left[1 + \frac{R_m}{M^2} + \frac{R_m}{M'^2} \right]$$

• Barriers: $\eta_T \approx V l / \left[1 + R_m \frac{\langle B \rangle^2}{\rho \langle \tilde{V}^2 \rangle} \right]$

• Blobs:

Weak effective field

$$\eta_T \approx V l / \left[1 + R_m \frac{\langle A^2 \rangle}{\rho L_{env}^2 \langle \tilde{V}^2 \rangle} \right]$$

• Quench stronger in barriers, ,non-uniform