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• What is Turbulence?

• What and Why of Elastic Fluids, and CHNS, in particular

CHNS ≡ Cahn-Hilliard Navier-Stokes

• Single Eddy Problem

• CHNS Turbulence

• Transport and Beyond

• Lessons

Outline



What is Turbulence?



Turbulence (after Kadomtsev)   
“The Garden of Earthly Delights”, Hieronymous Bosch



• Navier-Stokes Equation:

𝜌𝜌
𝜕𝜕𝑣⃗𝑣
𝜕𝜕𝜕𝜕

+ 𝑣⃗𝑣 ⋅ 𝛻𝛻𝑣⃗𝑣 − 𝜈𝜈𝛻𝛻2𝑣⃗𝑣 = −𝛻𝛻𝑃𝑃 + 𝑓𝑓

𝛻𝛻 ⋅ 𝑣⃗𝑣 = 0

– Finite domain, closed, periodic

– 𝑅𝑅𝑅𝑅 = 𝑣𝑣 ⋅ 𝛻𝛻𝑣𝑣 /𝜈𝜈𝛻𝛻2𝑣𝑣 ∼ 𝑉𝑉𝑉𝑉/𝜈𝜈 ;   𝑅𝑅𝑅𝑅 ≫ 1

• Variants:

– 2D, QG

– Compressible flow

– Pipe flow – inhomogeneity 

– MHD, etc.

Model

Random forcing
(usually large scale)



• Spatio-temporal “disorder”

• Broad range of space-time scales

• Power transfer / flux thru broad range of scales *

• Energy dissipation and irreversibility as 𝑅𝑅𝑅𝑅 → ∞ *

And:

• Decay of large scales

• Irreversible mixing

• Intermittency / burstiness

What is turbulence? (3D)

Leonardo

Ma Yuan



A) Planes, trains, automobiles…

DRAG

• Recall:  𝐹𝐹𝑑𝑑 ∼ 𝑐𝑐𝐷𝐷𝜌𝜌𝜌𝜌𝑉𝑉2

• 𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷(𝑅𝑅𝑅𝑅) drag coefficient

Why broad range scales? 
What motivates cascade concept?

𝐶𝐶𝐷𝐷 ∼ 𝑅𝑅𝑒𝑒 0 as 𝑅𝑅𝑅𝑅 → ∞



• The Point:

- Energy dissipation is finite, and due to viscosity, yet does not depend explicitly    

on viscosity  ANOMALY

- ‘Irreversibility persists as symmetry breaking factors vanish’ 

i.e.  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∼ 𝐹𝐹𝑑𝑑 𝑉𝑉 ∼ 𝐶𝐶𝐷𝐷𝜌𝜌𝜌𝜌𝑉𝑉3

𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑
∼ 𝑉𝑉3

𝑙𝑙0
≡ 𝜖𝜖  dissipation rate

• Where does the energy go?

Steady state 𝜈𝜈 𝛻𝛻𝑣⃗𝑣 2 = 𝑓𝑓 ⋅ 𝑣⃗𝑣 = 𝜖𝜖

𝑙𝑙0 macro length scale



• So  𝜖𝜖 = 𝜈𝜈 𝛻𝛻𝛻 2  independent of 𝜈𝜈

• 𝛻𝛻𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟 ~ 1
𝜈𝜈1/2  suggests singular velocity gradients (small 

scale)

∴

• Flat 𝐶𝐶𝐷𝐷 in 𝑅𝑅𝑅𝑅  turbulence must access small scales as 𝑅𝑅𝑅𝑅 → ∞

• Obviously consistent with broad spectrum, via nonlinear coupling



B) … and balloons

• Study of ‘test particles’ in turbulence:

• Anecdotal:

Titus Lucretius Caro: 99-55 BC

“De rerum Nature” cf. section V, line 500

• Systematic:

L.F. Richardson:

Noted: 𝛿𝛿𝑙𝑙2 ∼ 𝑡𝑡3  super-diffusive

- not ~ t,  ala’ diffusion, noise

- not exponential, ala’ smooth chaotic flow

- probed atmospheric turbulence by study of balloon separation

𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿 𝑡𝑡



𝛿𝛿𝛿𝛿 𝑙𝑙 = 𝑣⃗𝑣 𝑟𝑟 + 𝑙𝑙 − 𝑣⃗𝑣 𝑟𝑟 ⋅ 𝑙𝑙
𝑙𝑙
 structure function

Then: 𝛿𝛿𝛿𝛿 ∼ 𝑙𝑙𝛼𝛼

so,  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∼ 𝑙𝑙𝛼𝛼  growth of separation

 𝑙𝑙2 ∼ 𝑡𝑡
2

1−𝛼𝛼 ∼ 𝑡𝑡3

 𝛼𝛼 = 1
3

so 𝛿𝛿𝛿𝛿 𝑙𝑙 ∼ 𝑙𝑙1/3, 𝛿𝛿𝑙𝑙2 ∼ 𝑡𝑡3

 Points: 

– large eddys have more energy, so rate of separation increases with scale 

– Relative separation is excellent diagnostic of flow dynamics

cf: tetrads: Siggia and Shraiman

Upshot:

 velocity differential 
across scale



K41 Model (Phenomenological)
• Cascade  hierarchical fragmentation

• Broad range of scales, no gaps

• Described by structure function  

• 〈𝛿𝛿𝛿𝛿 𝑙𝑙 2〉, …. 𝛿𝛿𝛿𝛿 𝑙𝑙 𝑛𝑛 , …
Related to energy distribution

 greatest interest

𝑙𝑙0

𝑙𝑙1
𝑙𝑙2

- 𝛿𝛿𝛿𝛿 𝑙𝑙 2 ↔ energy, 
of great interest

- higher moments
more challenging



• Input:

• 2/3 law (empirical)

𝑆𝑆2 𝑙𝑙 ∼ 𝑙𝑙2/3

• 4/5 law (Rigorous) - TBD

𝛿𝛿𝛿𝛿 𝑙𝑙 3 = −4
5
𝜖𝜖𝜖𝜖

 Ideas:

• Flux of energy in scale space from 𝑙𝑙0 (input/integral scale) to 𝑙𝑙𝑑𝑑 (dissipation) scale 

– set by 𝜈𝜈

• Energy flux is same at all scales between 𝑙𝑙0, 𝑙𝑙𝑑𝑑 <-> self-similarity

real scale (b)



So

 𝜖𝜖 ∼ 𝑉𝑉 𝑙𝑙 2/ 𝜏𝜏 𝑙𝑙 ∼ 𝑉𝑉 𝑙𝑙 3/ 𝑙𝑙  𝑉𝑉 𝑙𝑙 ∼ 𝜖𝜖𝜖𝜖 1/3 ;  1/ 𝜏𝜏 𝑙𝑙 ∼ 𝜖𝜖/𝑙𝑙2 1/3

𝑉𝑉 𝑙𝑙 2 ∼ 𝑉𝑉02 𝑙𝑙 / 𝑙𝑙0 2/3 (transfer rate increases as scale decreases)

And 

𝐸𝐸 𝑘𝑘 ∼ 𝜖𝜖2/3 𝑘𝑘−5/3 𝐸𝐸 = ∫ 𝑑𝑑𝑑𝑑𝑑𝑑(𝑘𝑘)

Where does it end?

𝑙𝑙1
𝑙𝑙2

𝑙𝑙3

𝑙𝑙𝑛𝑛

not

exception:
Rapid Distortion Theory



• Dissipation scale

– cut-off at 1/𝜏𝜏 𝑙𝑙 ∼ 𝜈𝜈/𝑙𝑙2 i.e. 𝑅𝑅𝑅𝑅 𝑙𝑙 → 1

– 𝑙𝑙𝑑𝑑 ∼ 𝜈𝜈3/4 /𝜖𝜖1/4

• Degrees of freedom

#𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∼ 𝑙𝑙0
𝑙𝑙𝑑𝑑

3
∼ 𝑅𝑅𝑒𝑒9/4

For 𝑙𝑙𝑜𝑜 ∼ 1𝑘𝑘𝑘𝑘, 𝑙𝑙𝑑𝑑 ∼ 1𝑚𝑚𝑚𝑚 (PBL)

 𝑁𝑁 ∼ 1018



The Theoretical Problem
• “We don’t want to think anything, man. We want to know.” 

– “Pulp Fiction” (Quentin Tarantino)

• What do we know?

– 4/5 Law (and not much else...)

𝑉𝑉 𝑙𝑙 3 = −4
5
𝜖𝜖𝜖𝜖  asymptotic for finite 𝑙𝑙, 𝜈𝜈 → 0

from: 𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕

= − 1
3𝑙𝑙4

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙4𝑆𝑆3 − 4
3
𝜖𝜖 + 2𝜈𝜈

𝑙𝑙4
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙4 𝜕𝜕𝑆𝑆2
𝜕𝜕𝜕𝜕

(Karman-Howarth)

• Stationarity, 𝜈𝜈 → 0

𝑆𝑆2 = 𝛿𝛿𝑉𝑉 𝑙𝑙 2

𝑆𝑆3 = 𝛿𝛿𝑉𝑉 𝑙𝑙 3

flux in scale dissipation



• 𝑆𝑆3 𝑙𝑙 = −4
5
𝜖𝜖𝜖𝜖

• Energy thru-put balance  𝛿𝛿𝛿𝛿 𝑙𝑙 3 /𝑙𝑙 ↔ 𝜖𝜖

• Notable:

– Euler: 𝜕𝜕𝑡𝑡𝑣𝑣 + 𝑣𝑣 ⋅ 𝛻𝛻𝑣𝑣 + 𝛻𝛻𝑃𝑃/𝜌𝜌 = 0;       reversible; 𝑡𝑡 → −𝑡𝑡, 𝑣𝑣 → −𝑣𝑣

– N-S: 𝜕𝜕𝑡𝑡𝑣𝑣 + 𝑣𝑣 ⋅ 𝛻𝛻𝑣𝑣 + 𝛻𝛻𝑃𝑃/𝜌𝜌 = 𝜈𝜈𝛻𝛻2𝑣𝑣;   time reversal broken by viscosity

– 𝑆𝑆3(𝑙𝑙): 𝑆𝑆3 𝑙𝑙 = −4
5
𝜖𝜖𝜖𝜖;   reversibility breaking maintained as 𝜈𝜈 → 0

Anomaly

4/5 Law

- Asymptotically exact 𝜈𝜈 → 0, 𝑙𝑙 finite

- Unique, rigorous result



• N.B.: A little history; philosophy:

– ‘Anomaly’ in turbulence  Kolmogorov, 1941

– Anomaly in QFT  J. Schwinger, 1951 (regularization for vacuum 

polarization)

• Speaking of QFT, what of renormalized perturbation theory?

– Renormalization gives some success to low order moments, identifies 

relevant scales

– Useful in complex problems (i.e. plasmas) and problems where 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 is not 

obvious

– Rather few fundamental insights have emerged from R.P.T 

Caveat Emptor



What and Why of
Elastic Fluids?



Elastic Fluid -> Oldroyd-B Family Models

𝛾𝛾 𝑑𝑑𝑟𝑟1,2
𝑑𝑑𝑑𝑑

− 𝑣⃑𝑣 𝑟𝑟1,2, 𝑡𝑡 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟1,2

+ 𝜉𝜉 , where 𝑈𝑈 = 𝑘𝑘
2
𝑟𝑟1 − 𝑟𝑟2 2 + ⋯

so 𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝑣⃑𝑣 𝑅𝑅, 𝑡𝑡 + 𝜉𝜉/𝛾𝛾 , and 𝑑𝑑𝑞𝑞
𝑑𝑑𝑑𝑑

= 𝑞⃑𝑞 ⋅ 𝛻𝛻 𝑣⃑𝑣 𝑅𝑅, 𝑡𝑡 − 2
𝛾𝛾
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

+ noise

21

→ Solution
of Dumbells

H2O

𝑟𝑟1 𝑟𝑟2← 𝑞⃑𝑞 →

𝑅𝑅 = 𝑟𝑟1-𝑟𝑟2
𝑣⃑𝑣(𝑟𝑟1, 𝑡𝑡) 𝑣⃑𝑣(𝑟𝑟2, 𝑡𝑡) Internal DoF

i.e. polymers

stokes drag entropic spring
noise



Seek 𝑓𝑓(𝑞⃑𝑞,𝑅𝑅, 𝑡𝑡|𝑣⃑𝑣, … ) → distribution

𝜕𝜕𝑡𝑡𝑓𝑓 + 𝜕𝜕𝑅𝑅 ⋅ 𝑣⃑𝑣 𝑅𝑅, 𝑡𝑡 𝑓𝑓 + 𝜕𝜕𝑞𝑞 ⋅ 𝑞⃑𝑞 ⋅ 𝛻𝛻𝑣⃑𝑣 𝑅𝑅, 𝑡𝑡 𝑓𝑓 − 2
𝛾𝛾
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞
𝑓𝑓

= 𝜕𝜕𝑅𝑅 ⋅ 𝐃𝐃0 ⋅
𝜕𝜕𝑓𝑓
𝜕𝜕𝑅𝑅

+ 𝜕𝜕𝑞𝑞 ⋅ 𝐃𝐃q ⋅
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞

and moments:

𝑄𝑄𝑖𝑖𝑖𝑖 𝑅𝑅, 𝑡𝑡 = ∫ 𝑑𝑑3𝑞𝑞 𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗𝑓𝑓(𝑞⃑𝑞,𝑅𝑅, 𝑡𝑡) → electric energy field (tensor)
so:
𝜕𝜕𝑡𝑡𝑄𝑄𝑖𝑖𝑖𝑖 + 𝑣⃑𝑣 � 𝛻𝛻𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖𝜕𝜕𝛾𝛾𝑣𝑣𝑗𝑗 + 𝑄𝑄𝑗𝑗𝑗𝑗𝜕𝜕𝛾𝛾𝑣𝑣𝑖𝑖

−𝜔𝜔𝑧𝑧𝑄𝑄𝑖𝑖𝑖𝑖 + 𝐷𝐷0𝛻𝛻2𝑄𝑄𝑖𝑖𝑖𝑖 + 4 𝑘𝑘𝐵𝐵𝑇𝑇
𝛾𝛾
𝛿𝛿𝑖𝑖𝑖𝑖

 Defines Deborah number: 𝛻𝛻𝑣⃑𝑣/𝜔𝜔z

22

Is F.P. valid?!

strain

relaxation

and concentration
equation



Reaction on Dynamics

𝜌𝜌[𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝑣⃑𝑣 � 𝛻𝛻𝑣𝑣𝑖𝑖] = −𝛻𝛻𝑖𝑖𝑃𝑃 + 𝛻𝛻𝑖𝑖 ⋅ [𝑐𝑐𝑝𝑝𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖] + 𝜂𝜂𝛻𝛻2𝑣𝑣𝑖𝑖 + 𝑓𝑓𝑖𝑖

Classic systems; Oldroyd-B (1950).
Extend to nonlinear springs (FENE), rods, rods + springs, networks,

director fields, etc…
Supports elastic waves and fluid dynamics, depending on Deborah

number.
Oldroyd-B ↔ active tensor field

23

elastic stress



Constitutive Relations

J. C. Maxwell:

(stress) + 𝜏𝜏𝑅𝑅
𝑑𝑑(stress)

𝑑𝑑𝑑𝑑
= 𝜂𝜂 𝑑𝑑

𝑑𝑑𝑑𝑑
(strain)

If 𝜏𝜏𝑅𝑅/𝑇𝑇 = 𝐷𝐷 ≪ 1, stress = 𝜂𝜂 𝑑𝑑
𝑑𝑑𝑑𝑑

(strain)

𝜎𝜎 = −𝜂𝜂𝛻𝛻𝑣⃑𝑣
If 𝜏𝜏𝑅𝑅/𝑇𝑇 = 𝐷𝐷 ≫ 1, stress ≅ 𝜂𝜂

𝜏𝜏𝑅𝑅
(strain)

~ E (strain)
Limit of “freezing-in”: D>1 is criterion.

24

relaxation viscosity

𝑇𝑇 ≡ dynamic
time scale



• 𝐷𝐷 ~  Deborah Number  ~  𝛻𝛻𝑉𝑉 /𝜔𝜔𝑍𝑍 ~  𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑

• Limit for elasticity:  𝐷𝐷 ≫ 1 limit for elasticity

• Why “Deborah”? 

Hebrew Prophetess Deborah: 

“The moutains flowed before the Lord.” (Judges)

∴

• Revisit Heraclitus (1500 years later): 

 “All things flow” – if you can wait long enough



Relation to MHD?!

Re-writing Oldroyd-B:
𝜕𝜕
𝜕𝜕𝑡𝑡
𝐓𝐓 + 𝑣⃑𝑣 � 𝛻𝛻𝐓𝐓 − 𝐓𝐓 ⋅ 𝛻𝛻𝑣⃑𝑣 − 𝛻𝛻𝑣⃑𝑣 𝑇𝑇 ⋅ 𝐓𝐓 =

1
𝜏𝜏

(𝐓𝐓 −
𝜇𝜇
𝜏𝜏
𝐈𝐈)

MHD: 𝐓𝐓𝑚𝑚 = 𝐵𝐵𝐵𝐵
4𝜋𝜋

𝜕𝜕𝑡𝑡𝐵𝐵 + 𝑣⃑𝑣 � 𝛻𝛻𝐵𝐵 = 𝐵𝐵 � 𝛻𝛻𝑣⃑𝑣 + 𝜂𝜂𝛻𝛻2𝐵𝐵
So

𝜕𝜕
𝜕𝜕𝑡𝑡
𝐓𝐓𝑚𝑚 + 𝑣⃑𝑣 � 𝛻𝛻𝐓𝐓𝑚𝑚 − 𝐓𝐓𝑚𝑚 ⋅ 𝛻𝛻𝑣⃑𝑣 − 𝛻𝛻𝑣⃑𝑣 𝑇𝑇 ⋅ 𝐓𝐓𝑚𝑚 = 𝜂𝜂[𝐵𝐵𝛻𝛻2𝐵𝐵 + (𝛻𝛻2𝐵𝐵)𝐵𝐵]

 lim
𝐷𝐷→∞

(Oldroyd-B) ⟺ lim
𝑅𝑅𝑚𝑚→∞

(MHD)

26

𝐓𝐓 ≡ stress

c.f. Ogilvie and Proctor



Elastic Media -- What Is the CHNS System?
Elastic media – Fluid with internal DoFs “springiness”
The Cahn-Hilliard Navier-Stokes (CHNS) system describes phase separation

for binary fluid (i.e. Spinodal Decomposition)

27

AB

Miscible phase 
 Immiscible phase

[Fan et.al. Phys. Rev. Fluids 2016] [Kim et.al. 2012]



Elastic Media? -- What Is the CHNS System?

How to describe the system: the concentration field

𝜓𝜓 𝑟𝑟, 𝑡𝑡 ≝ [𝜌𝜌𝐴𝐴 𝑟𝑟, 𝑡𝑡 − 𝜌𝜌𝐵𝐵 𝑟𝑟, 𝑡𝑡 ]/𝜌𝜌 : scalar field → density contrast

𝜓𝜓 ∈ [−1,1]

CHNS equations (2D):

𝜕𝜕𝑡𝑡𝜓𝜓 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 =
𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔
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Why Should a Plasma Physicist Care?

Useful to examine familiar themes in plasma turbulence from new 
vantage point 
Some key issues in plasma turbulence:
1. Electromagnetic Turbulence

• CHNS vs 2D MHD: analogous, with interesting differences.
• Both CHNS and 2D MHD are elastic systems
• Most systems = 2D/Reduced MHD + many linear effects 
Physics of dual cascades and constrained relaxation relative 

importance, selective decay…
Physics of wave-eddy interaction effects on nonlinear transfer (i.e. Alfven 

effect Kraichnan) 

29

MHD CHNS



Why Care?

2. Zonal flow formation  negative 
viscosity phenomena
• ZF can be viewed as a “spinodal

decomposition” of momentum.
• What determines scale?

30

[Porter 1981]

Spinodal Decomposition

Arrows:
𝜓𝜓 for CHNS;
flow for ZF.

http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT411/HTML/AT41102.htm

Zonal Flow



[J. A. Boedo et.al. 2003]

Why Care?

3. “Blobby Turbulence”
• CHNS is a naturally blobby system of

turbulence.
• What is the role of structure in

interaction?
• How to understand blob coalescence and 

relation to cascades?
• How to understand multiple cascades of

blobs and energy?

31

• CHNS exhibits all of the above, with many new twists 



A Brief Derivation of the CHNS Model

Second order phase transition  Landau Theory.
Order parameter: 𝜓𝜓 𝑟𝑟, 𝑡𝑡 ≝ [𝜌𝜌𝐴𝐴 𝑟𝑟, 𝑡𝑡 − 𝜌𝜌𝐵𝐵 𝑟𝑟, 𝑡𝑡 ]/𝜌𝜌
Free energy:

F 𝜓𝜓 = �𝑑𝑑𝑟𝑟(
1
2
𝐶𝐶1𝜓𝜓2 +

1
4
𝐶𝐶2𝜓𝜓4 +

𝜉𝜉2

2
|𝛻𝛻𝜓𝜓|2)

𝐶𝐶1(𝑇𝑇), 𝐶𝐶2(𝑇𝑇).
Isothermal 𝑇𝑇 < 𝑇𝑇𝐶𝐶. Set 𝐶𝐶2 = −𝐶𝐶1 = 1:

F 𝜓𝜓 = �𝑑𝑑𝑟𝑟(−
1
2
𝜓𝜓2 +

1
4
𝜓𝜓4 +

𝜉𝜉2

2
|𝛻𝛻𝜓𝜓|2)
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Phase Transition Gradient Penalty



A Brief Derivation of the CHNS Model

Continuity equation: 𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

+ 𝛻𝛻 � 𝐽𝐽 = 0. Fick’s Law: 𝐽𝐽 = −𝐷𝐷𝛻𝛻𝛻𝛻.

Chemical potential: 𝜇𝜇 = 𝛿𝛿𝐹𝐹 𝜓𝜓
𝛿𝛿𝜓𝜓

= −𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓.

Combining above  Cahn Hilliard equation:
𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

= 𝐷𝐷𝛻𝛻2𝜇𝜇 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

𝑑𝑑𝑡𝑡 = 𝜕𝜕𝑡𝑡 + 𝑣⃑𝑣 � 𝛻𝛻. Surface tension: force in Navier-Stokes equation:

𝜕𝜕𝑡𝑡𝑣⃑𝑣 + 𝑣⃑𝑣 � 𝛻𝛻𝑣⃑𝑣 = −
𝛻𝛻𝑝𝑝
𝜌𝜌
− 𝜓𝜓𝜓𝜓𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝑣⃑𝑣

For incompressible fluid, 𝛻𝛻 � 𝑣⃑𝑣 = 0.
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2D CHNS and 2D MHD
2D CHNS Equations:

𝜕𝜕𝑡𝑡𝜓𝜓 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 =
𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔

With 𝑣⃑𝑣= ̂⃑𝑧𝑧 × 𝛻𝛻𝛻𝛻, 𝜔𝜔 = 𝛻𝛻2𝜙𝜙, 𝐵𝐵𝜓𝜓 = ̂⃑𝑧𝑧 × 𝛻𝛻𝛻𝛻, 𝑗𝑗𝜓𝜓 = 𝜉𝜉2𝛻𝛻2𝜓𝜓.
2D MHD Equations:

𝜕𝜕𝑡𝑡𝐴𝐴 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 = 𝜂𝜂𝛻𝛻2𝐴𝐴

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 =
1
𝜇𝜇0𝜌𝜌

𝐵𝐵 � 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝜔𝜔

With 𝑣⃑𝑣= ̂⃑𝑧𝑧 × 𝛻𝛻𝛻𝛻, 𝜔𝜔 = 𝛻𝛻2𝜙𝜙, 𝐵𝐵 = ̂⃑𝑧𝑧 × 𝛻𝛻𝛻𝛻, 𝑗𝑗 = 1
𝜇𝜇0
𝛻𝛻2𝐴𝐴.
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−𝜓𝜓: Negative diffusion term
𝜓𝜓3: Self nonlinear term
−𝜉𝜉2𝛻𝛻2𝜓𝜓 : Hyper-diffusion
term

𝐴𝐴: Simple diffusion term



Linear Wave

CHNS supports linear “elastic” wave:

𝜔𝜔 𝑘𝑘 = ±
𝜉𝜉2

𝜌𝜌
𝑘𝑘 × 𝐵𝐵𝜓𝜓0 −

1
2
𝑖𝑖 𝐶𝐶𝐶𝐶 + 𝜈𝜈 𝑘𝑘2

Where
Akin to capillary wave at phase interface. Propagates only along the

interface of the two fluids, where |𝐵𝐵𝜓𝜓| = |𝛻𝛻𝛻𝛻| ≠ 0.
Analogue of Alfven wave.
Important differences: 
𝐵𝐵𝜓𝜓 in CHNS is large only in the interfacial regions.
Elastic wave activity does not fill space.

35

Air

Water

Capillary Wave:



What of a Single Eddy?
(Homogenization)



Flux Expulsion
Simplest dynamical problem in MHD (Weiss ‘66, et. seq.)
Closely related to “PV Homogenization”

Field wound-up, “expelled” from eddy
For large Rm, field concentrated in boundary layer of eddy
Ultimately, back-reaction asserts itself for sufficient B0

37

B0

Rm~vL/𝜂𝜂 ≫ 1



How to Describe?

Flux conservation: B0L~bl Wind up: b=nB0 (field stretched)
Rate balance: wind-up ~ dissipation

𝑣𝑣
𝐿𝐿
𝐵𝐵0 ∼

𝜂𝜂
𝑙𝑙2
𝑏𝑏 . 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∼

𝐿𝐿
𝑣𝑣0

𝑅𝑅𝑚𝑚1/3.

𝑙𝑙 ∼ 𝛿𝛿𝐵𝐵𝐵𝐵 ∼ 𝐿𝐿/𝑅𝑅𝑚𝑚1/3 . 𝑏𝑏 ∼ 𝑅𝑅𝑚𝑚1/3𝐵𝐵0 .
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B0

L

b

𝑙𝑙

after n turns:
nl=L

N.B. differs from
Sweet-Parker!



What’s the Physics?

Shear dispersion! (Moffatt, Kamkar ‘82)
𝜕𝜕𝑡𝑡𝐴𝐴 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 = 𝜂𝜂𝛻𝛻2𝐴𝐴 (Shearing coordinates)
𝑣𝑣𝑦𝑦 = 𝑣𝑣𝑦𝑦 𝑥𝑥 = 𝑣𝑣𝑦𝑦𝑦 + 𝑥𝑥𝑣𝑣𝑦𝑦′ + ⋯
𝑑𝑑𝑘𝑘𝑥𝑥
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑦𝑦𝑣𝑣𝑦𝑦′ ,
𝑑𝑑𝑘𝑘𝑦𝑦
𝑑𝑑𝑑𝑑

= 0

𝜕𝜕𝑡𝑡𝐴𝐴 + 𝑥𝑥𝑣𝑣𝑦𝑦′ 𝜕𝜕𝑦𝑦𝐴𝐴 − 𝜂𝜂 𝜕𝜕𝑥𝑥2 + 𝜕𝜕𝑦𝑦2 𝐴𝐴 = 0
𝐴𝐴 = 𝐴𝐴 𝑡𝑡 exp 𝑖𝑖(𝑘𝑘 𝑡𝑡 ⋅ 𝑥⃑𝑥)

(Shear enhanced dissipation annihilates interior field)

So 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≅ 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑚𝑚1/3=(𝑣𝑣𝑦𝑦′
−1)𝑅𝑅𝑚𝑚1/3

39



Single Eddy Mixing -- Cahn-Hilliard

Structures are the key need understand how a single eddy
interacts with 𝜓𝜓 field
Mixing of 𝛻𝛻𝜓𝜓 by a single eddy characteristic time scales?
Evolution of structure?
Analogous to flux expulsion in MHD (Weiss, ‘66)

40

?
𝛻𝛻𝜓𝜓 ↔ 𝐵𝐵

Transport / Relaxation



Single Eddy Mixing -- Cahn-Hilliard
3 stages: (A) the ”jelly roll” stage, (B) the topological evolution stage, and

(C) the target pattern stage.
𝜓𝜓 ultimately homogenized in slow time scale, but metastable target 

patterns formed and merge.

Additional mixing time emerges. 41

(a) t=10

(b) t=70

(c) t=75

(d) t=80

(e) t=85

(f) t=400

(g) t=1500

(h) t=4000

A: Jelly roll B: reconnection C: Target

[Fan et.al. Phys. Rev. E
Rap. Comm. 2017]

Note coarsening!



[Ashourvan et.al. 2016]

Single Eddy Mixing
The bands merge on a time scale long relative to eddy turnover time.
The 3 stages are reflected in the elastic energy plot.
The target bands mergers are related to the dips in the target pattern stage.
The band merger process is similar to the step merger in drift-ZF staircases. 

42
Episodic relaxation-coarsening Cahn-Hilliard dynamics



Back Reaction – Vortex Disruption

(MHD only) (A. Gilbert et.al. ‘16; J. Mak et.al. ‘17)
Demise of kinematic expulsion?

• Magnetic tension grows to react on vorticity evolution!

Recall: 𝑏𝑏 ∼ 𝐵𝐵0(𝑅𝑅𝑚𝑚1/3)
• B.L. field stretched!

and 𝐵𝐵 � 𝛻𝛻𝐵𝐵 = − 𝐵𝐵 2

𝑟𝑟𝑐𝑐
�𝑛𝑛 + 𝑑𝑑

𝑑𝑑𝑑𝑑
( 𝐵𝐵 2

2
)𝑡̂𝑡

|𝐵𝐵 � 𝛻𝛻𝐵𝐵| ≅ 𝑏𝑏2/𝐿𝐿0
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𝑟𝑟𝑐𝑐 ∼ 𝐿𝐿0
𝑑𝑑
𝑑𝑑𝑑𝑑

∼ 𝐿𝐿0−1
vortex scale



Back Reaction – Vortex Disruption

So 𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑧̂𝑧 ⋅ [𝛻𝛻 × (𝐵𝐵 � 𝛻𝛻𝐵𝐵)]
→ 𝜌𝜌𝜌𝜌 ⋅ 𝛻𝛻𝜔𝜔 ∼ 𝑏𝑏2/𝑙𝑙𝐿𝐿0

Feedback → 1 for: 𝑅𝑅𝑅𝑅 𝑣𝑣𝐴𝐴𝐴
𝑢𝑢

2
∼ 1

Critical value to disrupt vortex, end kinematics
Related Alfven wave emission.
Note for 𝑅𝑅𝑅𝑅 ≫ 1 → strong field not required
Will re-appear…
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small BL scale enters

Remember this!

𝑣𝑣𝐴𝐴𝐴2 = 𝐵𝐵02/4𝜋𝜋𝜋𝜋



Some Aspects of 
CHNS Turbulence



MHD Turbulence – Quick Primer
(Weak magnetization / 2D)
Enstrophy conservation broken
Alfvenic in Brms field – “magneto-elastic” (E. Fermi ‘49)

𝜖𝜖 = �𝑣𝑣2 2

𝑙𝑙2
𝑙𝑙

𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟
⟹ 𝐸𝐸 𝑘𝑘 = 𝜖𝜖𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟

1/2𝑘𝑘−3/2

Dual cascade:

What is dominant (A. Pouquet)?
• conventional wisdom focuses on energy
• yet 𝐴𝐴2 conservation – freezing-in law!?
 Is the inverse cascade of 〈𝐴𝐴2〉 the ‘real’ process, with energy dragged to  

small scale by fluid?
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Forward in energy
Inverse in 𝐴𝐴2 ∼ 𝑘𝑘−7/3

reduced transfer rate:
Kraichnan



Ideal Quadratic Conserved Quantities
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• 2D CHNS

1. Energy

𝐸𝐸 = 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝐵𝐵 = �(
𝑣𝑣2

2
+
𝜉𝜉2𝐵𝐵𝜓𝜓2

2
)𝑑𝑑2𝑥𝑥

2. Mean Square Concentration

𝐻𝐻𝜓𝜓 = �𝜓𝜓2 𝑑𝑑2𝑥𝑥

3. Cross Helicity

𝐻𝐻𝐶𝐶 = � 𝑣⃑𝑣 � 𝐵𝐵𝜓𝜓 𝑑𝑑2𝑥𝑥

• 2D MHD
1. Energy

𝐸𝐸 = 𝐸𝐸𝐾𝐾 + 𝐸𝐸𝐵𝐵 = �(
𝑣𝑣2

2
+
𝐵𝐵2

2𝜇𝜇0
)𝑑𝑑2𝑥𝑥

2. Mean Square Magnetic Potential

𝐻𝐻𝐴𝐴 = �𝐴𝐴2 𝑑𝑑2𝑥𝑥

3. Cross Helicity

𝐻𝐻𝐶𝐶 = � 𝑣⃑𝑣 � 𝐵𝐵𝑑𝑑2𝑥𝑥

Dual cascade expected!



Scales, Ranges, Trends

Fluid forcing Fluid straining vs Blob coalescence
Straining vs coalescence is fundamental struggle of CHNS turbulence
Scale where turbulent straining ~ elastic restoring force (due surface tension):

Hinze Scale
𝐿𝐿𝐻𝐻~(

𝜌𝜌
𝜉𝜉

)−1/3𝜖𝜖Ω
−2/9

48

How big is a raindrop?
• Turbulent straining 

vs capillarity.
• 𝜌𝜌𝑣𝑣2 vs 𝜎𝜎/𝑙𝑙.
[Hinze 1955]



Scales, Ranges, Trends
Elastic range: 𝐿𝐿𝐻𝐻 > 𝑙𝑙 > 𝐿𝐿𝑑𝑑: where elastic effects matter.

𝐿𝐿𝐻𝐻/𝐿𝐿𝑑𝑑~(𝜌𝜌
𝜉𝜉

)−1/3𝜈𝜈−1/2𝜖𝜖Ω
−1/18 Extent of the elastic range

𝐿𝐿𝐻𝐻 ≫ 𝐿𝐿𝑑𝑑 required for large elastic range case of interest
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𝐻𝐻𝜓𝜓 Spectrum
𝐻𝐻𝑘𝑘
𝜓𝜓

𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 𝑘𝑘𝐻𝐻 𝑘𝑘𝑑𝑑

Elastic Range
Hydro-

dynamic 
Range

(𝐻𝐻𝑘𝑘
𝜓𝜓 = 𝜓𝜓2

𝑘𝑘)



• Key elastic range physics: Blob coalescence
• Unforced case: 𝐿𝐿 𝑡𝑡 ~𝑡𝑡2/3.

(Derivation: 𝑣⃑𝑣 � 𝛻𝛻𝑣⃑𝑣~ 𝜉𝜉2

𝜌𝜌
𝛻𝛻2𝜓𝜓𝜓𝜓𝜓𝜓 ⇒ 𝐿̇𝐿2

𝐿𝐿
~ 𝜎𝜎
𝜌𝜌
1
𝐿𝐿2

)

• Forced case: blob coalescence arrested at Hinze scale 𝐿𝐿𝐻𝐻.

• Blob coalescence suggests inverse cascade is fundamental here.

Scales, Ranges, Trends
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• 𝐿𝐿 𝑡𝑡 ~𝑡𝑡2/3 recovered
• Blob growth arrest observed
• Blob growth saturation scale 

tracks Hinze scale (dashed lines) 



Cascades: Comparing the Systems

Blob coalescence in the elastic range of CHNS is analogous to flux 
coalescence in 2D MHD.
Suggests inverse cascade of 〈𝜓𝜓2〉 in CHNS.
Supported by statistical mechanics studies (absolute equilibrium 

distributions).
Arrested by straining.
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MHD CHNS



Cascades  - the Story

So, dual cascade:
• Inverse cascade of 𝜓𝜓2

• Forward cascade of 𝐸𝐸
Inverse cascade of 𝜓𝜓2 is formal expression of blob coalescence 

process generate larger scale structures till limited by straining 
Forward cascade of 𝐸𝐸 as usual, as elastic force breaks enstrophy 

conservation 
Forward cascade of energy is analogous to counterpart in 2D MHD
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Cascades
Spectral flux of 𝐴𝐴2 : Spectral flux of 𝜓𝜓2 :

MHD: weak small scale forcing on 𝐴𝐴 drives inverse cascade
CHNS: 𝜓𝜓 is unforced aggregates naturally ⟺ structure of free energy
Both fluxes negative inverse cascades

53

MHD

CHNS



Power Laws
 𝐴𝐴2 spectrum: 𝜓𝜓2 spectrum:

Both systems exhibit 𝑘𝑘−7/3 spectra.
Inverse cascade of 𝜓𝜓2 exhibits same power law scaling, so 

long as 𝐿𝐿𝐻𝐻 ≫ 𝐿𝐿𝑑𝑑, maintaining elastic range: Robust process.
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CHNSMHD
𝑓𝑓𝐴𝐴



Power Laws

Derivation of -7/3 power law:
For MHD, key assumptions:

• Alfvenic equipartition (𝜌𝜌⟨𝑣𝑣2⟩ ∼ 1
𝜇𝜇0
⟨𝐵𝐵2⟩ )

• Constant mean square magnetic potential dissipation rate 𝜖𝜖𝐻𝐻𝐻𝐻, so

𝜖𝜖𝐻𝐻𝐻𝐻~ 𝐻𝐻𝐴𝐴

𝜏𝜏
~(𝐻𝐻𝑘𝑘𝐴𝐴)

3
2𝑘𝑘

7
2.

Similarly, assume the following for CHNS:
• Elastic equipartition (𝜌𝜌⟨𝑣𝑣2⟩ ∼ 𝜉𝜉2⟨𝐵𝐵𝜓𝜓2 ⟩)
• Constant mean square magnetic potential dissipation rate 𝜖𝜖𝐻𝐻𝜓𝜓, so

𝜖𝜖𝐻𝐻𝜓𝜓~𝐻𝐻𝜓𝜓

𝜏𝜏
~(𝐻𝐻𝑘𝑘

𝜓𝜓)
3
2𝑘𝑘

7
2.
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𝑓𝑓𝜙𝜙

CHNS
More Power Laws

Kinetic energy spectrum (Surprise!):

2D CHNS: 𝐸𝐸𝑘𝑘𝐾𝐾~𝑘𝑘−3;

2D MHD: 𝐸𝐸𝑘𝑘𝐾𝐾~𝑘𝑘−3/2.

The -3 power law:
• Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.
• Remarkable departure from expected -3/2 for MHD. Why? 

Why does CHNSMHD correspondence hold well for 
𝜓𝜓2

𝑘𝑘~ 𝐴𝐴2 𝑘𝑘~𝑘𝑘−7/3, yet break down drastically for energy???
What physics underpins this surprise??
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Interface Packing Matters! – Pattern!
Need to understand differences, as well as similarities, between 

CHNS and MHD problems. 

57

MHD CHNS

2D CHNS:
Elastic back-reaction is limited to regions of 

density contrast i.e. |𝐵𝐵𝜓𝜓| = |𝛻𝛻𝛻𝛻| ≠ 0.
As blobs coalesce, interfacial region 

diminished. ‘Active region’ of elasticity decays.

2D MHD:
 Fields pervade system.



Interface Packing Matters!
Define the interface packing fraction 𝑃𝑃:

𝑃𝑃 =
# of grid points where |𝐵𝐵𝜓𝜓|>𝐵𝐵𝜓𝜓

𝑟𝑟𝑟𝑟𝑟𝑟

# of total grid points

𝑃𝑃 for CHNS decays;
𝑃𝑃 for MHD stationary!

𝜕𝜕𝑡𝑡𝜔𝜔 + 𝑣⃑𝑣 � 𝛻𝛻𝛻𝛻 = 𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔: small 𝑃𝑃 local back reaction is

weak.

Weak back reaction reduce to 2D hydro k-spectra

Blob coalescence coarsens interface network
58



What Are the Lessons?

Avoid power law tunnel vision!
Real space realization of the flow is necessary to understand key 

dynamics. Track interfaces and packing fraction 𝑃𝑃.
One player in dual cascade (i.e. 𝜓𝜓2 ) can modify or constrain the 

dynamics of the other (i.e. 𝐸𝐸).
Against conventional wisdom, 𝜓𝜓2 inverse cascade due to blob 

coalescence is the robust nonlinear transfer process in CHNS 
turbulence.
Begs more attention to magnetic helicity in 3D MHD.
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Transport and Beyond
- Active Scalar Transport

- Two Stage Evolution

- Revisiting Quenching



Physics: Active Scalar Transport
• Magnetic diffusion, 𝜓𝜓 transport are cases of active scalar transport
• (Focus: 2D MHD) (Cattaneo, Vainshtein ’92, Gruzinov, P. D. ’94, ’95)

𝜕𝜕𝑡𝑡𝐴𝐴 + 𝛻𝛻𝜙𝜙 × 𝑧̂𝑧 � 𝛻𝛻𝛻𝛻 = 𝜂𝜂𝛻𝛻2𝐴𝐴
𝜕𝜕𝑡𝑡𝛻𝛻2𝜙𝜙 + 𝛻𝛻𝜙𝜙 × 𝑧̂𝑧 � 𝛻𝛻𝛻𝛻2𝜙𝜙 = 𝛻𝛻𝐴𝐴 × 𝑧̂𝑧 � 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝛻𝛻2𝜙𝜙

• Seek 𝑣𝑣𝑥𝑥𝐴𝐴 = −𝐷𝐷𝑇𝑇
𝜕𝜕 𝐴𝐴
𝜕𝜕𝜕𝜕

− 𝜂𝜂 𝜕𝜕 𝐴𝐴
𝜕𝜕𝜕𝜕

• Point: 𝐷𝐷𝑇𝑇 ≠ ∑𝑘𝑘 |𝑣𝑣𝑘𝑘|2 𝜏𝜏𝑘𝑘
𝐾𝐾 , often substantially less

• Why: Memory! ↔ Freezing-in
• Cross Phase

scalar mixing – the usual

back-reactionturbulent resistivity



Conventional Wisdom

• [Cattaneo and Vainshtein 1991]: turbulent 
transport is suppressed even for a weak large 
scale magnetic field is present.

• Starting point: 
• Assumptions: 

• Energy equipartition:
• Average B can be estimated by:

• Define Mach number as:
• Result for suppression stage:
• Fit together with kinematic stage result: 
• Lack physics interpretation of 𝜂𝜂𝑇𝑇 !

𝑀𝑀2 = 𝑣𝑣𝐴𝐴 2/ �𝑣𝑣2 = 𝑣𝑣2 /𝑣𝑣𝐴𝐴2 = 𝑣𝑣2 /
1
𝜇𝜇0𝜌𝜌

𝐵𝐵2



Origin of Memory?
• (a) flux advection vs flux coalescence

• intrinsic to 2D MHD (and CHNS)
• rooted in inverse cascade of 𝐴𝐴2 - dual cascades

• (b) tendency of (even weak) mean magnetic field to “Alfvenize”
turbulence [cf: vortex disruption feedback threshold!]

• Re (a): Basic physics of 2D MHD



Memory Cont’d

• v.s.

• Obvious analogy: straining vs coalescence; CHNS
• Upshot: closure calculation yields:

Γ𝐴𝐴 = −∑𝑘𝑘′[𝜏𝜏𝑐𝑐
𝜙𝜙 𝑣𝑣2 𝑘𝑘′ − 𝜏𝜏𝑐𝑐𝐴𝐴 𝐵𝐵2 𝑘𝑘′]

𝜕𝜕 𝐴𝐴
𝜕𝜕𝜕𝜕

+ ⋯

flux of potential competition
scalar advection vs. coalescence (“negative resistivity”)

(+) (-)

N.B.:
Coalescence 
 Negative diffusion 
 Bifurcation



Conventional Wisdom, Cont’d

• Then calculate 〈𝐵𝐵2〉 in terms of 〈𝑣𝑣2〉. From:

• Multiplying by 𝐴𝐴 and sum over all modes:

• Therefore: 
• Define Mach number as:
• Result:  
• This theory is not able to describe 𝐵𝐵0 → 0, though 

may be extended (?!)

Dropped stationary case Dropped periodic boundary  introduce nonlocality?!



Is this story “the truth, the whole truth and 

nothing but the truth’?

 A Closer Look



Two Stage Evolution:

• 1. The suppression stage: 
the (large scale) magnetic
field is sufficiently strong so 
that the diffusion is 
suppressed.

• 2. The kinematic decay stage: 
the magnetic field is 
dissipated so the diffusion 
rate returns to the kinematic 
rate. 

• Suppression is due to the 
memory induced by the 
magnetic field.

suppression
stage

kinematic
stage



New Observations

• With no imposed 𝐵𝐵0, in suppression stage:

• v.s. same run, in kinematic stage (trivial):

Field 
Concentrated!



New Observations Cont’d

• Nontrivial structure formed in real space during the
suppression stage.

• 𝐴𝐴 field is evidently composed of “blobs”.
• The low 𝐴𝐴2 regions are 1-dimensional. 
• The high 𝐵𝐵2 regions are strongly correlated with low 
𝐴𝐴2 regions, and also are 1-dimensional.

• We call these 1-dimensional high 𝐵𝐵2 regions 
``barriers'', because these are the regions where 
mixing is reduced, relative to 𝜂𝜂𝐾𝐾.
 Story one of ‘blobs and barriers’



Evolution of PDF of A

• Probability
Density
Function (PDF)
in two stage:

• Time evolution:
horizontal “Y”.

Δ𝐴𝐴

suppression
stage

kinematic
stage

• The PDF changes from double 
peak to single peak as the system 
evolves from the suppression 
stage to the kinematic stage.



2D CHNS and 2D MHD

• The 𝐴𝐴 field in 2D MHD in suppression stage is
strikingly similar to the 𝜓𝜓 field in 2D CHNS (Cahn-
Hilliard Navier-Stokes) system:

𝜓𝜓 field in 2D CHNS 𝐴𝐴 field in 2D MHD
v.s.



Unimodal Initial Condition

• One may question whether the bimodal PDF feature is 
purely due to the initial condition. The answer is No.

• Two non-zero peaks in PDF of A still arise, even if the 
initial condition is unimodal.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)



The problem of the mean field 〈𝑩𝑩〉
What does mean mean?

• 〈𝐵𝐵〉 depends on the averaging 
window.

• With no imposed external field, 
B is highly intermittent, therefore 
the 〈𝐵𝐵〉 is not well defined.

𝑥𝑥

𝐴𝐴

| 𝐵𝐵 | ∼ 𝐴𝐴2 /𝐿𝐿0✓ 𝐵𝐵 not well defined

v.s.

Reality

𝑥𝑥

𝐴𝐴



Revisiting Quenching



New Understanding
• Summary of important length scales:

• System size 𝐿𝐿0
• Envelope size 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 emergent (blob)
• Stirring length scale 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
• Turbulence length scale 𝑙𝑙, here we use Taylor microscale 𝜆𝜆
• Barrier width 𝑊𝑊 emergent

• Quench is not uniform. Transport coefficients differ in 
different regions.

• In the regions where magnetic fields are strong, 
𝑅𝑅𝑅𝑅/𝑀𝑀2 is dominant. They are regions of barriers.

• In other regions, i.e. Inside blobs, 𝑅𝑅𝑅𝑅/𝑀𝑀′2 is what 
remains. 𝑀𝑀′2 ≡ 𝑉𝑉2 / 1

𝜌𝜌
𝐴𝐴2 /𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒2



New Understanding, cont’d

• From
• Retain 2nd term on RHS. Average taken over an 

envelope/blob scale.
• Define diffusion (closure):

• Plugging in:
• For simplicity: 
• where 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 is the envelope size. Scale of 𝛻𝛻2〈𝐴𝐴2〉.
• Define new strength parameter:
• Result:  



𝜂𝜂𝑇𝑇 = 𝑉𝑉 𝑙𝑙 / 1 +
𝑅𝑅𝑚𝑚
𝑀𝑀2 +

𝑅𝑅𝑚𝑚
𝑀𝑀′2

• Barriers:

𝜂𝜂𝑇𝑇 ≈ 𝑉𝑉 𝑙𝑙 / 1 + 𝑅𝑅𝑚𝑚
𝐵𝐵 2

𝜌𝜌 �𝑉𝑉2

• Blobs:

𝜂𝜂𝑇𝑇 ≈ 𝑉𝑉 𝑙𝑙 / 1 + 𝑅𝑅𝑚𝑚
𝐴𝐴2

𝜌𝜌𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒2 �𝑉𝑉2

• Quench stronger in barriers, ,non-uniform

Strong field

Weak effective field



Barrier Formation



Formation of Barriers

• How do the barriers form?

• From above, strong B regions can support negative incremental 

𝜂𝜂𝑇𝑇 = 𝛿𝛿Γ𝐴𝐴/𝛿𝛿 −𝛻𝛻𝐴𝐴 < 0, suggesting clustering

• 𝜂𝜂𝑇𝑇 > 0

• Positive feedback:  a twist on a familiar theme

B is strong in a specific region diffusion of A is negative

∇A increasesB in that region increases

flux coalescence



Formation of Barriers,  Cont’d

• Negative resistivity leads to barrier formation.
• The S-curve reflects due to the dependence of Γ𝐴𝐴 on B.
• When slope is negative negative (incremental) resistivity.

Γ𝐴𝐴

- 𝐵𝐵

unstable
negative

Barriers 

Bistability of Γ𝐴𝐴 vs 𝛻𝛻𝐴𝐴

 a familiar theme

Landscape 
unknown

Quenched 𝜂𝜂𝑇𝑇

Kinematic

𝜂𝜂𝐾𝐾



Describing the Barriers

• How to measure the barrier width 𝑊𝑊.
• Starting point: 

• Use 〈𝐴𝐴2〉 to calculate Δ𝐴𝐴
• Define the barrier regions as: 
• Define barrier packing fraction:
• Use use the magnetic fields in the barrier regions to 

calculate the magnetic energy:
• Thus
• So barrier width can be estimated by:
N.B. All magnetic energy in the barriers

arbitrary threshold



Describing the Barriers

• Time evolution of 𝑃𝑃 and 𝑊𝑊:
- P, W collapse in decay
- 𝑀𝑀′ rises

• Sensitivity of 𝑊𝑊:
• 𝐴𝐴0 or 1/𝜇𝜇0𝜌𝜌 greater 𝑊𝑊 greater;
• 𝑓𝑓0 greater, 𝑊𝑊 smaller; (ala’ Hinze)
• 𝑊𝑊 not sensitive to 𝜂𝜂 or 𝜈𝜈.

(a) (b) (c) (d) (e)



Staircase (inhomogeneous Mixing, Bistability)

• Staircases emerge spontaneously! - Barriers
• Initial condition is the usual cos function (bimodal)
• The only major sensitive parameter (from runs above) 

is the forcing scale is k=32 (for all runs above k=5).
• Resembles the staircase in MFE.

(1) (2) (3) (4)



• Magnetic fields suppress turbulent diffusion in 2D 
MHD by: formation of intermittent transport barriers.

• Magnetic structures:
• Quench not uniform:

• Barriers form due to negative resistivity:

• Formation of “magnetic staircases” observed for some 
stirring scale

Conclusions / Summary

Barriers – thin, 1D strong field regions
Blobs – 2D, weak field regions

barriers, strong B blobs, weak B, 𝛻𝛻2〈𝐴𝐴2〉 remains

Γ𝐴𝐴

- 𝐵𝐵
flux coalescence



Future Works

• Extension of the transport study in MHD:
• Numerical tests of the new 𝜂𝜂𝑇𝑇 expression ?
• What determines the barrier width and packing fraction ?
• Why does layering appear when the forcing scale is small ?
• What determines the step width, in the case of layering 
• The transport study may also be extended to 3D MHD ( 𝑨𝑨 ⋅ 𝑩𝑩

important instead of 𝐴𝐴2 ) 

• Other similar systems can also be studied in this spirit. e.g. 
Oldroyd-B model for polymer solutions. (drag reduction)

• Reduced Model of Magnetic Staircase



General Conclusions

• Dual (or multiple) cascades can interact with each other, and 
one can modify another.

• We also show how a length scale, e.g. the Hinze scale in 2D 
CHNS, emerges from the balance of kinetic energy and elastic 
energy in blobby turbulence.  blob scale

• We see that negative incremental diffusion (flux/blob 
coalescence) can lead to novel real space structure in a simple 
system.

• Avoid fixation on k-spectra/power laws. Real space structure 
encodes info re: interactions.



• PRE Rap Comm 99, 041201 (2019)

 Active Scalar Transport 2D MHD

• PoP 25, 055702 (2018)

 Plasma/MHD Connection

• PRE Rap Comm 96, 041101 (2017)

 Single Eddy

• Phys Rev Fluids 1, 054403 (2016)

 Turbulence

Reading

Fan, P.D., Chacon:

Thank you!
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