Some Lessons From Simple Models

P.H. Diamond

With: Runlai Xu, Fredy Ramirez

UC San Diego

菊池 祭 2023 - Nagoya

1

<u>Outlook</u>

- Explore Fundamental Processes in Depth \rightarrow develop intuition
- Exploit <u>detailed</u> <u>comparative</u> <u>studies</u> of simple systems
- <u>Contrast</u> to "the usual" romp through hideous complexity...
- → Skip the ballooning mode formalism...

Topics

a.) Turbulence Spreading

b.) Staircase Formation and Evolution

Wake-Classic Example of Turbulence Spreading

Similarity Theory Mixing Length Theory $W \sim (F_d/\rho U^2)^{1/3} X^{1/3}$,

 $F_d \sim C_D \rho U^2 A_s$

 C_D independent of viscosity at high Re

- Physics: Entrainment of laminar region by expanding turbulent region. Key is <u>turbulent mixing</u>.
- ☐ Townsend '49:
 - Distinction between momentum transport eddy viscosity—and fluctuation energy transport

— Jet Velocity:
$$V = \frac{\langle V_{perp} * V^2 \rangle}{\langle V^2 \rangle}$$

C.f. Ting Long, this meeting

Spreading in MFE

- Numerous gyrokinetic simulations
 N.B. <u>Basic</u> studies absent ...
- ⇒ Diagnosis primarily by: − color VG
 - tracking of "Front"
- Theory

 Nonlinear Intensity diffusion models
 Reaction-Diffusion Equations

Recently:

- \Rightarrow Renewed interest in context of λ_q broadening problem
- \Rightarrow Simulations measure correlation of spreading $\langle \tilde{V}_r \tilde{\rho} \tilde{\rho} \rangle$ with λ_q broadening
- □ Intermittency effects

Spreading Studies

 \Box > 2D Box, Localized Stirring Zone

 \Box > Comparison of:

<u>System</u>	Features
2D Fluid	Selective Decay, Vortices How to Measure Spreading?
2D MHD with weak $\underline{B_0}$	Alfvenization, Vortex Bursting, Zeldovich number
Forced Hasegawa-Mima with Zonal Flow	Waves + Eddies + ZF Conversion, Dimits regime etc.

Sneak Preview of Results

<u>System</u>

a.) 2D Fluid:

b.) 2D MHD + Weak <u>Bo</u>

c.) Hasegawa-Mima + Zonal Flow (ongoing)

<u>Results</u>

- Spreading as a selective decay process
- Keeping Score: Enstrophy, Energy fluxes, jet velocity?
- 'Ballistic' spreading $w_t \sim t$ \iff dipole vortices
- Saturation of spreading
- Vortex bursting + Alfvenization
- Zeldovich number $Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$ as critical parameter
- Potential Enstrophy Flux sensitive to ZF damping
- ZF blocking Dimits like regime

Numerics: 2D Dedalus simulation

Box Characteristics:

- Grid Size: 512×512
- Doubly Periodic boundary condition

Forcing Characteristics:

- Superposition of Sinusoidal Forcing
- Spectrum: Constant E(k), ensuring uniform energy distribution across wave numbers.
- Correlation Length: Approximately 1/10 of the box scale, some room for dual cascade.
- Localized through a Heaviside step function.
- Phase of forcing randomized every typical eddy turnover time

2D Fluid

<u>2D Fluid</u> - the prototype

Vorticity Equation: $\frac{D\omega}{Dt} = \nu \nabla^2 \omega - \alpha \omega$

Key Physics:

- Inviscid, unforced invariants $\begin{cases} \text{Energy } E = \int d^2 x (\nabla \varphi)^2 / 2 \\ \text{Enstrophy } \Omega = \int d^2 x (\nabla^2 \varphi)^2 / 2 \end{cases}$

□⊃ Dual Cascade

(Kraichnan)

2D Fluid, Cont'd

⇒ Selective Decay

Forward 'Cascade' enstrophy \rightarrow Senses viscosity Inverse 'Cascade' energy \rightarrow Senses drag

For Final State of Decay:

Bretherton + Haidvogel

⇒ Role Coherent Structures (Vortices)

 emergence isolated coherent vortices → survive decay

$$\frac{d}{dt}\nabla\omega = (s^2 - \omega^2)^{1/2} \qquad \qquad \omega = \nabla^2 \varphi \to \text{vorticity} \\ s = \partial_{xy}^2 \varphi \to \text{shear}$$

N.B. : Most of simulation domain is in decay state !

2D Fluid

 \rightarrow Forcing layer

- Most of system in state of Selective Decay !
- Need Consider / Compare :

as diagnostic of "intensity spreading".

What Happens ?

In Far Field, away from Forcing layer \Box

Spreading is intermittent

\Rightarrow What Happens, cont'd

At Re ~ 2000 (marginal resolution):

- Dipoles, Filaments cluster
- Fractalized spreading front?!

On Keeping Score

 \Rightarrow Loosely, interested in scaling of expansion of turbulent region

x

Keeping Score, cont'd

⇒ Approaches 1

N.B. :

- Quantity weighting can differ; depending on quantity
- RMS velocity sensitive to how computed

Table 1:	Table	describing	various	velocity a	and	transport	parameters.
----------	-------	------------	---------	------------	-----	-----------	-------------

Parameter	Symbol	Equation	Description
RMS Velocity	V _{rms}	$\frac{V_{rms}}{\sqrt{\frac{1}{N}\sum_{i=1}^{N}v_{i}^{2}}} =$	Root-mean-square velocity of turbulence, also known as tur- bulence intensity. This can ei- ther be measured near the forc- ing zone and averaged horizon- tally for a characteristic veloc- ity as a basis of comparison, or measured globally to obtain global energy.
Quantity- Weighted RMS Distance	X_{W-rms}	$\begin{array}{c} X_{W-rms} = \\ \sqrt{\frac{\int \delta(x) ^2 Q(x) dx}{\int Q(x) dx}} \end{array}$	Quantity-weighted root-mean- square position represents the location of the quantity of in- terest, typically energy or en- strophy. One value is gener- ated for each time. The quan- tity Q is usually energy or en- strophy.
Quantity- Weighted RMS Spreading Velocity	V _{W-rms}	V_{W-rms} is the slope of X_{W-rms} plotted against time	Quantity-Weighted RMS Spreading Velocity represents the bulk motion. This is more comprehensive than the front velocity.

Keeping Score, cont'd

⇒ Approaches 1

- Front velocity is MFE favorite sensitive to 1D projection, definition
- Transport Flux $\langle V_y E \rangle$, $\langle V_y \Omega \rangle$, most physical, clearest connection to dynamics of 2D Fluid

but: Sensitive to viscosity and selective decay

 Jet velocity very sensitive to viscosity, field chosen

Front Velocity	Vfront	V_{front} is the slope obtained from tracking the outermost turbulent patch	This is usually comparable to V_{W-rms} , although a front doesn't exist for low Reynolds numbers.
Transport Flux Density of a certain quantity	Φ_Q	$\Phi_Q = \langle Q * V_{perpendicular}$ 3	The amount of a certain quan- bity passing through a unit length per unit time; flux is the integral of flux density through the horizontal surface, which bounds half of the region and can be related to the rate of change of the quantity in that region.
Transport "jet" Velocity	V_Q	$\frac{V_Q}{} < Q>$	Also known as normalized flux density. Average is usually taken horizontally. This veloc- ity is separately obtained for each time.

Keeping Score, cont'd

Observation:

- —Lower Re \rightarrow Significant speed, 'front' fluctuations due to variability in dipole population
- -Transport velocities quite sensitive to viscosity and selective decay

i.e. $\langle V_{y}\Omega \rangle$ drops $\langle V_{y}/\Omega \rangle / \langle \Omega \rangle$ rises } For higher viscosity

- -Formation of dipoles follows decay of enstrophy
- Dipoles ultimately determine spreading

\Rightarrow N.B. <u>Dipole Vortex</u>

Physical origin of "ballistic spreading"?!
i.e. ensemble dipoles expands linearly in time

Results

Re ~ 5000

 Ω -weighted rms distance

—Constant spreading speed for enstrophy, i.e., $l \sim ct$

 $-c/V_{rms} \sim 0.1$

-Consistent with picture of dipole vortices carrying spreading flux

 $\alpha = 1$

Results, cont'd

Re ~ 5000

- *E*–weighted rms distance
- —Constant spreading speed for energy, i.e., $\alpha \simeq 1$

Average RMS Distance

- $-c/V_{rms} \sim 0.1$
- —Lager dipoles ↔ more energy → increases fluctuations relative to enstrophy case

Average RMS Distance vs Time for energy

Results, cont'd

Re ~ 200

Low Re → increased scatter in
 L vs t
 → dipole scatter → intermittent

pattern \rightarrow front not identifiable

Results, cont'd

 \Rightarrow PDF of spreading (vorticity) at given t.

⇒ Calculate enstrophy-weighted rms distance for each position X; plot histogram

 \Rightarrow Note skewed structure.

Summary - 2D Fluid

- Coherent structures Dipole vortices mediate spreading of turbulent region
- Mixed region expands as $w \sim t$, consistent with dipoles.
- No discernable "Front", spreading is strongly intermittent. (space+time)
- Spreading PDF is non-trivial, exhibits tail.
- Turbulence spreading strongly non-diffusive.

2D MHD + Weak B_0

2D MHD

- The equations:
$$\frac{d}{dt}(\nabla^2 \varphi) = \nu \nabla^2 \nabla^2 \varphi + \nabla A \times \hat{\mathbf{z}} \cdot \nabla \nabla^2 A + \tilde{f}$$
$$\frac{d}{dt}A = \eta \nabla^2 A$$
$$\frac{d}{dt} = \partial_t + \nabla \varphi \times \hat{\mathbf{z}} \cdot \nabla$$

- Inviscid Invariants: $E = \langle V^2 + B^2 \rangle$, $H = \langle A^2 \rangle$, $H_c = \langle \vec{V} \cdot \vec{B} \rangle$ Conservation of *H* is Key !
- Consider weak mean magnetic field: $B = B_0(y)\hat{x}$ $B_0(y) \sim B_0 \sin(y) \Rightarrow$ initial imposed pattern
- As before, localized forcing region, effectively unmagnetized

\Rightarrow 2D MHD

- Cowling's Theorem: No dynamo in 2D

- Consequence of decay $\langle A^2 \rangle$

 \implies Field ultimately decays

Key Physics of 2D MHD

Lorentz force suppresses inverse kinetic energy cascade. -Inverse cascade $\langle A^2 \rangle$ develops

VS.

- Single Eddy: Expulsion (Weiss'66)

Vortex Bursting (Mak. 2017)

Key Parameter:
$$Z = Rm \frac{V_{A0}^2}{V_E^2}$$

 $Z \sim 1$ bounds the two regimes

Expulsion:

Key Physics of 2D MHD, cont'd

- Turbulent Diffusion: (Cattaneo + Vainshtein '92; Gruzinov + P.D. '94)

Closure + $\langle A^2 \rangle$ conservation \Rightarrow Quenched Diffusion of B - field From: $D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c$ To: $D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c / [1 + R_m V_{A0}^2 / \langle \tilde{V}^2 \rangle] \sim D_{Kin} / (1 + Z)$

- Once again,

Key Parameter:
$$Z = R_m \frac{V_{A0}^2}{\langle \tilde{V}^2 \rangle}$$

- N.B.: V_{A0} is initial weak mean magnetic field
 - R_m large...

Crux of the Issue!?

rightarrow Hydrodynamics: Dipole vortex 'Carries' turbulence energy rightarrow spreading

 \implies But... weak B_0 can 'burst' vortices \implies

converts dipole kinetic energy to Alfven waves, propagating laterally, and dissipation.

 \Rightarrow So, can a <u>weak</u> B_0 block spreading in 2D MHD !?

\Rightarrow Single Dipole in weak B_0

Note wrapping filament tends to cancel and push on dipole, so it distorts and ultimately bursts

Filament and vortex bursting. Concentration at small scale is fast dissipation

Connection: vortex busting \leftrightarrow MHD cascade singularity?!

Single Dipole Penetration

-> Close Look at Vorticity Field

Bursting/Filamentation

- Z=3, Rm≈50, Re≈500, B=0.01
- Dipoles evident at early times, but encounter stronger field as rise/sink
- Vortex bursting occurs at later times \Longrightarrow Spreading halted.

⇒ Vorticity Field for Z>1

Vorticity Plot at t=176

Fate of single Dipole

- "Vortices" barely evident
- Vorticity residual is ~ horizontal filaments, consequence of vortex bursting

 \leftrightarrow

Spreading vs. Z - Turbulence

Saturation distance L vs. Z - Now consider turbulence: Front Saturation Distance 2.0 **RMS Saturation Distance** 1.8 Kinetic Energy Stopping length decreases with increasing $Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$ 1.6 N.B. Z reflects both R_m and B_0 1.4 - Systematic difference between Front and 1.2 **RMS** saturation evident 1.0 × Insight from vortex studies useful 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Time evolution of Spreading

-> 2D MHD: Summary

- Weak *B*₀ allows vortex bursting
- \int
- Conversion dipole KE to Alfven waves, dissipation
- Spreading <u>saturated</u> by weak $\underline{B_0}$ i.e. advance of kinetic energy blocked

$$- Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$$

but:

- Bursting dynamics complex \implies May introduce additional dependencies on ν , P_m

Drift Wave – Zonal Flow Turbulence

Hasegawa – Mima + Zonal Flow

H-M + Zonal Flow System

- System:

$$\frac{d}{dt} \left(\tilde{\phi} - \rho_s^2 \nabla_{\perp}^2 \tilde{\phi} \right) + v_* \frac{\partial \tilde{\phi}}{\partial y} + v_{*u} \frac{\partial \tilde{\phi}}{\partial y} = 0$$
$$\frac{d}{dt} = \frac{\partial}{\partial t} + \bar{v}_z \frac{\partial}{\partial y} + \nabla \tilde{\phi} \times \hat{z} \cdot \nabla$$
$$\frac{\partial}{\partial t} \nabla_x^2 \phi_z + \frac{\partial}{\partial r} \left\langle \tilde{v}_r \nabla_{\perp}^2 \tilde{\phi} \right\rangle + \mu \nabla_x^2 \phi_z = 0$$

- viscosity controls small scales
- drag controls zonal flow

- conserved: Energy
$$\longrightarrow \left\langle \tilde{\phi}^2 + \rho_s^2 (\nabla \tilde{\phi})^2 \right\rangle$$
 Potential Enstrophy $\longrightarrow \left\langle \left(\tilde{\phi} - \rho_s^2 \nabla^2 \tilde{\phi} \right)^2 \right\rangle$
N.B. : For waves

H-M + Zonal Flow System, cont'd

→ Now: waves $\omega = \omega_*/1 + k_\perp^2 \rho_s^2$, v_{gr} eddies \tilde{v} { $\tilde{v} vs v_* \rightarrow$ zonal mode (symmetry) {mixing length

i.e.
$$\Rightarrow$$
 Potential Enstrophy Flux: $\begin{cases} \sum_{k} v_{gr}(k) u_{k} \rightarrow \text{and other} \\ \langle \tilde{v}_{r} \tilde{u} \rangle \rightarrow 3^{rd} \text{ order} \end{cases}$

N.B. 2 channels for "turbulence spreading"

-Branching ratio, vs. Ku number ?

H-M + Zonal Flow System, cont'd

- \rightarrow Enter the Zonal Flow...
 - Multiple channels for NL interaction
 - But with $ZF \leftrightarrow$ eddy, wave coupling to ZF dominant
 - Mode of minimal inertia, damping, transport

 \Rightarrow energy coupled to ZF ($\tilde{v}_r=0)$ cannot "spread"

\implies For clarity

Contrast:

⇒ spreading in presence of fixed, externally prescribed shear layer

Here:
$$\rightarrow$$
 Forcing $\rightarrow \{ Waves \} \rightarrow Zonal flow \}$

ZF is self-generated

: forcing (\tilde{v}_{rms}, Re) + drag \Rightarrow control parameters

→ "weak" and "strong" Turbulence Regimes

$$v_{gr}$$
 vs v_r

Results (Preliminary / Ongoing)

Expected:

Zonal velocity decreases with increasing drag

Fluctuation intensity <u>increases</u> as drag increases

- Potential enstrophy flux <u>increases</u> as drag increases.
- $\langle \tilde{v}_r \tilde{u} \rangle \rightarrow 0$ as $\mu \rightarrow 0$ is "Dimits regime" for turbulence spreading. Spreading vanishes as power coupled to Z.F.
- Self-generated barrier to spreading.

Summary - Drift Wave Turbulence

- \rightarrow Study ongoing, Several questions identified
- \rightarrow Dimits regime limit for spreading discovered

Wish List:

 \rightarrow Potential Enstrophy Penetration PDF vs. Ku \Longrightarrow Waves vs. Vortex structures?

→ General Summary

- → Spreading dynamics non-diffusive (cf: Ting Long, next talk) Coherent structures mediate spreading → "ballistic scaling"
- → Conventional wisdom of front tracking, diffusion, intensity flux grossly incomplete, or worse.
- \rightarrow Self-inhibited states manifested
 - Weak B_0 blocks spreading, Z $\geq 1 \leftarrow \rightarrow$ disrupts dipole
 - -Potential Enstrophy Flux manifests Dimits shift.
- \rightarrow Wave vs mixing spreading flux of interest.

→ Future Plans

- \rightarrow Complete study of Drift-Wave-Zonal Flow System
- \rightarrow High resolution studies
- **Special Interest:**
- Is spreading at all "universal"?
- Physics of vortex bursting in 2D MHD
- Vortex bursting $\leftarrow \rightarrow$ 2D MHD cascade, physics?
- Can KH / "Tertiary" mediate spreading thru Dimits shift regime ? Episodic ?

Reduced Model of Staircase

Fixed Cellular Array Problem (another way to get a Staircase)

 $Pe = \frac{\tau_D}{\tau_H}$

Fixed Cellular Array

Consider a <u>general</u> case of a system of eddies not overlapping but tangent \rightarrow <u>Staircase</u>

Transport? <u>Answer</u>: Deff ~ D Pe^{$\frac{1}{2}$} {<u>Not a simple addition of process!</u>}

 \rightarrow Two time rates: v / $\ell,$ D / ℓ^2

 $\rightarrow Pe = v \ell / D >> 1$

$$\frac{\partial n}{\partial t} + \mathbf{u} \cdot \nabla n = D \nabla^2 n,$$

Profile?

Π.

Consider concentration of injected dye (passive scalar transport in eddys) \rightarrow profile

Rosenbluth et. al. '87

"Steep transitions in the density exist between each cell."

Relevant to key question of "near marginal stability"

 \rightarrow Layering!

→ Simple consequence of two rates

Important:

- Staircase arises in stationary array of passive eddies (Note that there is no FEEDBACK)
- Global transport hybrid:
 - \rightarrow <u>fast</u> rotation in cell
 - \rightarrow <u>slow</u> diffusion in boundary layer
- Irreversibility localized to inter-cell boundary.

Staircase arises in an array of stationary eddies!

What about the dynamics of a **less constrained** cell array (i.e., vortex array with fluctuations) ?

Relaxing Fixed Cellular Array with Fluctuating Vortex Array

Consider a Broader Approach

- We want to study a much more **general** and **less constrained** version of the cell array.
 - Consider a vortex array with fluctuations; jitters.
- How **resilient** is the staircase in the presence of these small variations to a fixed vortex array?

In the process of studying the **resilience** of the staircase, we aim to answer the following:

- 1. What happens to interspersed regions of strong scalar concentration mixing as cells relax? What about general cell interactions/behavior?
- 2. What is the behavior of the scalar trajectory through the vortex array?
- 3. How does the increase of scattering in the vortex array affect the transport of scalar concentration?

To answer these questions, we use the idea of a **Melting Vortex Crystal**...

Example of less constrained cell array

Fluctuating Vortex Array

Why are we doing this? We know that a system with two disparate time scales forms a staircase!

• Now consider fluctuations... \rightarrow Will staircase survive?

Vortex array is an alternative way to view convection cells!

 $\rightarrow \text{ We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 2010),} \qquad \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla}\right) \omega = \frac{1}{\Omega} \nabla^2 \omega + F_\omega - \alpha \omega, \qquad \nabla^2 \psi = \omega.$

→ The "vortex array" is simply the array of cells and "fluctuation" is related to turbulence induced variability in the structure. The fluctuating vortex array (FVA) allows us to study a **less constrained** version of the array! Improved model of cells near marginality. → The fluctuating flow structure is created by slowly increasing the Reynolds number in the NS equation

$$\Omega = \frac{\tau_{\nu}}{\tau_H}$$

 \rightarrow By increasing the Reynolds number this modifies the forcing and drag term, thus, scattering the vortex array. The <u>resilience</u> of the staircase is studied by increasing disorder in the vortex crystal through F_{\omega} $F_{\omega} \equiv -n^3 \left[\cos(nx) + \cos(ny)\right]/\Omega$

The streamfunction, ψ , at different evolutionary stages of the "fluctuating" vortex array is inserted into the passive scalar equation to study the resilience of the staircase structure.

Comparison of Vortex Array model to Drift-wave Turbulence in fusion devices

	Vortex Field	Drift-Wave Turbulence (tokamak)
Inhomogeneity (free energy source)	$\mathbf{\nabla}n$	$B_0, \boldsymbol{\nabla} n,$ and $\boldsymbol{\nabla} T$
Reynolds number	$\Omega = 0 - 40$	$Re = 10^{1} - 10^{2}$ (Landau Damping)
Flux	Scalar	Heat
Zonal Flow	Boundary layer between cells	$\mathbf{E} \times \mathbf{B}$ shear flow (poloidal)

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla}\right) \omega = \frac{1}{\Omega} \nabla^2 \omega + F_\omega - \alpha \omega \qquad F_\omega \equiv -n^3 \left[\cos\left(nx\right) + \cos\left(ny\right)\right] / \Omega$$

What Happens to Staircase? (Passive Scalar Dynamics)

The Staircase

• Both blue and red average scalar concentration have the same profile in stable stage.

Q

number in the VA?

Staircase Resiliency to Fluctuations

<u>Main Point</u>: Despite that vortex array becoming more turbulent, the staircase structure does not collapse.

• Staircase steps become **less regular**. They merge into longer steps.

Criteria for Staircase Resiliency

We establish a set of criteria to give a precise meaning to the statement of "resiliency": 1) $Pe \gg 1$ is a necessary condition for the formation of transport barriers in the

- process of scalar mixing (First principles). $Pe \gg 1$ criterion is satisfied for the range of $0 < \Omega < 40$.
- 2) A staircase should **maintain a sufficiently high curvature** (equivalent to sustaining a sufficient number of steps). Our studies suggest that $\kappa \ge 1.5$ is an adequate value for a staircase.

Passive Scalar Transport

Before the <u>staircase</u> structure forms, scalar flows **quickly in regions of strong shear** and around vortices!

- Staircase **barriers form first!** Scalar travels along cell boundaries.
- Overtime, vortex **entrains** scalar by a kind of **"homogenization**" process via the synergy of differential rotation and diffusion.

As cells fluctuate, the **effective diffusivity** deviates but **remains close** to the FCA effective diffusivity.

- \rightarrow We find that as long as the **boundaries** and **speed** of the cells are **maintained**, the effective diffusivity and transport **does not change**.
 - Only **dimensions** of cells **affect transport**.

Passive Scalar Transport (cont.d)

The scattering of vortices leads to an overall decrease in scalar concentration velocity! Agrees with least time criterion (similar idea to scattered path of light in atmosphere).

- Staircase form and are **resilient** and **persistent** to increasing Reynolds number (i.e., fluctuating vortex array).
- Scalar concentration **travels along** regions of **strong shear**.
 - **IMPORTANT**: Staircase barriers form first! Vortex "homogenizes" scalar at a later time!
- The scattering of vortices leads to an overall decrease in scalar concentration velocity.
 - Agrees with **least time criterion**.
- If flow velocity and background diffusion are kept fixed, only cell geometric properties affect the effective diffusivity! $(D^* \propto D P e^{1/2})$
 - Effective diffusivity of the perturbed vortex array **does not deviate** significantly!

Why would a fusion experimentalist care about this?

These results have interesting implications for experiment and theory:

- 1. Effective diffusivity derived by Rosenbluth *et al* (for fixed cellular array) is a suitable approximation for the fluctuating cellular array (**not simple addition**: $D^* = D + D_{cell}$).
 - Relevant to cells touching (similar to what we find near-marginal stability).
- 2. Staircase structure is resilient in the regime of low-modest Reynolds numbers (this regime is relevant to drift-wave turbulence).
 - Structures/Profiles are not exotic.
 - Staircase profile structure does not require special tuning.
- 3. Geometry of streamlines is important. If more saddles than close vortices, Heat avalanches will first form the staircase barrier.
 - Fluctuating cellular flow hinders avalanche propagation. $\Omega = 8.0$

IMPORTANT: We can test the theory presented here with actual experimental data.

LAPD Experiment

Work in progress!

A vortex array can be created in the large linear magnetized plasma device (LAPD)

- Modification of a cathode plasma source with designer masks that form multiple current channels in a cellular pattern \rightarrow form staircase!
 - Experiment will be conducted in the afterglow phase of the main discharge.
- Staircase structure can be subject to controllable amount of of low frequency density fluctuations, which act as a noise source.
 - Allow us to test hypotheses and models of staircase resiliency!

Results of experiment will yield a unique set of observations that can be used to test staircase models.

Active Scalar Dynamics

Active Scalar

Flux expulsion:

- Background B is wind up and folded by an eddy \rightarrow field inside eddy drops \rightarrow expelled to boundary layer of eddy.
- Time scale for flux expulsion is, $\tau_{fe} = R_m^{1/3} \tau_H$
- Note: Larger R_m results in greater expulsion (weaker field in interior).

A logical next step to explore is the effects than an *active* scalar has on the cellular array and inhomogenous mixing.

- Converting passive to active will result in effects such as flux expulsion
 - Flux expulsion is simplest dynamic problem in non-ideal MHD.

Why this model?

• *B* expelled to boundaries, thus holds cells together! → Rigid staircase. We turn passive scalar into an active scalar, creating a feedback between magnetic field and vortices:

$$\frac{\partial n}{\partial t} + \mathbf{u} \cdot \nabla n - D\nabla^2 n = 0 \longrightarrow \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) A = \frac{1}{R_m} \nabla^2 A + F_A$$
$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \omega = \frac{1}{\Omega} \nabla^2 \omega + M^2 \left(\mathbf{B} \cdot \nabla \nabla^2 A\right) + F_\omega$$

Note: Strength of B_{o} plays an important role!

Kinematic/Dynamic Regime

To be clear, staircase forms in the flux expulsion regime.

• Unclear if staircase forms in vortex bursting regime (TBD).

Important: Flux expulsion only occurs in the **kinematic** regime

- Useful to explore **dynamic** regime (aka Vortex bursting). Since $v_A \propto B_0$, the strength of the magnetic field will play a role in the dynamics of the cellular array.
 - If B_0 is sufficiently small, we get cell strengthening.
- If B_0 is large, vortices will not be allowed to form. Through scans of B_0 , we will address what occurs to expulsion of **neighbor cells** and their **interaction**...

$$M^{2} R_{m} < 1 \text{ (Flux expulsion)} \qquad M = \frac{v_{A}}{U_{0}}$$
$$M^{2} R_{m} \ge 1 \text{ (Vortex bursting)} \qquad M = \frac{v_{A}}{U_{0}}$$

Consider a **linear** magnetic potential profile:

- We expect that the vortex array will homogenize ($\nabla A = 0$) the profile in areas of vortices.
- Expect that magnetic field will maintain or restore the cell array structure when fluctuations are present (i.e., B_0 will elasticise the cell array).

This problem is **important** and can be related back to the idea of **feedback**!

- We have only address the idea that staircases are resilient and robust in the presence of cell fluctuations.
- But could the scalar affect the dynamics or maintain the cell structure which is responsible for the staircase? Preliminary results show that **magnetic field restores cell structure**!
 - Only a small window where this occurs (i.e., small *Bo*)...

NOTE: *B* eventually decays in 2D, so the structure is only <u>temporary</u>... (need to force magnetic field)

$$F_{\omega} \equiv -n^3 \left[\cos\left(nx\right) + \cos\left(ny\right) \right] / \Omega$$