Staircases in Confined Magnetized Plasma – An Overview via Selected Topics

P.H. Diamond

U. C. San Diego

ADI Workshop1 – Newton Institute, Cambridge January, 2024

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Mea Culpa

• Pitched for a Fluid/GFD audience

∴ extensive development necessary

- Approach selective, not unique
 - \therefore several worthy topics neglected
- Tries to convey how confinement experiments drive new theoretical problems

See also: Talks, This Meeting

York Workshop

Outline

- Brief Primer on Confinement Physics
- Models, via Potential Vorticity
- Mesoscopic → Staircases
- Staircase Models \rightarrow What can be learned?
- Current Issues, especially Turbulence Spreading
- Future Directions, especially + Fast Particles, Burning Plasma

Primer on Confinement Physics

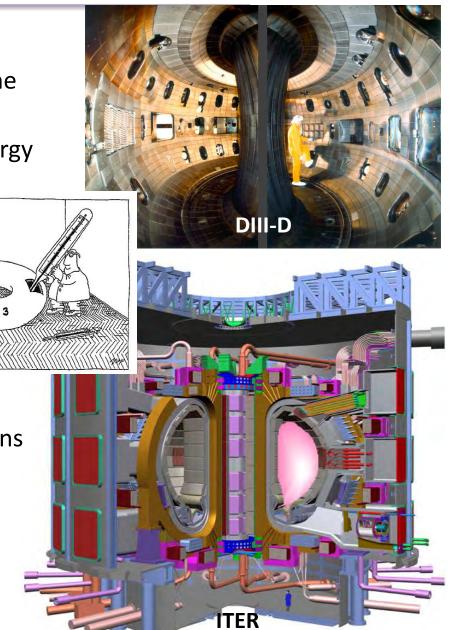
Magnetically confined plasma \rightarrow tokamaks

- Nuclear fusion: option for generating large amounts of carbon-free energy – "30 years in the future and always will be... "
- Challenge: ignition -- reaction release more energy than the input energy

Lawson criterion:

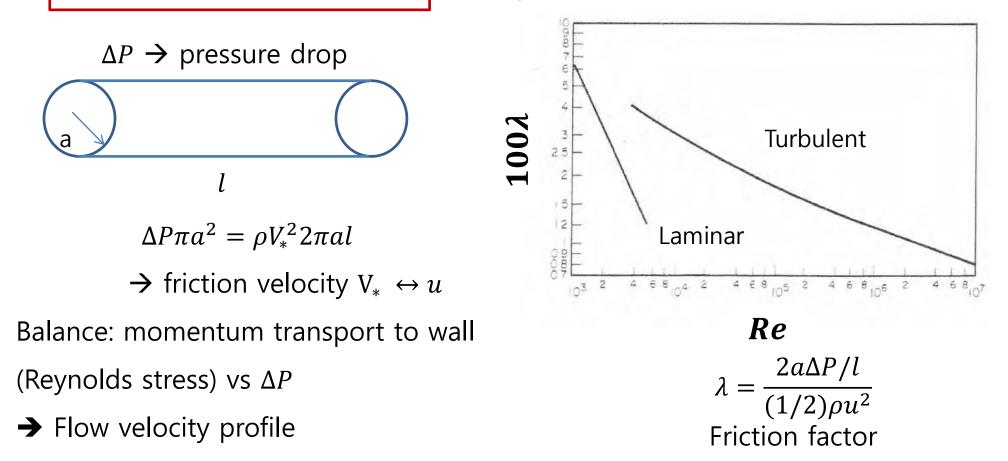
 $n_i \tau_E T_i > 3 \times 10^{21} \text{m}^{-3} \text{s keV}$ \uparrow \rightarrow confinement $\tau_E \sim \frac{W}{P_{in}}$ \rightarrow turbulent transport

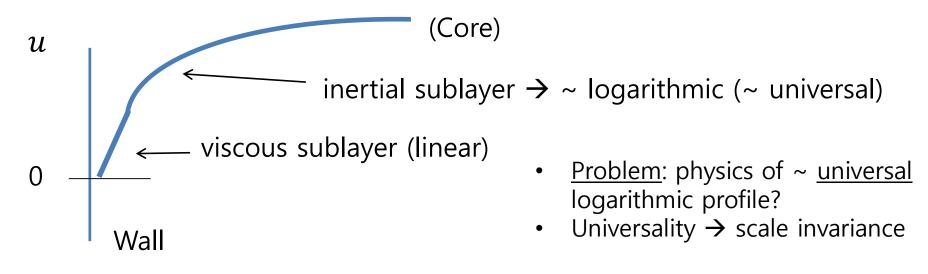
- Turbulence: instabilities and collective oscillations \rightarrow low frequency modes dominate the transport ($\omega < \Omega_{ci}$)
- Key problem: Confinement, especially scaling
- NB: Not the only problem



5

- Essence of confinement problem:
 - given device, sources; what profile is achieved?
 - $\tau_E = W/P_{in}$, How optimize W, stored energy
- Related problem: Pipe flow \rightarrow drag \leftrightarrow momentum flux





• <u>Prandtl Mixing Length Theory (1932)</u>

- Wall stress =
$$\rho V_*^2 = -\rho v_T \frac{\partial u}{\partial x}$$
 or: $\frac{\partial u}{\partial x} \sim \frac{V_*}{x} \leftarrow$ Spatial counterpart
eddy viscosity Scale of velocity gradient?

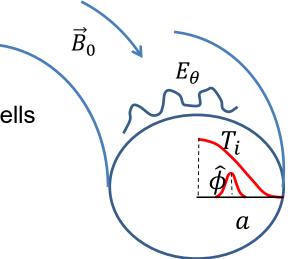
– Absence of characteristic scale \rightarrow

$$v_T \sim V_* x$$
 $x \equiv \text{mixing length}$, distance from wall $u \sim V_* \ln(x/x_0)$ Analogy with kinetic theory ...

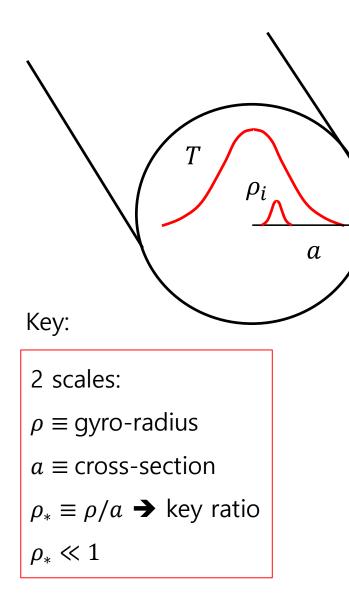
$$\nu_T = \nu \rightarrow x_0$$
, viscous layer $\rightarrow x_0 = \nu/V_*$

Primer on Turbulence in Tokamaks I

- Strongly magnetized
 - Quasi 2D cells, Low Rossby #
- ★ Localized by $\vec{k} \cdot \vec{B} = 0$ (resonance) pinned cells
- $\vec{V}_{\perp} = + \frac{c}{B} \vec{E} \times \hat{z}$, $\frac{V_{\perp}}{l \Omega_{ci}} \sim R_0 \ll 1$
- ∇T_e , ∇T_i , ∇n driven
- Akin to thermal convection with: $g \rightarrow$ magnetic curvature
- → Re $\approx VL/v$ ill defined, not representative of dynamics
- \rightarrow Resembles 'wave turbulence', not high *Re* Navier-Stokes turbulence
- →• $K \sim \tilde{V} \tau_c / \Delta \leq 1$ → Kubo # near unity
- \rightarrow Broad dynamic range, due electron and ion scales, i.e. a, ρ_i, ρ_e



Primer on Turbulence in Tokamaks II



- Characteristic scale ~ few $\rho_i \rightarrow$ "mixing length"
- Characteristic velocity $v_d \sim \rho_* c_s$
- Transport scaling: $D_{GB} \sim \rho V_d \sim \rho_* D_B$ Gyro-Bohm (optimistic) $D_B \sim \rho c_s \sim T/B$ - Bohm (pessimistic)
- i.e. Bigger is better! → sets profile scale via heat balance (Why ITER is huge...)
- Reality: $D \sim \rho_*^{\alpha} D_B$, $\alpha < 1 \rightarrow$ 'Gyro-Bohm breaking'
- 2 Scales, $\rho_* \ll 1 \Rightarrow$ key contrast to pipe flow
- Sneak preview: $\alpha \leq 1$
- related to turbulence driven zonal shear flows

Models via Potential Vorticity

Potential Vorticity

- GFD \rightarrow The Fluid Dynamics of PV (R. Salmon)
- Ditto for Confined Plasmas.... (PD)

•
$$PV = q = \frac{\vec{\omega} + 2\vec{\Omega}}{\rho} \cdot \nabla \psi$$
 (ala' conserved charge density)

Rotating Fluid ψ conserved scalar

$$\frac{d}{dt} \left[\frac{\vec{\omega} + 2\vec{\Omega}}{\rho} \cdot \nabla \psi \right] = 0 \qquad \text{PV Conservation}$$

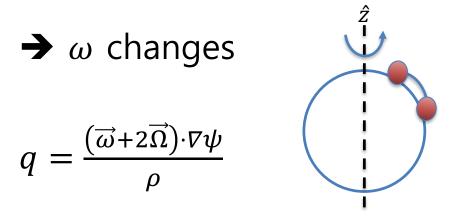
• From:

Freezing in
$$\frac{d}{dt} \left(\frac{\overrightarrow{\omega} + 2\overrightarrow{\Omega}}{\rho} \right) = \left(\frac{\overrightarrow{\omega} + 2\overrightarrow{\Omega}}{\rho} \right) \cdot \nabla \overrightarrow{v}$$

Conserved scalar
$$\frac{d}{dt}\delta\psi = 0$$

Potential Vorticity, cont'd

• Displace parcel in latitude, density/thickness



• Conservation $\leftarrow \rightarrow$ Symmetry, ala' Noether

Particle relabeling $\vec{x}(x,\tau)$ $s \rightarrow s' = s + \delta s$

PV conserved when particles can be relabeled, without changing the thermodynamic state

Useful Form: β -plane Equation

-
$$\beta$$
-plane equation $\frac{d}{dt}(\omega + \beta y) = 0$ (after Charney + ...)- Locally Conserved PV $q = \omega + \beta y$
parcel \checkmark planetary $q = \omega/H + \beta y$

- Latitudinal displacement \rightarrow change in relative vorticity
- Linear consequence \rightarrow Rossby Wave

PV Dynamics – Plasmas

• Isn't this about plasmas, too?

•
$$q = \left(\vec{\omega} + 2\vec{\Omega}\right) \cdot \frac{\nabla \psi}{\rho}$$

$$\operatorname{now} \left\{ \begin{array}{l} 2\Omega \rightarrow \Omega_{i}\hat{z} \\ \rho \rightarrow n_{0}(r) + \tilde{n} \\ \vec{\nabla}\psi \rightarrow \hat{z} \end{array} \right.$$

So
$$\frac{d}{dt} \left[\frac{\omega_z + \Omega_i}{n_0(r) + \tilde{n}} \right] = 0$$

$$\left[\frac{\omega_z + \Omega_i}{n_0(r) + \tilde{n}}\right] = 0$$

$$\Rightarrow \frac{d}{dt}\widetilde{\omega}_{z} - \Omega_{i}\frac{1}{n_{0}}\frac{\widetilde{dn_{i}}}{dt} = 0$$

with
$$V_{thi} \ll \frac{\omega}{k_{\parallel}} < V_{the}$$
 $\frac{\tilde{n}_i}{n_0} \sim \frac{\tilde{n}_e}{n_0} \sim \frac{|e|\hat{\phi}}{T}$

$$\Rightarrow \frac{d}{dt} \left(\frac{|e|\hat{\phi}|}{T} - \rho_s^2 \nabla_{\perp}^2 \frac{|e|\hat{\phi}|}{T} \right) + V_* \partial_y \frac{|e|\hat{\phi}|}{T} = 0$$

Linearization \rightarrow drift wave

ala' Geostrophic balance:

$$\begin{cases} \vec{V} = -\frac{c}{B} \nabla \phi \times \hat{z} \\ E \times B \text{ drift} \\ \omega_z = \frac{c}{B_0} \nabla^2 \phi \end{cases}$$

Hasegawa-Mima Eqn.

 \rightarrow PV conservation

also Sagdeev +

PV and Models - Plasmas

• Hasegawa-Mima, prototype:

$$\frac{d}{dt}(\phi - \rho_s^2 \nabla^2 \phi + \ln n_0(r)) = 0$$

- tip of iceberg of zoology of systems: multi-field, drift kinetics, gyrokinetics...
- captures essence $\leftarrow \rightarrow$ minimal model
- in tokamak, zonal flows have: $k_{\parallel} = 0$ and $k_{\theta} = 0$

 $\frac{d}{dt} \nabla^2 \phi = 0 \left\{ \begin{array}{l} \text{distinct evolution zonal} \\ \text{models!} \leftarrow \rightarrow \text{electron response} \end{array} \right.$

→ generation of flow → $\langle \tilde{V}_r \nabla^2 \tilde{\phi} \rangle$ → vorticity flux

 \leftarrow > mean field of wave interactions

A bit more ↔ Hasegawa-Wakatani (life beyond CHM)

$$\frac{d}{dt}\nabla_{\perp}^{2}\phi + \chi_{\parallel e}\nabla_{\parallel}^{2}(\phi - n) = \mu\nabla_{\perp}^{2}\nabla_{\perp}^{2}\phi \qquad \qquad \chi_{\parallel e} = v_{the}^{2}/v_{ei}$$
$$\frac{d}{dt}n + \chi_{\parallel e}\nabla_{\parallel}^{2}(\phi - n) = D_{0}\nabla_{\perp}^{2}n \qquad \qquad \chi_{\parallel e} \to \infty \to \mathsf{HN}$$

$$\frac{d}{dt} = \partial_t + \nabla \phi \times \hat{z} \cdot \nabla \qquad n = \langle n(x) \rangle + \tilde{n} \qquad \nabla_{\perp}^2 \phi = \langle \nabla_{\perp}^2 \phi(x) \rangle + \nabla_{\perp}^2 \tilde{\phi}$$

shear
$$\underline{PV} \quad q = n - \nabla_{\perp}^2 \phi \qquad \text{conserved!}, \text{ to } \mu, D_0 \qquad n \leftrightarrow \nabla_{\perp}^2 \phi \qquad \text{PV exchange}$$

- $\chi_{\parallel} \neq 0 \rightarrow \langle \tilde{v}_r \tilde{n} \rangle \neq 0$ 'negative dissipation \rightarrow mechanism' $\omega \leq \omega_{*e} \ \rightarrow \ \langle \tilde{v}_r \tilde{n} \rangle > 0$
- ZF $\rightarrow k_{\parallel} = 0$

•

• ZF $\rightarrow \langle \tilde{v}_r \nabla^2 \tilde{\phi} \rangle \rightarrow$ Reynolds force

Corrugation $\rightarrow \langle \tilde{v}\tilde{n} \rangle \rightarrow$ particle flux

drift instability (Sagdeev, et. al., 60's)

phase lag between $\tilde{n}, \tilde{v} \rightarrow$ particle flux

 $\langle \tilde{n} \nabla^2 \tilde{\phi} \rangle$? c.f. Singh, P.D. 2021

Some Details of Model

→ 2 Simple Models
 a.) Hasegawa-Wakatani (collisional drift inst.)
 b.) Hasegawa-Mima (DW)

$$\begin{array}{ll} \text{a.)} \ \mathbf{V} = \frac{c}{B} \hat{z} \times \nabla \phi + \mathbf{V}_{pol} \\ \to m_s \end{array}$$

$$\begin{array}{ll} L > \lambda_D \to \nabla \cdot \mathbf{J} = 0 \to \nabla_{\perp} \cdot \mathbf{J}_{\perp} = -\nabla_{\parallel} J_{\parallel} \\ J_{\perp} = n |e| V_{pol}^{(i)} & \text{n.b.} \\ J_{\parallel} : \eta J_{\parallel} = -(1/c) \partial_t A_{\parallel} - \nabla_{\parallel} \phi + \nabla_{\parallel} p_e & \text{MHD: } \partial_t A_{\parallel} \text{ v.s. } \nabla_{\parallel} \phi \end{array}$$

$$\begin{array}{ll} \text{b.)} \quad dn_e/dt = 0 & \text{DW: } \nabla_{\parallel} p_e \text{ v.s. } \nabla_{\parallel} \phi \\ \to & \frac{dn_e}{dt} + \frac{\nabla_{\parallel} J_{\parallel}}{-n_0 |e|} = 0 \end{array}$$

Some Details of Model, cont'd

$$\begin{array}{lll} \underline{\mathrm{So}} \ \mathrm{H} \mathrm{-} \mathrm{W} & \rho_s^2 \frac{d}{dt} \nabla^2 \hat{\phi} = -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) + \nu \nabla^2 \nabla^2 \hat{\phi} & & \\ & \frac{d}{dt} n - D_0 \nabla^2 \hat{n} = -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) & & \text{is key parameter} \\ & & \rightarrow & \langle \tilde{v}_r \tilde{n} \rangle \neq 0 \\ \mathrm{b.}) & D_{\parallel} k_{\parallel}^2 / \omega \gg 1 \rightarrow \hat{n}/n_0 \sim e \hat{\phi} / T_e & & (m, n \neq 0) & \text{and instability} \\ & & \frac{d}{dt} (\phi - \rho_s^2 \nabla^2 \phi) + v_* \partial_y \phi = 0 & \rightarrow \mathrm{H} \mathrm{-M} \\ & \mathrm{n.b.} & \mathrm{PV} = \phi - \rho_s^2 \nabla^2 \phi + \ln n_0(x) & & \frac{d}{dt} (\mathrm{PV}) = 0 \end{array}$$

An infinity of technical models follows ...

Recent Development

• Extension of PV Theory to inhomogeneous $\vec{B}_0(\vec{x})$ (Hahm+ 2023)

 \leftrightarrow analogy $H = H(\vec{r})$

 \rightarrow PV evolution via incompressible advection of "magnetically weighted PV"

 \rightarrow novel HM Eqn

• Analogous TEP Theory with $\vec{B}_0(\vec{x})$, n/B incompressibly advected

 $\Gamma \sim \partial_r(n/B) \rightarrow \text{diffusion} + \text{convection}$

$$\sim \frac{\partial_r \langle n \rangle}{B} \sim \frac{\langle n \rangle}{B^2} \partial_r B$$

Mesoscopics → Staircases

Mesoscales

- MFE plasma combine:
 - broad dynamic range
 - modest excitation ($Ku \leq 1$)

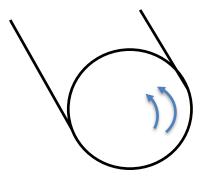
•
$$[\text{few } \rho_i] < l < L_p$$
 : mesoscales
 $\downarrow \qquad \downarrow \qquad \downarrow$
 Δ_c (meso) system size
(micro) (macro)

recall: $\rho_* \sim \rho_i / L_p \ll 1$

• Mesoscopic: Zonal Flows, Avalanches – see Minjun Choi, and ... Staircases ...

Plasma Zonal Flows I

- What is a Zonal Flow? Description?
 - n = 0 potential mode; m = 0 (ZF)
 - toroidally, poloidally symmetric *ExB* shear flow
- Why are Z.F.'s important?



- Zonal flows are secondary (nonlinearly driven):
 - modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. '78)
 - modes of minimal damping (Rosenbluth, Hinton '98)
 - drive zero transport (n = 0)
- natural predators to feed off and retain energy released by gradient-driven microturbulence

i.e. ZF's soak up turbulence energy

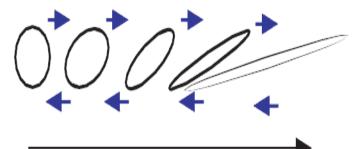
Plasma Zonal Flows II

- Fundamental Idea:
 - Potential vorticity transport + 1 direction of translation symmetry
 - \rightarrow Zonal flow in magnetized plasma / QG fluid
 - Kelvin's theorem is ultimate foundation
 cf: McIntyre and Wood
- Charge Balance \rightarrow polarization charge flux \rightarrow Reynolds force
 - Polarization charge $\rightarrow \rho^2 \nabla^2 \phi = n_{i,GC}(\phi) n_e(\phi)$ polarization length scale \rightarrow ion GC \rightarrow electron density
 - so $\Gamma_{i,GC} \neq \Gamma_e \implies \rho^2 \langle \widetilde{v}_{rE} \nabla_{\perp}^2 \widetilde{\phi} \rangle \neq 0 \iff$ 'PV transport' $\downarrow \rightarrow polarization flux \rightarrow What sets coherence?$
 - If 1 direction of symmetry (or near symmetry):

$$-\rho^{2} \left\langle \widetilde{v}_{rE} \nabla_{\perp}^{2} \widetilde{\phi} \right\rangle = -\partial_{r} \left\langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \right\rangle \quad \text{(Taylor, 1915)}$$
$$-\partial_{r} \left\langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \right\rangle \quad \text{Reynolds force} \quad \text{Flow} \quad \text{Recall } \left\langle \omega_{Z} \right\rangle \text{ evolution!}$$

Zonal Flows Shear Eddys I

- Coherent shearing: (Kelvin, G.I. Taylor, Dupree'66, BDT'90)
 - radial scattering + $\langle V_E \rangle' \rightarrow$ hybrid enhanced decorrelation
 - $k_r^2 D_\perp \longrightarrow (k_\theta^2 \langle V_E \rangle'^2 D_\perp / 3)^{1/3} = 1 / \tau_c$
 - → shearing restricts mixing scale!
- Other shearing effects (linear):
 - spatial resonance dispersion: $\omega k_{\parallel}v_{\parallel} \Rightarrow \omega k_{\parallel}v_{\parallel} k_{\theta}\langle V_{E}\rangle'(r-r_{0})$
 - differential response rotation \rightarrow especially for kinetic curvature effects



Time

Response shift

and dispersion —

Quasi-Particle Model – Eddy Population Evolution

- Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. '98, et. seq.) ٠
- Coherent interaction approach (L. Chen et. al.) Adiabatic Theory • $dk_r / dt = -\partial(\omega + k_\theta V_E) / \partial r$; $V_E = \langle V_E \rangle + \widetilde{V}_E$ V_{v} Zonal : $\langle \delta k_r^2 \rangle = D_k \tau$ Random shearing $D_k = \sum_{a} k_{\theta}^2 |\widetilde{V}'_{E,q}|^2 \tau_{k,q}$ Х
 - Wave ray chaos (not shear RPA)

underlies $D_k \rightarrow$ induced diffusion

Х

- Induces wave packet dispersion
- $\frac{\partial N}{\partial t} + (\vec{V}_{gr} + \vec{V}) \cdot \nabla N \frac{\partial}{\partial r} (\omega + k_{\theta} V_E) \cdot \frac{\partial N}{\partial \vec{k}} = \gamma_{\vec{k}} N C\{N\} \text{Applicable to ZFs and GAMs}$

 $\Rightarrow \frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k} D_k \frac{\partial}{\partial k} \langle N \rangle = \gamma_{\vec{k}} \langle N \rangle - \langle C\{N\} \rangle \quad \longleftarrow \quad \text{Zonal shearing via } D_k$

 \rightarrow Evolves population in response to shearing

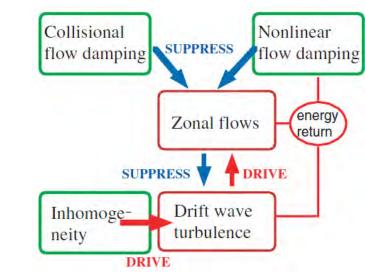
Mean Field Wave Kinetics

۲

Feedback Loops

- Closing the loop of shearing and Reynolds work
- Spectral 'Predator-Prey' Model

- \rightarrow Self-regulating system \rightarrow "ecology"
- \rightarrow Transport regulated

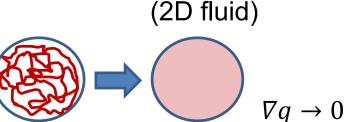


Prey
$$\rightarrow$$
 Drift waves, $\langle N \rangle$
 $\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_k \langle N \rangle - \frac{\Delta \omega_k}{N_0} \langle N \rangle^2$

Predator
$$\rightarrow$$
 Zonal flow, $|\phi_q|^2$
 $\frac{\partial}{\partial t} |\phi_q|^2 = \Gamma_q \left[\frac{\partial \langle N \rangle}{\partial k_r} \right] |\phi_q|^2 - \gamma_d |\phi_q|^2 - \gamma_{NL} [|\phi_q|^2] |\phi_q|^2$

Another Aspect: Dynamics in Real Space – What of the Configuration?

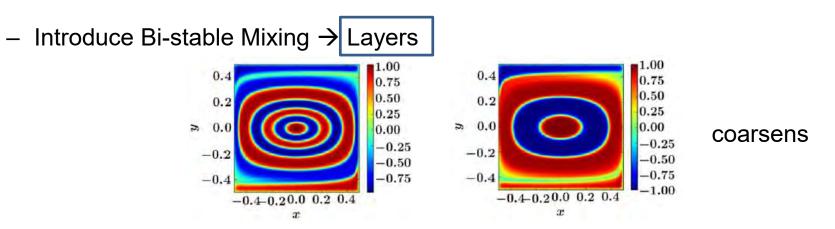
- Conventional Wisdom → Homogenization ?!
 - Prandtl, Batchelor, Rhines:
 - PV homogenized:
 Shear + Diffusion



2 scales: $a, a/Re^{1/3}$ BL \rightarrow "emergent"

– Mechanism: - Shear dispersion $\tau \sim \tau_{rot} (Re)^{1/3} \rightarrow \tau_{rot} Re$

- '<u>PV Mixing</u>'



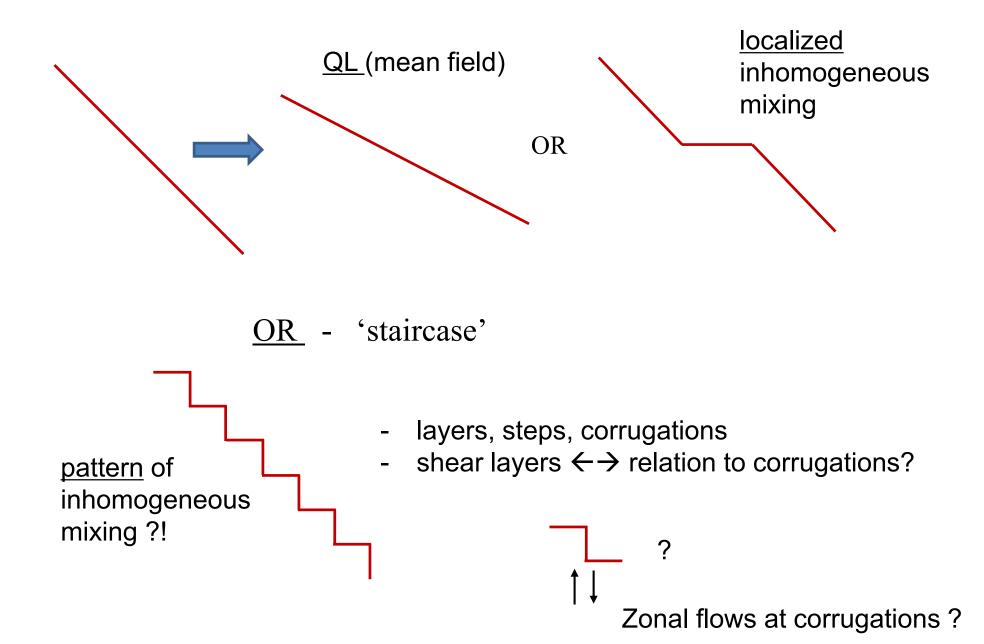
- Cahn-Hilliard + Eddy Flow $\leftarrow \rightarrow$ bistability

(spinodal decomposition)

→ target pattern

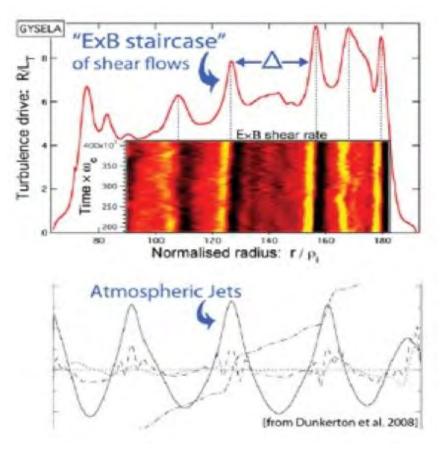
(Fan, P.D., Chacon, PRE Rap. Com. '17)

Fate of Gradient?



<u>Spatial Structure: ExB staircase formation</u> (after PV staircase Dritshel + McIntyre)

- ExB flows often observed to self-organize structured pattern in magnetized plasmas
- `ExB staircase' is observed to form

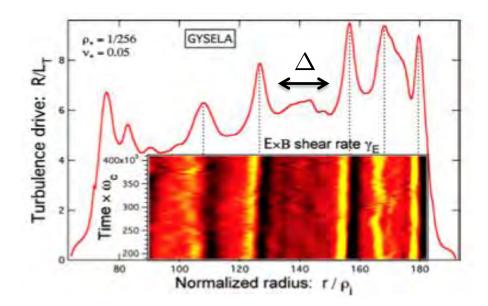


also: GK5D, Kyoto-Dalian-SWIP group, gKPSP, ... several GF codes (G. Dif-Pradalier, P.D. et al. Phys. Rev. E. '10)

- flux driven, full f simulation
- Quasi-regular pattern of shear layers and profile corrugations (steps)
- Region of the extent $\Delta \gg \Delta_c$ interspersed by temp. corrugation/ExB jets
 - \rightarrow ExB staircases
- so-named after the analogy to PV staircases and atmospheric jets
- Step spacing → avalanche distribution outer-scale
- scale selection problem

ExB Staircase, cont'd

• Important feature: co-existence of shear flows and zones strong mixing



- Seem mutually exclusive ?
 - \rightarrow strong ExB shear prohibits transport
 - \rightarrow mesoscale scattering smooths out corrugations
- Can co-exist by separating regions into:
 - 1. mixing zones of the size $~~\Delta \gg \Delta_c$
 - 2. localized strong corrugations + jets
- How understand the formation of ExB staircase??

- What is process of self-organization linking avalanche scale to ExB step scale?

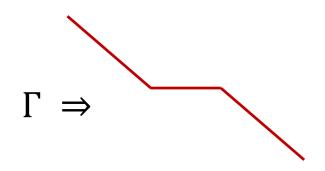
i.e. how explain the emergence of the step scale ?

Some similarity to phase ordering in fluids – spinodal decomposition
 → bistability as key

How do Staircase Form? ←→ What can be learned from (simple) models?

General Ideas on Formation

- Inhomogeneous mixing ?!
- Staircase must reconcile 2 states transport $\leftarrow \rightarrow$ 2 types of domains



strong mixing zones, shallow gradient + weak mixing zones, steep gradient

- Bistability is natural candidate
- Suggests 2 space/time scales. Dynamics $\leftarrow \rightarrow$ 1 scale emergent
- (BLY): Balmforth, Llewellyn Smith, Young '98

General Ideas on Formation, cont'd

- Classic: Balmforth, Llewllyn Smith, Young '98 (BLY)
- $k \epsilon$ model framework (TKE + scalar)
- 2 scales: $l_0 \rightarrow$ imposed

 $l_{OZ} \rightarrow \text{Ozmidov scale (emergent)}$ $\tilde{v}(l)/l \sim \omega_{bouy}$

- N.B. Emergent scale is recurring element in layering story
- i.e. Ozmidov, Rhines, Hinze ... <u>and</u> BL in expulsion...

The Bounty of BLY, for Drift Wave Systems

- * A. Ashourvan, P.D. Phys. Rev. E. Rap. Comm. (2016), PoP (2017)
 - → Hasegawa-<u>Wakatani</u> drift wave turbulence
 - M. Malkov, P.D. Phys. Rev. Fluids (2019)

→ QG/ β –plane

* • W.X. Guo, P.D., Hughes et. al. – PPCF (2019)

→ H-W Drift Wave Turbulence

see talk by W.X. Guo, this meeting

Basic Equations ↔ Hasegawa-Wakatani (life beyond CHM)

$$\frac{d}{dt}\nabla_{\perp}^{2}\phi + \chi_{\parallel e}\nabla_{\parallel}^{2}(\phi - n) = \mu\nabla_{\perp}^{2}\nabla_{\perp}^{2}\phi$$

$$\frac{d}{dt}n + \chi_{\parallel e} \nabla_{\parallel}^2 (\phi - n) = D_0 \nabla_{\perp}^2 n$$

$$\begin{aligned} \frac{d}{dt} &= \partial_t + \nabla \phi \times \hat{z} \cdot \nabla & n = \langle n(x) \rangle + \tilde{n} & \nabla_{\perp}^2 \phi = \langle \nabla_{\perp}^2 \phi(x) \rangle + \nabla_{\perp}^2 \tilde{\phi} \\ \text{zonal shear} \end{aligned}$$

$$\bullet \quad \underline{\mathsf{PV}} \quad q = n - \nabla_{\perp}^2 \phi \quad \text{conserved! , to } \mu \text{, } D_0 \quad n \leftrightarrow \nabla_{\perp}^2 \phi \quad \text{PV exchange} \end{aligned}$$

- $\chi_{\parallel} \neq 0 \rightarrow \langle \tilde{v}_r \tilde{n} \rangle \neq 0$ 'negative dissipation \rightarrow drift instability (Sagdeev, et. al.) $\omega \leq \omega_{*e} \rightarrow \langle \tilde{v}_r \tilde{n} \rangle > 0$
- ZF $\rightarrow k_{\parallel} = 0$
- $\mathsf{ZF} \to \langle \tilde{v}_r \nabla^2 \tilde{\phi} \rangle \to \mathsf{Reynolds}$ force

Corrugation $\rightarrow \langle \tilde{v}\tilde{n} \rangle \rightarrow$ particle flux

 $\langle \tilde{n} \nabla^2 \tilde{\phi} \rangle$? c.f. Singh, P.D. 2021

'Bistable' Mixing – A Simple Mechanism

- Mean field model with <u>2</u> mixing scales
- So, for H-W: PE, $\langle n \rangle$, $\langle \nabla^2 \phi \rangle$

Density:
$$\frac{\partial}{\partial t} \langle n \rangle = \frac{\partial}{\partial x} \left(D_n \frac{\partial \langle n \rangle}{\partial x} \right) + D_c \frac{\partial^2 \langle n \rangle}{\partial x^2}$$
 simple mixing + 2 length scale \Rightarrow staircase
Vorticity: $\frac{\partial}{\partial t} \langle u \rangle = \frac{\partial}{\partial x} \left[(D_n - \chi) \frac{\partial \langle n \rangle}{\partial x} \right] + \chi \frac{\partial^2 \langle u \rangle}{\partial x^2}$ $+ \mu_c \frac{\partial^2 \langle u \rangle}{\partial x^2},$
Potential Enstrophy(intensity): $\frac{\partial}{\partial t} \varepsilon = \frac{\partial}{\partial x} \left(D_{\varepsilon} \frac{\partial \varepsilon}{\partial x} \right) + \chi \left[\frac{\partial \langle n - u \rangle}{\partial x} \right]^2 \Rightarrow$ includes crude turbulence spreading model
 $D, \chi \sim \tilde{V} l_{mix}$ $- \varepsilon_c^{-1/2} \varepsilon^{3/2} + \gamma_{\varepsilon} \varepsilon.$
 $l_{\text{mix}} = \frac{l_0}{(1 + l_0^2 [\partial_x (n - u)]^2 / \varepsilon)^{\kappa/2}},$ $l_0 \Rightarrow$ excitation scale (drive) $l_R \Rightarrow$ Rhines scale (emergent) ω_{MM} vs $\Delta \omega$ - can be generalized
Scale cross-over \Rightarrow 'transport bifurcation'
 $l_0/l_R < 1 \rightarrow$ strong mixing (eddys)

- $l_0/l_R > 1 \rightarrow$ weak mixing (waves) \rightarrow gradient sharpening feedback
- Is this ~ equivalent to 'two-fluid' mixing length model ala' Ed Spiegel ?

How, Why?

- PV is mixed \rightarrow natural for 'mixing length model', exploits PV as conserved phase space density
- Potential Enstrophy is natural formulation $-\langle \delta f^2 \rangle$ for intensity \rightarrow conservation
- Beyond BLY \rightarrow 2 mean fields $\langle n \rangle$, $\langle \nabla^2 \phi \rangle$ + ε fluctuation potential enstrophy

 \rightarrow exchange and couplings, two channels

- Reynolds work and particle flux couple mean and fluctuations
- Nonlinear damping ↔ forward potential enstrophy cascade
- $D_n, \chi \rightarrow$ turbulent transport coefficients are fundamental
- Glorified ' $k \epsilon$ model', adapted to drift wave problem

How, Why ? Cont'd

- $l_{mix} > \rho_s \rightarrow \text{simplifies inversion } (\nabla^2 \phi \rightarrow V)$
- Dissipative DW ~ adiabatic regime: $k_{\parallel}^2 V_{the}^2 / v > \omega$ $\alpha = k_{\parallel}^2 v_{the}^2 / \omega v$

 $D_n \approx \tilde{v}^2 / \alpha \sim \epsilon l^2 / \alpha \rightarrow \langle v_r \tilde{n} \rangle$ phase fixed by α !

Major simplification \rightarrow <u>solid</u>, where applicable

 $\chi \sim D_n$ (non-resonant diffusion)

• $\langle \tilde{v}_r \nabla^2 \phi \rangle = -\chi \partial_x \langle \nabla^2 \phi \rangle + \prod_{resid} [\nabla n]$

 $\langle \nabla^2 \phi \rangle = \underline{\text{shear}}$ [χ only in numerics]

• $\langle \tilde{v}_r \tilde{q}^2 \rangle \rightarrow -l^2 \epsilon^{1/2} \partial_x \epsilon$ spreading, entrainment, SOFT

How, Why? Cont'd

• D_n , χ regulate P.E. exchange between mean, fluctuations \rightarrow key role in model

• Mixing Length:
$$l_{mix} = \frac{l_0}{\left[1 + \frac{l_0^2 [\partial_x (n-u)]^2}{\epsilon}\right]^{\kappa/2}} = \frac{l_0}{1 + \left(l_0^2 / l_{Rh}^2\right)^{\kappa/2}}$$

Physics: "Rossby Wave Elasticity' (ala' McIntyre)

i.e.
$$D \sim \frac{\langle \tilde{v}^2 \rangle}{\Delta \omega} \rightarrow \langle \tilde{v}^2 \rangle \frac{\Delta \omega}{\omega_r^2 + (\Delta \omega)^2} \approx \langle \tilde{v}_r^2 \rangle \frac{\Delta \omega}{\omega_r^2} \text{ for } \Delta \omega < \omega_r$$

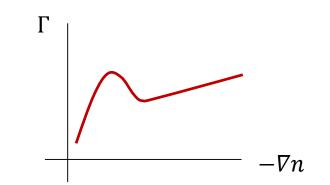
 \rightarrow waves enhance memory

 $\rightarrow \omega_r \sim \nabla \langle q \rangle \rightarrow \text{nonlinear } \Gamma_{PV} \text{ vs } \langle q \rangle \rightarrow \text{S-curve}$

• Soft point: $\kappa \rightarrow$ suppression exponent

 $\kappa = 1$ doesn't always work

Rigorous bound on κ , from fundamental equations?



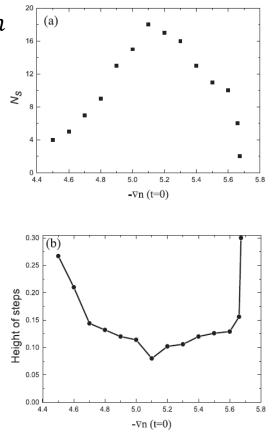
Some Results

Staircase <u>Model</u> – Formation and Merger (QG-HM) Energy ∇q fluctuations q 14.6 14.4 14.6 \rightarrow 14.2 14 mergers X PV transport - PV mixing events $\begin{bmatrix} \epsilon \\ Q_y \end{bmatrix}$ top $\begin{bmatrix} -Q \\ -\Gamma_q \end{bmatrix}$ bottom Note later staircase mergers induce strong PV flux bursts! (Malkov, P.D.; PR Fluids 2018)

Staircase Structure?

- Number of steps? domain L \rightarrow Scale Selection ?!
- Scan # steps vs ∇n at t=0 (n.b. mean gradient)
 - a maximum # steps (and minimal step size) vs ∇n
 - <u>rise</u>: increase in free energy as ∇n ↑
 - drop: diffusive dissipation limits N_s
- Height of steps?
 - minimal height at maximal #
 - \rightarrow system has a ∇n 'sweet spot' for many,

small steps and zonal layers



W.X. Guo + (2019)

Issues, Buried Bodies and Flux-Driven Systems

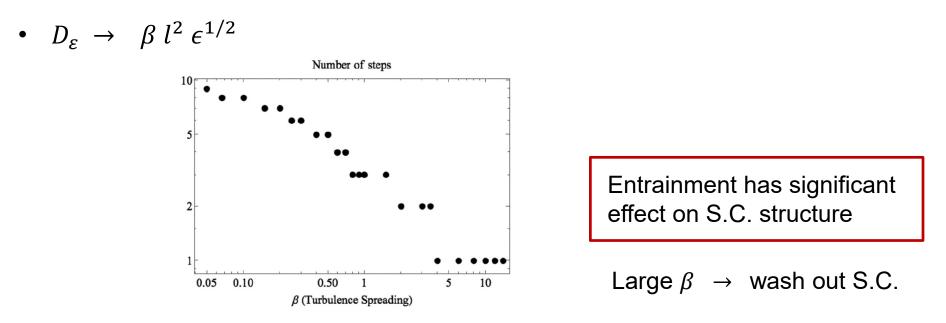
N.B. In some cases, body parts visible above ground...

Spreading/Entrainment

• Spreading/entrainment effect on P.E. is unconstrained, beyond $\nabla \cdot \Gamma_q$ structure

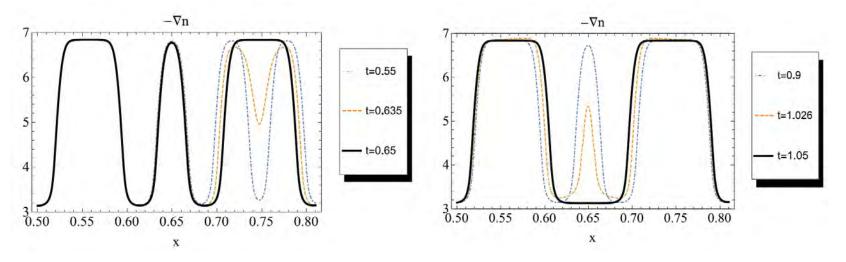
Contrast: D_n , χ Following standard $k - \epsilon$ model crude!

• How robust is staircase to effects of entrainment, avalanching...? Model ??



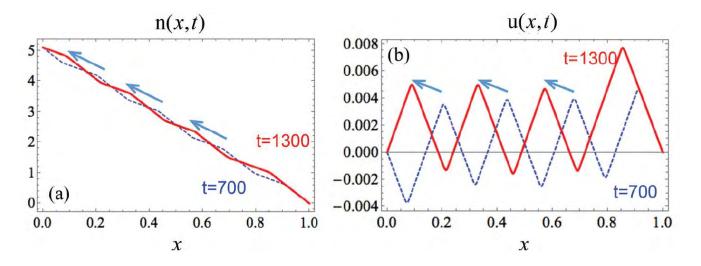
• Spreading model is important model constituent

Mergers Happen



- 'Type-II' merger (c.f. Balmforth, KITP'21)
- 'Type-I' (motion) mergers also observed
- → Staircase coarsens....
- → Obvious TBD:
 - Interplay/Competition of Spreading and Mergers?
 - Scan coarsening time vs β , merger rate vs increments in β

Staircases and Dynamics ! (Global)



- B.C. Neumann LHS, Dirichlet RHS.. (ala' sandpile) \rightarrow <u>asymmetry</u>
- 'Escalator Modes'

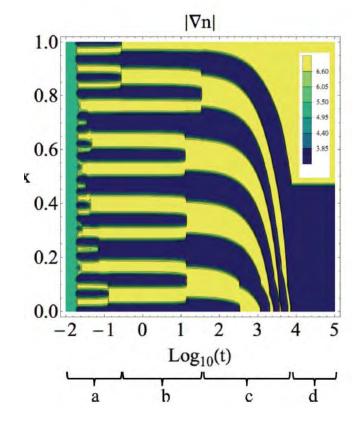
appear. Cause, Consequence?

- 'Shear Migration'
 - → "Non-locality" → c.f. Yan, P.D. 2022
- Needs further study...
 - → Credible model must address staircase <u>dynamics</u>

Dynamics is both local (mergers) and global

Dynamic Staircases, Cont'd

• Steps and barriers observed to condense to outer boundary



Is this a way to understand $L \rightarrow H$ transition?, barrier formation?

Ashourvan, P.D. (2016)

- Collapse of staircase into macroscopic barriers?
- Need quantify!

Flux Driven Studies

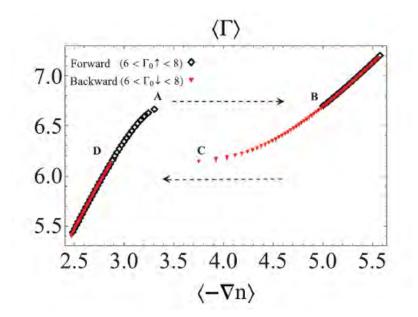
MFE problems are almost always flux-driven, with source and sink. Not

addressed in BLY '98. Gradients not "pinned" Collisional transport • For conservative drive: ('neoclassical') Drive (conservative) $\partial_t n = \partial_x D_n \partial_x n + D_c \partial_x^2 n - \partial_x \Gamma_{dr}(x)$ $\Gamma_{dr}(x) = \Gamma_0 \exp[-x/\Delta_{dr}]$ strength Profile of deposition $D_n = l^2 \varepsilon / \alpha$ as before

• Now address global confinement dynamics

Global Bifurcation in Staircase

• <u>Average</u> $\langle \Gamma \rangle$ vs $\langle \nabla n \rangle$ plot shows <u>GLOBAL</u> transport bifurcation and hysteresis



S-curve once more, with feeling !

- <u>Global</u> confinement bifurcation, in staircase state
- Regional weightings l_0 , l_{Rh} . Good confinement, l_{Rh} dominates
- Merits of staircase state ?! Compare to single barrier ?!

Global Bifurcation, Cont'd

~ Steady State

Δ

3

 \mathbf{a}

0

= 4.5 • = 0Final state $\langle \Gamma \rangle$ vs $\langle \nabla n \rangle$ 2 6 0 4 $\langle -\nabla n \rangle$ $\underset{u(x,t)}{\text{Shear profile}}$ $\underset{n(x,t)}{\text{Density profile}}$ Intensity profile $\varepsilon(x,t)$ 0.008 15 t = 5 $\Gamma_0 = 7.4$ t = 4 $\Gamma_0 = 7.4$ t = 50.006 t = 0.3t = 4t = 4100.004 t = 0.3t = 50.002 t = 00.000 $\Gamma_0 = 7.4$ t = 0t = 0.3-0.0020.2 0.4 0.6 0.80.2 0.8 0.01.0 0.4 0.6 0.80.2 0.4 0.6 1.0 0.01.00.0х х х Profile steepens Intensity drops Shear broadens

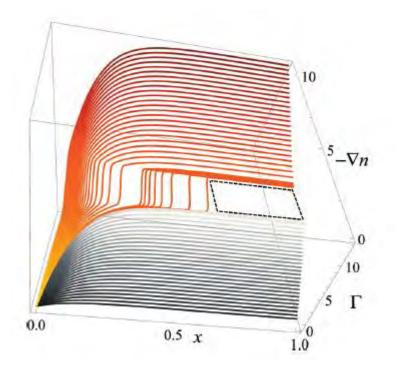
 $\langle \Gamma \rangle$

Global and Local \leftrightarrow **Flux Landscape**

<u>Flux Landscape</u> ↔ family of S-curve

Red \rightarrow enhanced confinement

Grey \rightarrow normal confinement



- See also
 - P.D., V.B. Lebedev, el. al., PRL '97

– Lebedev, P.D., Phys. Plasmas '98 (barrier propagation)

Where to next?

N.B. Recall –

"Some models are too good to be true.

Other models are too true to be good."

New Applications – 'Stress Test' the Model

N.B. BLY already 'flogged thru the fleet', but...

Thermal Rossby / ITG → PV conservation broken (buoyancy)

 $\rightarrow \langle \tilde{v}_r \tilde{T} \rangle$ - dynamic coherence in flux \rightarrow New Twist

* • Multi-scale: DW + ETG, AE + DW + ZF

. . . .

Theory-<u>Enhanced</u> Model (but not too complicated!)

• NL noise – incoherent mode coupling. How represent in M.L.T.?

– entrainment, as above

<u>n.b.</u> inhomogeneous mixing – inhomogeneous noise !?

c.f.: R. Singh, P.D. – PPCF 2021

includes $\langle n\nabla^2\phi\rangle$ coherence

• Dressed parcels – two component model (E. Spiegel, D. Gough "On taking

i.e. 'slug' + waves

mixing length theory seriously")

→ akin dressed test particle model (plasma) !?

But what is the gain?

• Exploit Relation to Wave Kinetics (Vlasov Eqn. for wave packet)

 $N = \omega E_W \approx \Omega$ for zonal symmetry Potential enstrophy WKE — stochastic: PD et. al. '05 coherent: Kaw, Garbet

• Easy to propose extensions, but may jeopardize the simplicity and clarity of BLY '98

Current Issues

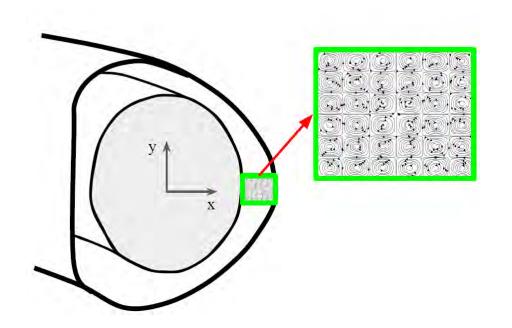
Ongoing Studies

• "Jamming" in Avalanches as SC mechanism

```
{Kosuga, PD, Gurcan'13, also Qi + }
```

Phenomenology \rightarrow c.f. Minjun Choi, this meeting

- <u>Resiliency</u> how robust is S.C.? (F. Ramirez, PD, PRE in press)
- <u>Physics of Spreading / Entrainment</u> (Runlai Xu, PD) address weakest link in model



(Fixed) Cellular Array Problem → Test bed for Resiliency

 $Pe = \frac{\tau_D}{\tau_H}$

Fixed Cellular Array

Consider a <u>general</u> case of a system of eddies not overlapping but tangent \rightarrow <u>Staircase</u>

Transport? Deff ~ D Pe^{$\frac{1}{2}$}

 $\rightarrow \text{Two time rates: } v / \ell, D / \ell^2$ $\rightarrow Pe = v \ell / D \implies 1$

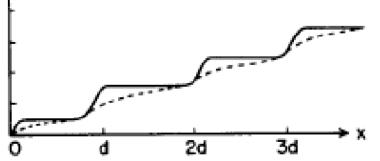
$$\frac{\partial n}{\partial t} + \mathbf{u} \cdot \nabla n = D \nabla^2 n,$$

Profile?

Π.

Consider concentration of injected dye (passive scalar transport in eddy s) \rightarrow profile

Rosenbluth et. al. '87



"Steep transitions in the density exist be tween each cell."

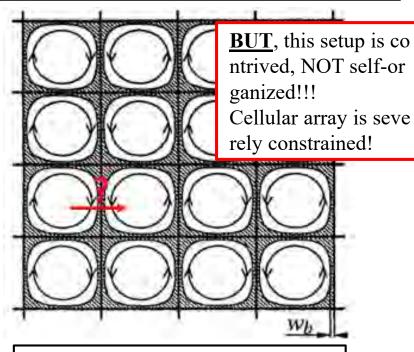
Relevant to key question of "near marginal stability"

 \rightarrow Layering!

 \rightarrow Simple consequence of two rates

Important:

- Staircase arises in stationary array of passive ed dies (Note that there is no FEEDBACK)
- Global transport hybrid:
 - \rightarrow <u>fast</u> rotation in cell
 - \rightarrow <u>slow</u> diffusion in boundary layer
- Irreversibility localized to inter-cell boundary.



Staircase arises in an arra y of stationary eddies!

Fluctuating Vortex Array

Why are we doing this? We know that a system with two disparate time scales forms a staircase!
Now consider fluctuations... → Will staircase survive?

 \rightarrow We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 2010),

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \boldsymbol{\nabla}\right) \omega = \frac{1}{\Omega} \nabla^2 \omega + F_\omega - \alpha \omega, \qquad \nabla^2 \psi = \omega.$$

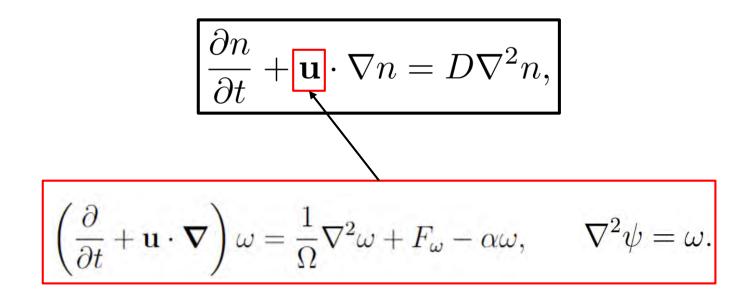
 \rightarrow The "vortex array" is simply the array of cells and "fluctuation" is related to turbulence induced variability in the structure. The fluctuating vortex array (FVA) allows us to study a **less constrained** version of the array!

 \rightarrow The fluctuating flow structure is created by slowly increasing the Reynolds number in the NS equation $\Omega = \frac{\tau_{\nu}}{\tau_{\nu}}$

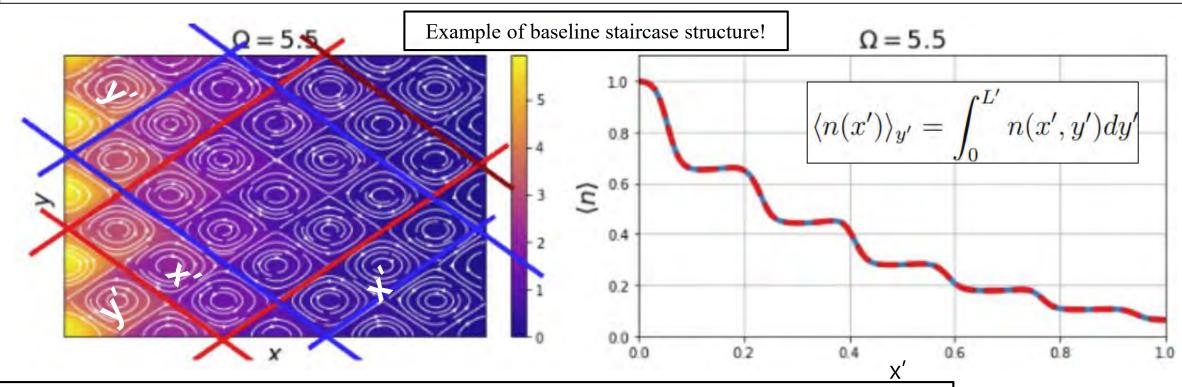
 \rightarrow By increasing the Reynolds number this modifies the forcing and drag term, thus, scattering the vortex ar ray. The <u>resilience</u> of the staircase is studied by increasing disorder in the vortex crystal through F_{\omega} $F_{\omega} \equiv -n^3 \left[\cos(nx) + \cos(ny)\right]/\Omega$

The streamfunction, ψ , at different evolutionary stages of the "fluctuating" vortex array is inserted into the passive scalar equation to study the resilience of the staircase structure.

What Happens to Staircase?



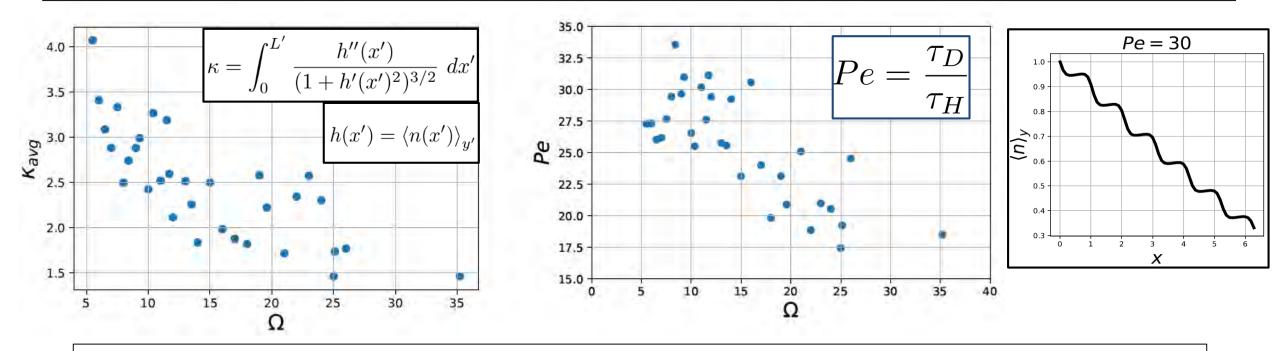
The Staircase



- For a weakly FVA we get a **baseline staircase** structure.
- On the left figure the blue and red box correspond to the blue and re d plot line on the right.
 - Both blue and red average scalar concentration have the same p rofile in stable stage.

So what happens to the staircase if we increase the Reynolds number in the VA?

Criteria for Staircase Resiliency



We establish a **set of criteria** to give a meaning to the statement of "**resiliency**":

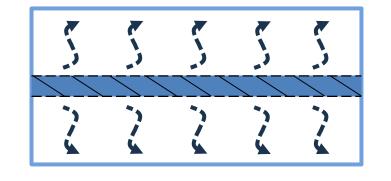
- 1) $Pe \gg 1$ is a necessary condition for the formation of transport barriers in the process of scalar mixing (First principles). $Pe \gg 1$ criterion is satisfied for the range of $0 < \Omega < 40$.
- 2) A staircase should maintain a sufficiently high curvature (equivalent to sustaining a sufficient number of steps). Our studies suggest that $\kappa \gtrsim 1.5$ is an adequate value for a staircase.

N.B. Increasing $Re, \Omega \rightarrow$ increasing cell excursion \rightarrow overlap + mergers

A Closer Look at Turbulence Spreading

2D Fluid: Simplest Incarnation of Spreading

 \Rightarrow Realize:



→ Forcing layer, localized

- Most of system in state of Selective Decay !
- Need Consider / Compare :

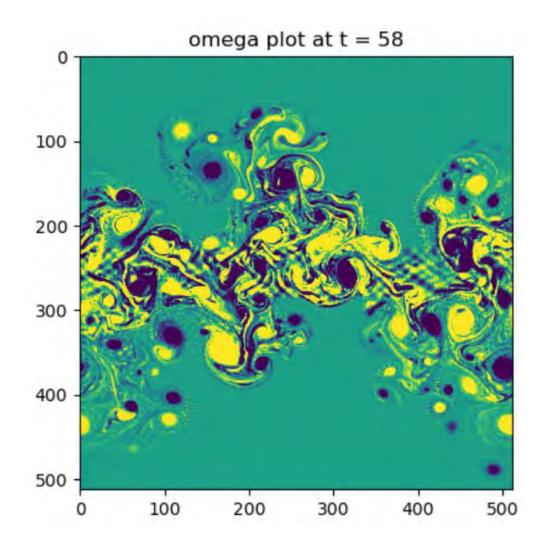
 $\langle V_y(\nabla^2 \varphi)^2/2 \rangle \rightarrow \text{Enstrophy Flux}$ $\langle V_y(\nabla \varphi)^2/2 \rangle \rightarrow \text{Energy Flux}$ Physical Measures of Spreading

as diagnostic of "intensity spreading".

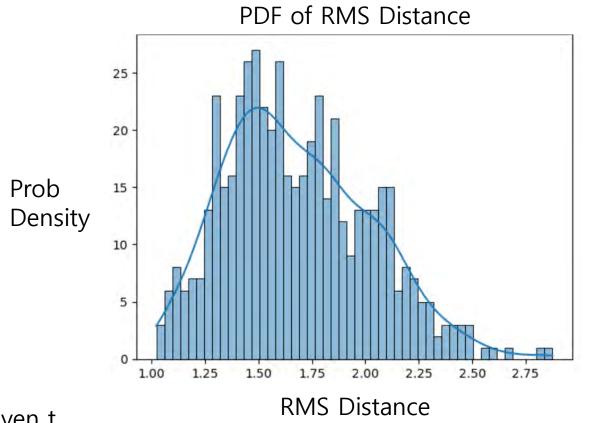
⇒ What Happens

At Re ~ 2000 (marginal resolution):

- Dipoles, Filaments cluster
- Fractalized spreading front?!



<u>Results</u>, cont'd



 \Rightarrow PDF of spreading (vorticity) at given t.

⇒ Calculate enstrophy-weighted rms distance for each position X; plot histogram

 $\square >$ Note skewed structure.

Summary - 2D Fluid

- Coherent structures - Dipole vortices - mediate spreading of turbulent region

- Mixed region expands as $w \sim t$, consistent with role of dipole.
- No discernable "Front", spreading is strongly intermittent. (space+time)
- Spreading PDF is non-trivial, exhibits tail.

 \leq

— Turbulence spreading strongly non-diffusive.

— More at York Fest: Comparison 2D Hydro, 2D MHD, HM+ZF

What Next ?

Layering in Burning Plasmas !?

• Current Picture: Energetic Particles – dilute

• Burning Plasma: mix

Confinement controlled by thermally driven turbulence with hots as "extra"

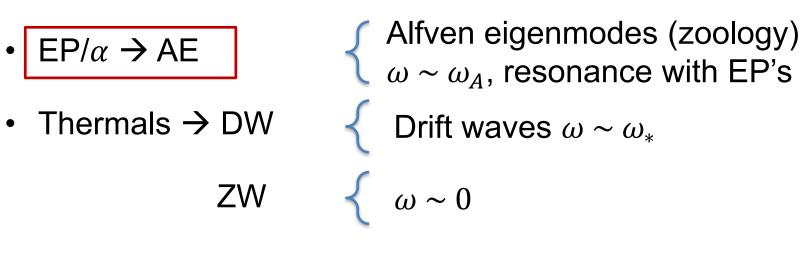
EP's - α particles <u>slowing down</u> \rightarrow Thermals

{ Confinement now a "soup" of EP + Thermals

• EP's and α 's introduce new scales $\rho_{\theta hot} > \rho_{\theta thermal}$

<u>and new</u> collective modes $\dots \rightarrow AE$'s (Alfven Eigenmode)

Burning Plasmas

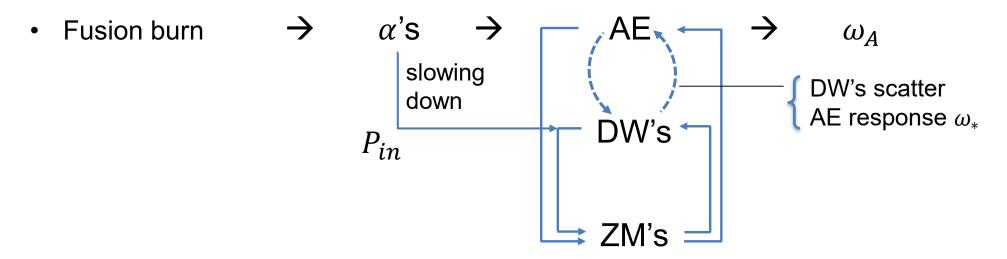


- Issues
 - Feedback loops much 'richer'. Staircase morphology?
 - ZF/Z-mode field now multi-scale

 \rightarrow SC with multi-scale steps. SC in EP and thermal population.

- α 's slow down on <u>electrons</u>. Thermals: TEM \rightarrow increased complexity
- AE vs DW competition \rightarrow layering ?!

Feedback Loops (Heuristic)



• Multiple, embedded loops – "3 Animals Problem" Zonal structures connect AE, DW

– Competition of populations

• Traps: i.e. – separate ZF population by injection + ECH ?!

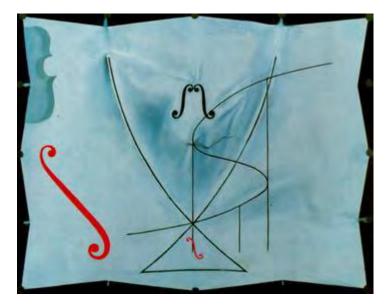
but DW scattering can quench AE's which drive ZF! so?

• Adventures ahead... c.f. GJ Choi, PD, Hahm NF'23 - dilution

 \rightarrow Significant effect on couplings in HM

Concluding Thoughts

- Problem of layering evolves along a winding road, with many
 - bifurcations



Salvador Dali

• Stay tuned...