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What Is negative triangularity?

Austin PRL 2019

NT PT



Object of the game In NT

e (et good confinement;
- “good”= H-mode like

e Stay out of H-mode
- Avoid ELMs, impurity Issues, heat load
problems.. ..
Why?
o Rarely asked: ITB + NT edge?!

= [xB shear. ..



Effect of triangularity on confinement and fluctuations

TCV experiments DIII-D experiments
e EC heated L-mode plasmas

e Energy confinement time doubled when
0O—> —0
e More effective in low collisionality
regime
=P e Role of ExB shear ?

Y. Camenen et al NF 2007
M Austin et al PRL 2019



Effect of triangularity on L-H transition

Courtesy: Oak Nelson

e No H mode transitionfor 6 < 6....~ —0.18

crit
o P, diverges o < o,
 loss of access to 2nd stability region of
n=oo Ideal MHD ballooning modes.
[Saarelma et al PPCF 2021, Nelson et al NF
2022]
e 2nd stability region Is never open for

0<0

crit*

* Is H mode operation always in 2nd stability region?

e Magnetic separatrix and finite edge current can
cause coalescence of 1st and 2nd stable region.
[Bishop NF 1986]

* Many past examples of (PT) H mode operation in
the 1st stability region.

« What happens to the £, induced transport bifurcation

Gradient picture of L-H transition in NT?

Role of mean ExB shear in NT pedestal formation?
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N.B: Broader view

o If we really have a story on L—H, should be able to explain why
NT seemingly does not transition!

e \What can we learn about L—H from NT?

* Is ballooning second stability more important than thought?



How to reconcile confinement improvement in NT L Mode/NT edge
with enhanced L-H power threshold?

e Need think beyond linear stabilization of zoo of modes(TEM/ITG,...)!

e Understanding flux surface shaping effects on turbulence saturation
mechanism Is important.

@or players for turbulence satur@

v v v
CZonaI rovD ( GAM ) @ean ExB sh@

especially core global, but especially edge




Zonal flows are reduced In NT

[Singh and Diamond NF 2022]

Wider magnetic well for NT. Increased trapped fraction for NT.
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Summary of zonal flow theory in NT

[Singh and Diamond NF 2022 ]

e Neoclassical susceptibility i1s higher for 6~ despite of
reduction in banana width. This Is due to Increase In trapped
fraction for 6.

e This means zonal flow screening length increases for 6.

e As a result, zonal flow residual iIs reduced Iin 6~ compared to
ot

e A Dbigger screening length, implies weaker zonal flows for
fixed drive.

= \\leaker regulation of turbulence and transport by
zonal flow in 6™

= Caution: Zonal flow physics Is not exclusively
determined by screening! Reynolds stress cross-phase

VS O07?

What about GAM shearing?

10



GAM frequency and damping rates reduced in NT
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e GAM Landau damping is more strongly (~7 times) reduced than the GAM
frequency for NT!
—>More coherent and stronger GAM EXB shearing field for NT than for
PT!
=—>NT plasma turbulence is likely saturated by GAMSs!

To be continued . . .
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What happens to mean ExB shear for NT??
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ExB shear suppression of turbulence is the holy grail of physics of
transport barriers

e ExB flow shear reduces radial size of eddies and transport.

D L

\
\ 4

e Turbulence quenches when shearing rate w, > Aw ~ y;;,, [BDT 90]
e Asaresult transport Is reduced and pressure gradient steepens.

e Transport bifurcation due to

mean ExB shearing -
e ETB formation during L-H =18

transition
o ITB formation in high S,

reversed q discharges
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Geometry dependence of mean ExB shearing rate

ExB shearing rate in general axisymmetric toroidal geometry
obtained from a 2-point correlation calculation: [Hahm & Burrell PoP 1995]
y.= poloidal flux .= toroidal angle
Ayy\ 0 ®,:= Mean electrostatic potential
E~ (A_g“) a_wzq)o(l//)’ Ayp:=Turbulence correlation length in y
Al:=Turbulence correlation in toroidal angle £

: : : oy RB,
Ay Is related to radial turbulence correlation length Ar: Ay = Ar— = Ar ,
. . i R (77 B N 4
where v’ Is obtained from the definition of global safety factor g: v’ = O do—
2nq(y) ] R?
e Al iIs related to poloidal correlation angle A = vAé, where the local safety factor
I
v=—
/g
Ar[R%y?| & ”Mi
o ThUS, wp = I INTAE > Qo)
\ j\}l// <T>

Geometry dependent factor
. ;—;2@0(1//) IS set by the radial force balance of ions - as usual!
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Geometry dependence of mean ExB shearing rate

[Hahm & Burrell PoP 1995]

Ar ?321//@ 0°
A0\ 1Y Jallfz

W = Dy (y),

v Ar 0*
Calculated for Miller’s equilibrium for fixed — and ——® .
( AQ o2 o(W) rA6 i

<4—>

R = Ry(r) + rcos[f + (sin~'6)sind], Z = x(r)rsin 6 A7

Jacobian:
F = Rkr [R(’) cos(@) + cos (sin‘1 0 sin 0) + sin(@ + sin~!' §sin @)sin & {SK — S5c080 + (1 + SK) sin~! & cos 6’}]

\

Shafranov shift gradient Triangularity gradient  Elongation gradient

Ry
[Shape dependence of shearing rate is inferred from shape dependence of }lj . J
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Variation of mean ExXB shearing rate with triangularity 6

Geometric ‘bifurcation’ of shearing rate
e Max shear off the outboard

mid-plane for NT— Shearing

Is less effective for k. =0

modes i.e, the modes ballooning O,pis
at @ = 0. j

—) o The peak shearing bifurcates

at 567‘11 < O
e Why? The Jacobian Is a
nonlinear function of o
which exhibits spontaneous
symmetry breaking.
e Peak shears move toward

good curvature region.

N.B: Calculated at fixed ‘core’r.
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Variation of mean ExXB shearing rate with triangularity 6

Geometric bifurcation of shearing rate

e Shear at 6 =0: (for fixed

D))
e | with increasing NT. Ocrit
e \Weaker for NT than for PT. /

Note that fluctuations
balloon at d =0. Thus
shearing efficiency | —

PL—>H,th T (I,))

e Flux surface averaged shearing
rate Is slightly higher for NT

than for PT. o046
%0.044
- Global confinement ?! 0042
é 0.04
a -1 0.5



Variation of mean ExB shearing rate with triangularity gradient S

On Increasing |Ss|:

e Shearing rate decreases.

e O. .. moves toward o~.

crit

4

= Radial profile of triangularity matters!
= Can triangularity profile can be tailored to boost mean
ExB shear?
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Shafranov shift induced transport bifurcation

o ITB formation in high-f, regime is often linked to transport bifurcation due to
turbulence stabilization by Shafranov shift due to mag drift reduction/reversal,
Ignoring the mean ExB shear effect. [Mike Beer et al PoP 1997, S Ding et al PoP
2017, JMcClenaghan et al PoP 2019, G M Staebler et al PoP 2017]

[VP, 5,4 Shafranov shiftﬂ

'

Mag drifts v
reduced/reversed

'

Turbulence#}

Feedback loop for Shafranov shift induced transport bifurcation

o But... likeit or not - mean snear exist in high-f, discharges!

e S0 how does mean shear and Shafranov shift interact ?
e Interplay of mean ExB shear, Shafranov shift and NT?
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Variation of mean EXB shearing rate with Shafranov shift gradient R))

On increasing —R});
e Shearing rate increases for
all o.
e 6. moves toward 6~ on

Increasing —R,,.
—> o Key reason—flux compression.

+

¢ 5

O Significant for:

0.1 e high p, regime (i.e, RS ITB) as
: r

-0. 2} R’ oxX —
| "Ry P

Ao03 e NT shapes

0.4 o asf,(67) > B,(67)

o5l e Numerical MHD equilibrium
e study s_hows R{(67) > R)(61)
Shafranov shift gradient obtained even for fixed ,Bp-

using CHEASE code 0



Mean ExB shearing rate increases with elongation x and elongation gradient S,

On Increasing x:
e Shearing rate increases

Vand o
e 4., 1S Independent of «. ¢

C

+ .

On increasing S,
e Shearing rate Increases

¢ ¢ 5 ° VCZ moves along o6~
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Conclusions

Pure geometrical modification of ExB shearing rate as PT — NT shapes

Max shear off the outboard mid-plane for NT as — Shearing is more effective
for k, # 0 modes for NT. Are these relevant?

The peak shearing bifurcates at o... < 0. Peak shears move toward good

crit —
curvature region and the shear at & = O decreases with increasing NT. Note that
fluctuations balloon at & = 0. Thus shearing efficiency | = P, ., ,, T(1?). Is

this sufficient ?

Shearing rate decreases with increasing triangularity gradient S; and
Increases with increasing elongation x, and elongation gradient S, .

Direct effect of Shafranov shift gradient —R;, on shearing rate: Shearing rate
Increases with increasing —R; for all 6. Key reason—flux compression.
Significant for high /5, regime and NT shapes.

These results has implications not just for L-H transition for NT but also for ITB
discharges in PT and NT(proposed), and NT core and and pedestal.

NT micro stability studies have ignored ExB shear.
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Implications |

e Shafranov shift affects turbulence in 2 distinct ways:
(1) Stabilizes turbulence by reduction/reversal of magnetic drifts
(I1) Directly enhances the mean shear, — additional turbulence suppression
Both can cause bifurcation to enhanced confinement state independently.

Bifurcation by (1) Is often invoked as a mechanism of confinement improvement
In high-f, regime, ignoring the mean shear effect.

Enhanced mean EXB shearing by

Shafranov shift provides a +ve {VP, ﬂpTAP(ShafranovshiflT EsthearVGf]
feedback on the feedback loop of the l

Shafranov shift induced transport

: " Mag drifts

bifurcation. [reduced/reverscij J

Shafranov shift also has a +ve effect l

on the mean ExB shear induced Turbulenced

transport bifurcation, not only through _
a reduction of the linear growth rate ~ Both (1) and (1) can work in tandem to
but also through the enhanced ExB reduce the VP,_ . for the onset of ITB In

c

sharing rate. reversed shear PT shape
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Implications |1

e For realistic MHD equilibrium, Shafranov shift T when PT— NT

m»shear increase by enhanced Shafranov shift competes with shear reduction

at @ = 0 when PT — NT
Neg TT—b[ ExBshear @ 9 =0y ]
Max ExB shear @ @ # 0 4

[VP, 5,1 H(Shafran!v shift$ ExB shear V6 f]

( Mag drifts | )
reduced/reversed

'

Turbulencey

e For experimental equilibrium, parametric dependencies R) = R)(0), k = k(5), S, = S(0),
Ss = Ss(0) from numerical codes can help calculate shear accurately, - - -in progress!
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For the experimentalists

e Mean ExB Shearing is maximal off
the mid-pane for NT:

—>Eddy tilting should be strongest

off the mid-plane.

e Direct iImaging using gas-puffing?

e Joint pdf of radial and poloidal

velocity fluctuations (i.e., V, & V)

should show max tilting (most-

correlated) off the mid-plane for
NT.

0<0 0=0 0>0

e Shafranov shift gradient R, directly

boosts the mean ExB shear:
o Re-assess the role of mean ExB
shear In high-f, reverse shear

discharges.
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For the experimentalists

e On turbulence saturation: (GAM vs ZFs)
e Study variation of ratio of zonal flow energy to GAM

energy ( Bzr

>when PT—NT. - - - Fluctuation diagnostics

L GAM

e Frequency resolved Reynolds stress (7,7,) and power
(v)'e <\7,,\79> vs triangularity- - -BES diagnostics

o Radial correlation length of zonal flows vs triangularity. - -
- BES diagnostics
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From the experimentalists

Explain initial separatrix pressure gradient steepening as P t,
yet no propagation inward for 6 < 6., (L Schmitz)

Revisit analysis for asymmetric 6. (K Thome)
- Synergy between 6 asymmetry and ExXB shear induced
asymmetry?!

(wg) vs radius vs & plot. (G McKee)

ExB shear effects on ballooning stability near 6., ?
(PD, Nelson)
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Once more:

NT Is Interesting test bed for the “conventional wisdom” of
turbulence and transport.

Any good story should explain both 6 > 0 and 6 < 0.
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