Physics of SOL Broadening by Turbulence and Structures

P.H. Diamond

UC San Diego

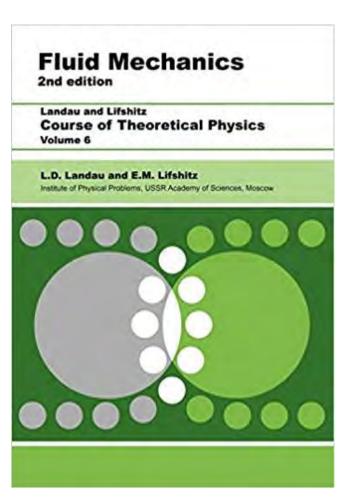
APTWG 10 Seoul, June 14, 2023

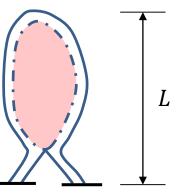
Collaborators

- Theory: Xu Chu, Mingyun Cao, Z.B. Guo, Zeyu Li; (UCSD, PPPL, PKU, GA)
- Computation: Nami Li, X.-Q. Xu; (LLNL)
- Experiment: Filipp Khabanov, Rongjie Hong, G. Mckee, Zheng
 Yan, G. Yu, G. Tynan (DIII-D → Frontiers Exp.), Ting Long (SWIP)

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Outline

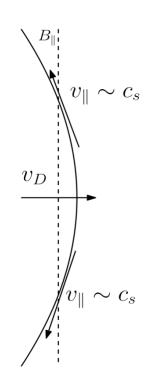

- The Problem
- SOL Broadening by Turbulence Spreading (N.B. New results since '22)
- Simulation Results re: Spreading
- Experimental Results re: Spreading (DIII-D)
 - 3+4 sneak preview: spreading flux tracks fluctuation skewness!
- G.R.E. and Blob-Void Production
- What is a Blob/Void ? → Some Physics!


Background

Conventional Wisdom of SOL:

(cf: Stangeby...)

- Turbulent Boundary Layer, ala' Blasius, with D due turbulence
- $-\delta \sim (D\tau)^{1/2}$, $\tau \approx L_c/V_{th}$
- $D \leftrightarrow$ local production by SOL instability process
 - → familiar approach, D ala' QL
- Features:
 - Open magnetic lines → dwell time τ limited by transit,
 conduction, ala' Blasius
 - Intermittency → "Blobs" etc. Observed. Physics?

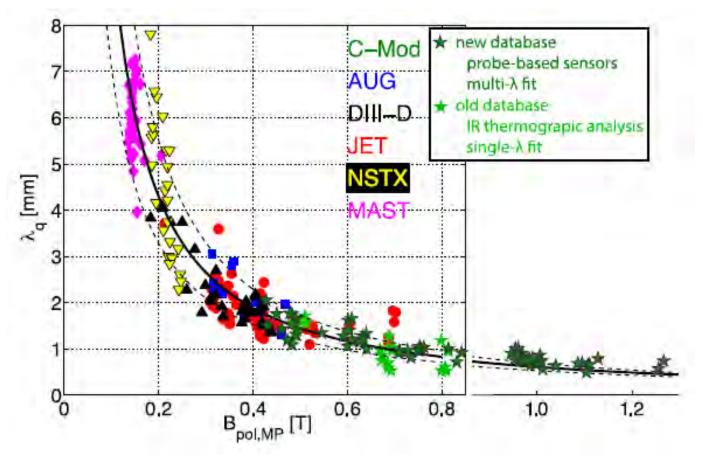


Background, cont'd

But... Heuristic Drift (HD) Model (Goldston +)

$$- \ V \sim V_{\rm curv} \ , \ \tau \sim L_c/V_{thi} \ , \ \lambda \sim \epsilon \ \rho_{\theta i}$$
 \rightarrow SOL width

- Pathetically small
- Pessimistic B_{θ} scaling, yet high I_p for confinement
- Fits lots of data.... (Brunner '18, Silvagni '20)


Why does neoclassical work? → ExB shear suppresses SOL modes i.e.

$$\gamma_{\text{interchange}} \sim \frac{c_s}{(R_c \lambda)^{\frac{1}{2}}} = \frac{3T_{edge}}{|e|\lambda^2}$$

shearing $\leftarrow \rightarrow$ strong λ^{-2} scaling

from:
$$\frac{c_S}{(R_C\lambda)^{\frac{1}{2}}} - \langle V_E \rangle'$$

Background: HD Works in H-mode

"Brunner Plot"

HD is Bad News...

Background, cont'd

• THE Existential Problem... (Kikuchi, Sonoma TTF):

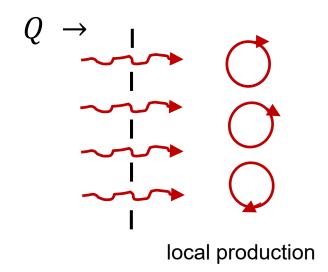
Confinement \rightarrow H-mode $\leftarrow \rightarrow$ ExB shear

Desire Power Handling \rightarrow broader heat load, etc $\rightarrow \underline{\text{Both}} \text{ to be good } !$

How reconcile? – Pay for power mgmt with confinement ?!

- Spurred:
 - Exploration of turbulent boundary states with improved confinement: Grassy ELM, WPQHM,
 I-mode, Neg. D ... re-visit ITB + L-mode edge?
 - SOL width now key part of the story
 - Simulations, Visualizations (XGC, BOUT...) ~ "Go" to ITER and all be well
- But... What's the Physics ?? How is the SOL broadened?

Some Theory

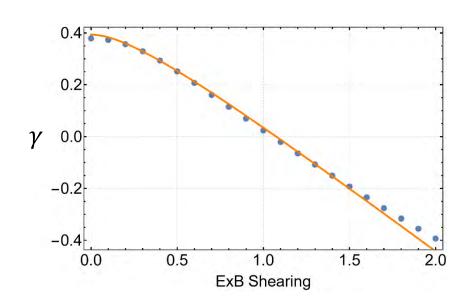

SOL BL Problem

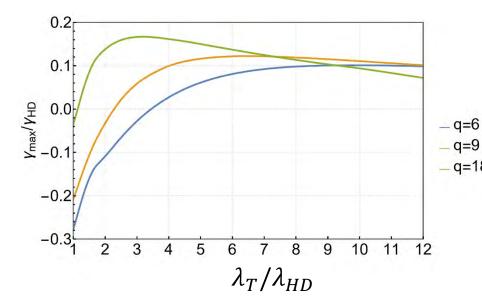
SOL Excitation

- Local production (SOL instabilities) Q driven
- Turbulence energy influx from pedestal

Key Questions:

- Local drive vs spreading ratio $\rightarrow Ra$
- Is the SOL usually dominated by turbulence spreading?
- How far can entrainment penetrate a stable SOL → SOL broadening?
- Effects ExB shear, role structures ?




Physics Issues – Part II

- How <u>calculate</u> SOL width for turbulent pedestal but a locally stable SOL?
 - spreading penetration depth
 - must recover HD in WTT limit
- \rightarrow Scaling and cross-over of λ_q relative HD model
- What is effect/impact of barrier on spreading mechanism?
 - Can SOL broadening and good confinement be reconciled?

Model 1 – Stable SOL – Linear Theory

 Standard drift-interchange with sheath boundary conditions + ExB shear (after Myra + Krash.)

Maximal Linear Growth Rate of Interchange Mode in the SOL v.s. normalized layer width λ_D/λ_{HD} at different SOL safety factor q (with $\beta=0.001$)

Linear Growth Rate of a specific mode (fixed k_y) v.s. $E \times B$ shear at $q = 5, \beta = 0.001, k_y \cdot \lambda_{HD} = 1.58$.

- Relevant H-mode ExB shear strongly stabilizing $\gamma_{HD} = c_s/(\lambda_{HD}R)^{1/2}$
- Need λ/λ_{HD} well above unity for SOL instability. $V_E' \approx \frac{3T_e}{|e|\lambda^2} \rightarrow$ layer width sets shear

Model 2 – Two Multiple Adjacent Regions

"Box Model" – after Z.B. Guo, P.D.

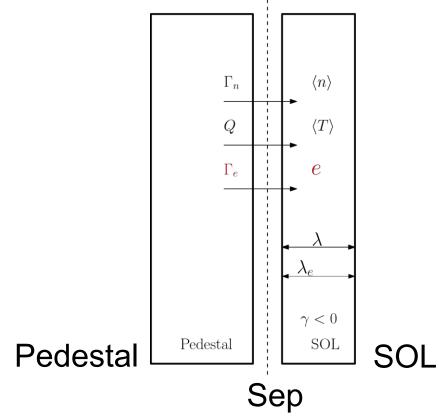


Illustration of Two Box Model: SOL driven by particle flux, heat flux and intensity flux (Γ_e) from the pedestal. The horizontal axis is the radial direction, and vertical axis is the poloidal direction.

- Key Point:
 - Spreading flux from pedestal can enter stable SOL
 - Depth of penetration → extent of SOL broadening
 - → Problem in one of entrainment/penetration

Width of Stable SOL

• Fluid particle: $\frac{dr}{dt} = V_{Dr} + \tilde{V}_{drift}$ fluctuating velocity

• Dwell time:
$$\tau_{\parallel}$$
 drift fluctuating velocity constrains ex

$$\begin{array}{c} \bullet \quad \delta^2 = \langle \left(\int \left(V_D + \tilde{V} \right) dt \right) \left(\int \left(V_D + \tilde{V} \right) dt \right) \rangle \\ \langle (\text{step})^2 \rangle \quad = V_D^2 \tau_\parallel^2 + \langle \tilde{V}^2 \rangle \tau_c \tau_\parallel \\ \quad = \lambda_{HD}^2 + \varepsilon \tau_\parallel^2 \end{array}$$
 Correlation time modest turbulence $\leftrightarrow \tau_c \geq \tau_\parallel$ turbulence energy density

- So $\lambda = \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right]^{1/2}$ \rightarrow SOL width [Effects add in quadrature]
- How compute ε ? \rightarrow turbulence energy in SOL. Need relate to pedestal
- N.B. Can write: $\lambda = [\lambda_{HD}^2 + \lambda_{e}^2]^{1/2}$ λ_{e} is turbulent width

Calculating the SOL Turbulence Energy 1

- Need compute Γ_e effect on SOL levels
- $K \epsilon$ type model, mean field approach (c.f. Gurcan, P.D. '05 et seq)
 - Can treat various NL processes via σ , κ
 - Exploit conservative form model
- $\partial_t \varepsilon = \gamma \varepsilon \sigma \varepsilon^{1+\kappa} \partial_x \Gamma_e$ Spreading, turbulence energy flux • Growth $\gamma < 0$ NL transfer $\gamma_{NL} \sim \sigma \varepsilon^{\kappa}$ here contains shear + sheath
- \rightarrow N.B.: No Fickian model of Γ_e employed, yet
 - Readily extended to 2D, improved production model, etc.

Calculating the SOL Turbulence Energy 2

- Integrate ε equation \int_0^{λ} ; "constant e" approximation
- Take quantities = layer average

•
$$\Gamma_{e,0} + \lambda_e \gamma \varepsilon = \lambda_e \sigma \varepsilon^{1+\kappa}$$

Separatrix fluctuation energy flux ——

Single parameter characterizing spreading

So for
$$\gamma < 0$$
,

$$\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$$

 λ_e = layer width for ε

 $\Gamma_{e,0}$ vs linear + nonlinear damping

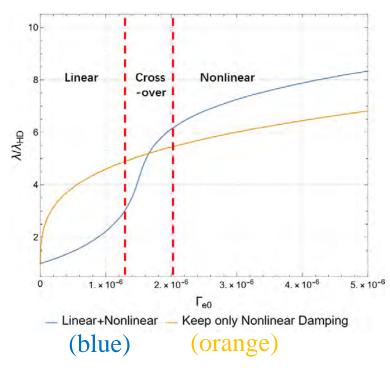
• Ultimately leads to recursive calculation of Γ_e

Calculating the SOL Turbulence Energy 3

[Mean Field Theory]

Full system:

$$\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$$


$$\lambda_e = \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right]^{1/2}$$

Simple model of turbulent SOL broadening

- $\Gamma_{0,e}$ is single control parameter characterizing spreading
- $\tilde{\Gamma}_{0,e}$? Expect $\tilde{\Gamma}_e \sim \Gamma_0$

SOL width Broadening vs $\Gamma_{e,0}$

SOL width broadens due spreading

 λ/λ_{HD} plotted against the intensity flux Γ_{e0} from the pedestal at $q=4,\beta=0.001,\kappa=0.5,\sigma=0.6$

Variation indicates need for detailed scaling analysis

- Clear decomposition into
 - Weak broadening regime → shear dominated

relevant

- Cross-over regime
- Strong broadening regime
- → NL damping vs spreading

Cross-over for:

$$\langle \tilde{V}^2 \rangle \sim V_D^2 \implies$$
 cross-over $\Gamma_{0,e}$

• Cross-over for $\tilde{V} \sim O(\epsilon)V_*$

SOL Width: Some Analysis

Have
$$\Gamma_{e,0} = |\gamma|e\lambda_e + \lambda_e\sigma e^{1+\kappa}$$

a) Damping dominated

$$\Gamma_e \approx |\gamma| \; \lambda_e \; e \qquad \qquad \lambda_q^2 = \lambda_e^2 + \lambda_{HD}^2$$

$$\lambda_q = \left[\lambda_{HD}^2 + \left(\frac{\Gamma_e \tau_{\parallel}^2}{|\gamma|} \right)^{2/3} \right]^{1/2}$$

- Spreading enters only via Γ_e at sep.
- Shearing via $|\gamma|$
- τ scalings $\rightarrow \tau_{\parallel}$ vs $\tau_{\parallel}^{2/3} \rightarrow$ current scaling of λ_e weaker

SOL Width: Some Analysis, Cont'd

b) NL dominated

$$\Gamma_e \approx \lambda_e \ \sigma \ e^{1+\kappa}$$
 $\lambda_q^2 = \lambda_e^2 + \lambda_{HD}^2$

$$\lambda_q = \left[\lambda_{HD}^2 + \left(\frac{\Gamma_e}{\sigma}\right)^{2/(3+4\kappa)} \tau_{\parallel}^{[4(1+\kappa)/(3+2\kappa)]}\right]^{1/2}$$

- weaker Γ_e scaling, $\lambda_q \sim (\Gamma_e/\sigma)^{1/5}$; STT
- $-\tau_{\parallel}^{3/4}$ vs τ_{\parallel} \rightarrow weaker current scaling

The Question

- What is Γ_e ? How characterize? $\leftarrow \rightarrow$ Flux-Gradient Relation?
- Conventional Wisdom:

$$\Gamma_e \approx -D(e) \frac{\partial e}{\partial x} \rightarrow \frac{D_0 e^{\alpha+1}}{f(V_E')} / w_{ped}$$
 as in CDG '22

But: "The conventional wisdom is little more than convention"

J.K. Galbraith

See computation, experiment...

Some Simulation Results

(cf. Nami Li, X.-Q. Xu, P.D.; submitted)

- → BOUT++ → pedestal + SOL
- → 6 field model ("Braginskii for 21st century")
- → Focus on weak peeling mode turbulence in pedestal
 - → MHD turbulence state → small/grassy ELM, also WPQHM

3D Counterpart of Brunner (λ_q vs B_{θ})

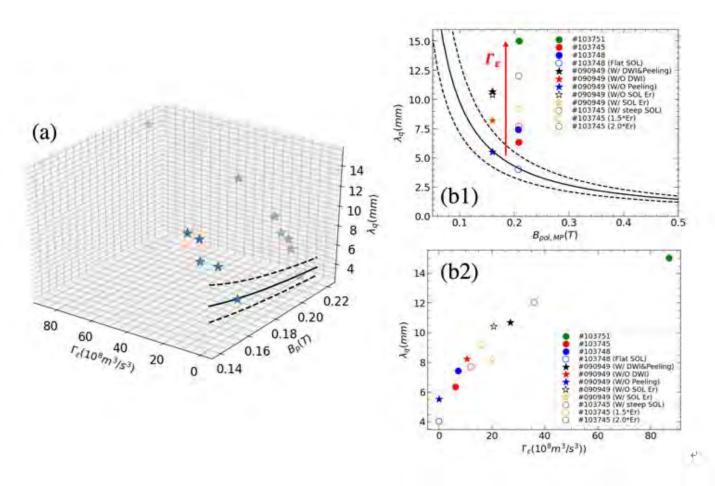


Fig. 3. (a) 3D plot of heat flux width λ_q vs poloidal magnetic field B_p and fluctuation energy density flux Γ_{ε} ; (b) 2D plot of heat flux width λ_q vs poloidal magnetic field B_p (b1) and fluctuation energy density flux Γ_{ε} (b2).

3D Brunner Plot – Comments

- λ_q rises with Γ_e
- Low Γ_e , λ_q tracks hyperbola
- Large Γ_e , λ_q rises above Brunner/Goldston hyperbola
- λ_q grows with Γ_e

Spreading as Mixing Process?

• Conjecture that λ_q should increase with <u>pedestal</u> mixing length $\rightarrow \Gamma_e$

- Note division into
 - drift dominated
 - cross-over (blue)
 - turbulent

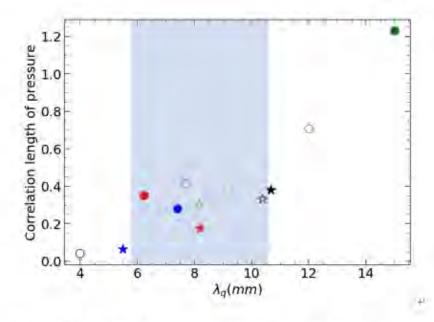


Fig 4. Radial correlation length of pressure near the separatrix vs. heat flux width λ_q .

Relate Spreading to Pedestal Conditions

N.B.

- Γ_e rises with pedestal $\nabla P_0 \longleftrightarrow$ increased drive
- Collisionality dependence Γ_e:
 - high → no bootstrap current →
 ballooning → smaller l_{mix}
 - low → strong bootstrap → peeling
 → larger l_{mix}

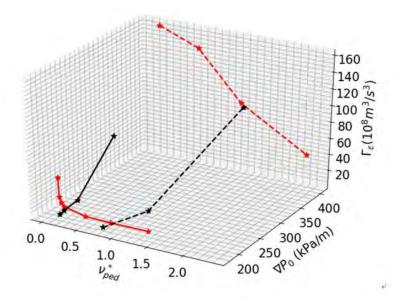


Fig. 7. 3D plot of fluctuation energy density flux Γ_{ε} vs pedestal peak pressure gradient ∇P_0 and v_{ped}^* ; black curves are ∇P_0 scan with low collisionality $v_{ped}^* = 0.108$ (solid curve) and high collisionality $v_{ped}^* = 1$ (dashed curve); red curves are v_{ped}^* scan with small $\nabla P_0 \sim 200 \ kPa/m$ (solid curve) and large $\nabla P_0 \sim 400 \ kPa/m$ (dashed curve).

Fundamental Physics of Γ_e

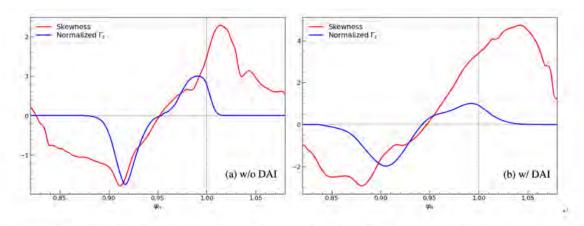
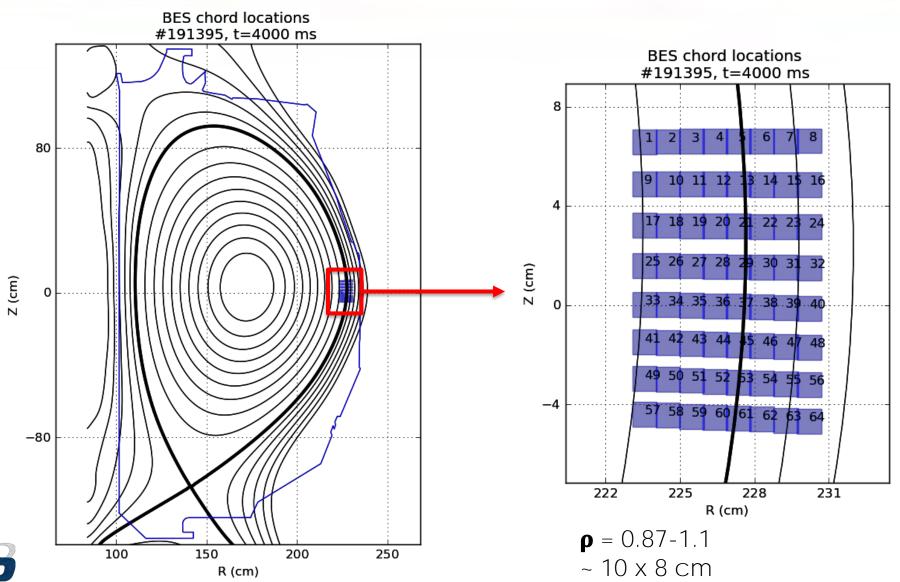


Fig. 6 Radial profiles of normalized fluctuation energy density flux Γ_{ε} (blue) and skewness (red) for without (a) and with (b) drift-Alfvén instability. Here fluctuation energy density flux is normalized to the max value for each case.

- Γ_e spreading tracks \tilde{P} skewness
 - Outward for s > 0 → "blobs"
 - Inward for s < 0 → "voids"
- Zero-crossings Γ_e , s in excellent agreement

Fundamental Physics of Γ_e , cont'd

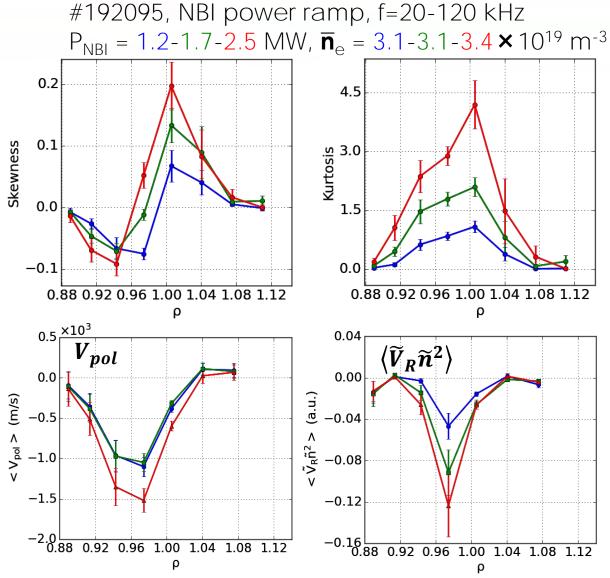
- Spreading appears likely linked to "coherent structures"
- Likely intermittent (skewness, kurtosis related)
- Related study (Z. Li); $Ku \sim 0.4$, so \rightarrow if Fokker-Planck analysis


$$\frac{\partial e}{\partial t} = -\frac{\partial}{\partial x} (Ve) + \frac{\partial^2}{\partial x^2} (De)$$
 Convective!?

Relate V to pedestal gradient relaxation event (GRE) ?!

Why would one think of this?

Some Experimental Data


BES allows measuring 8n/n at the plasma edge

Turbulence intensity flux $\langle \widetilde{V}_R \widetilde{n}^2 \rangle$ is negative inside and positive outside the separatrix

- Negative skewness of \tilde{n} inside the separatrix and positive skewness outside indicate the prevalence of negative density fluctuations (voids) inside the separatrix and positive (blobs) outside.
- The formation zone of blob-void pairs (zero skewness) is located at ρ ~0.96-0.98.
- Turbulence intensity flux $\langle \tilde{V}_R \tilde{n}^2 \rangle$, measured using 2D BES, shows an inward turbulence spreading inside the separatrix while outside, the turbulence spreading is outward towards the SOL.

31

What is going on?

→ Gradient Relaxation Events and SOL Broadening

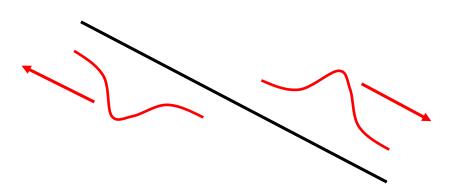
<u>or</u>

"Interesting Things come in pairs"

More Theory

General Question:

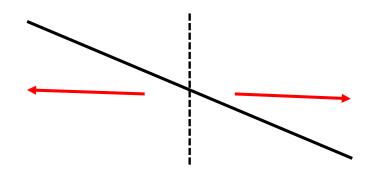
"Is there a connection between turbulence spreading and blob-void pairs of structures?"


Introduction, cont'd

Foundation: Physics of turbulence spreading, avalanches, etc.

- Avalanches observed $\begin{array}{c} \bullet \quad \text{M. Choi, 2018 (KSTAR) ECEI} \\ \bullet \quad \text{Spreading} \end{array}$ M. Choi, 2018 (KSTAR) ECEI velocimetry i.e. $\langle \tilde{V}_r \tilde{n}^2 \rangle$

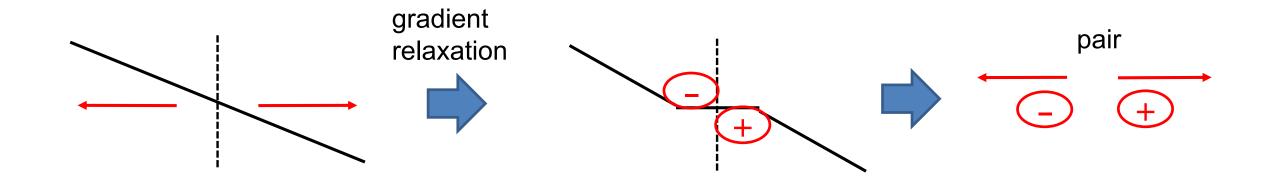
Introduction, cont'd


Avalanches -> opposite propagation of bumps and voids

P.D. + Hahm '95 et seq.

N.B.: bump and void propagation observed → Choi, 2018

• Hint of opposite $\langle \tilde{v}_r \tilde{n}^2 \rangle$ spreading pulses near sep.

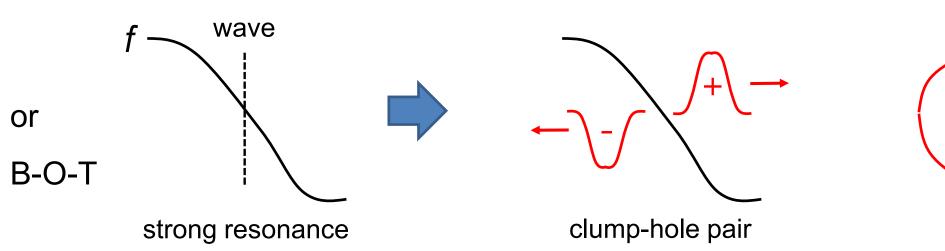

Khabanov

See also: Ting Long

• Recent results consistent with long history...

Introduction, cont'd

- Why the _____?
- Edge gradient relaxation event (GRE)



←→ Conservative advection

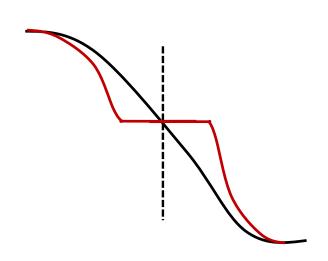
- → inward propagating "void" or "hole"
- → outward propagating "clump" or "blob"
- GRE sets initial impulse to blob, void

Related: B+B Model (1996 \rightarrow)

1D Vlasov mock up of EP resonant instability

"turbulence spreading"
in phase space
+ clump

"chirp"


- hole

- N.B. BB speak and draw "clump-hole pair" but <u>calculate</u> via 3 wave coupling
 - → considerable restriction on domain applicability
- Common element: relaxation -> structure pair production and propagation

Related: B+B Model, cont'd (Ackn: V. Duarte)

- Recent variation on B + B: Lilley & Nyquist, 2014
 - Key: Plateau in $\langle f \rangle \rightarrow \underline{\text{negative energy wave}}$

Plateau ←→ akin to beam → NEW

- Negative energy waves easily destabilized by residual dissipation
- Clump hole pair generated → erodes plateau
- Suggest strong mixing (GRE) can initiate blob-void pair. Negative energy waves generic!

Related: B+B Model, cont'd

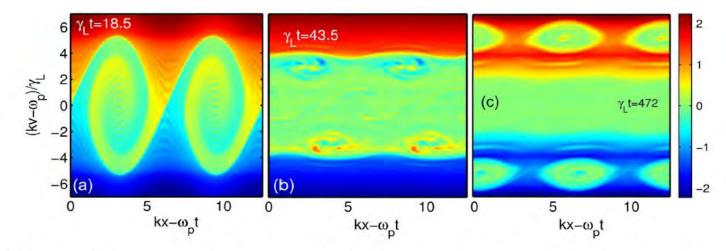


FIG. 2 (color online). Snapshots of the resonant fast particle distribution function for $\gamma_d/\gamma_L = 0.1$ that display (a) the initial phase mixing followed by (b) the almost spatially uniform plateau with sideband trapping regions forming close to the edge, and finally (c) a detaching hole-clump pair. Obtained using BOT [10,20].

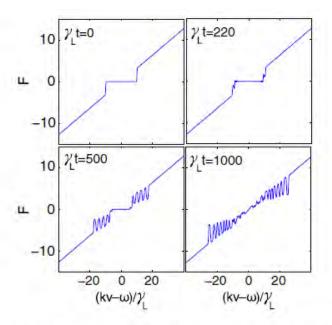
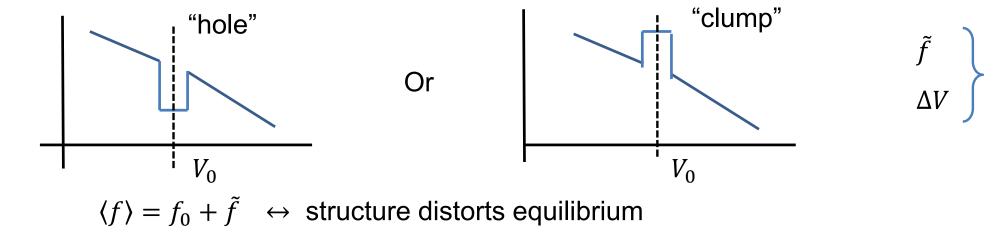


FIG. 5 (color online). Spatially averaged distribution function evolved using the BOT code [10,20] for $\gamma_d/\gamma_L=2$, $k\Delta v/\gamma_L=10$ and initial normalized amplitude $\omega_B^2/\gamma_L^2=10^{-6}$. The unstable plateau generates holes and clumps that eventually completely erode the plateau state.

But...

If speaking of blobs, voids, structures etc...

→


"What makes a blob a blob?"

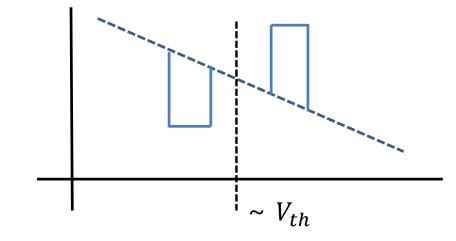
←→ Physics of self-coherence?

• N.B. I have <u>never</u> received a satisfactory answer to this question...

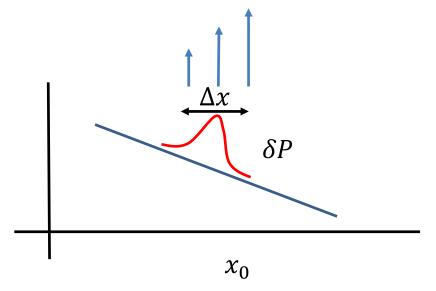
Blob-Void Pair: Basic Structure

- What makes a coherent structure "coherent"?
- Clue: Vlasov Plasma

- then: $-(\omega kv)\tilde{f} = -\frac{q}{m}k\hat{\phi}\frac{\partial}{\partial v}\left[f_0 + \tilde{f}\right]$ $\nabla^2\phi = -4\pi n_0 q \int f dv$
- and standard analysis, ala' 'waterbag model' collisionless gravitation cf: Berk + '60s, Dupree '82


$$\rightarrow (\omega - kV_0)^2 = \frac{2\omega_p^2}{k} \frac{\tilde{f}\Delta V}{\epsilon(k,kV_0)} + k^2(\Delta V)^2$$
 dispersion of structure screening

• key: $\tilde{f}\Delta V \rightarrow$ strength/charge sign $\tilde{f} \rightarrow \geq 0$ screening $\epsilon(k,kV_0) \rightarrow \geq 0$


- "hole" :
$$\epsilon > 0$$
 for $\tilde{f} < 0 \rightarrow V_0 < V_{th}$

N.B.: Coherence ← → Self-field induced attraction overcomes streaming apart

Relevant example: Pressure Blob in Shear Flow

$$\nabla_{\perp}^{2} \hat{\phi} - \frac{\kappa \nabla_{y} \tilde{V}_{r} \partial_{r} P_{0}}{(\omega - k V_{0})^{2}} = \frac{\kappa \nabla_{y} \tilde{V}_{r} \partial_{r} \delta P}{(\omega - k V_{0})^{2}}$$

$$\hat{\phi} = \int dx' \ G(x, x') \ \frac{\kappa k^2 \ \hat{\phi} \delta P(x')}{\left(\omega - kV_0(x')\right)^2}$$
 N.B. After Taylor-Goldstein Eqn.

- → screened structure. Base state need not be unstable!
- → with box model, considerable simplification possible

$$\partial_r \delta P = \Delta P \left[\delta(x - x_0 + \Delta x) - \delta(x - x_0 - \Delta x) \right]$$

• So for $x \sim x_0$:

$$(\omega - kV_0)^2 = k^2 V_0'^2 (\Delta x)^2 - \left[2G\kappa k^2 (\Delta P) (V_{ph} - V_0) k^2 V_0' \Delta x \right]^{\frac{1}{2}}$$

- Competition:
 - Shear across structure ←→ dispersion
- 1
 - $-\Delta P$ → strength blob size \rightarrow 2

 $\Delta x \equiv \text{radial extent}$

- G → screening by system
- Does blob hold itself? together vs shear? → key question!
 - → competition of 1, 2

The critical balance:

$$G \kappa \Delta P \left(V_{ph} - V_0\right) \text{ vs } V_0^{\prime 2}(\Delta x)V_0^{\prime}$$

$$\Rightarrow \frac{G\kappa\Delta P/\Delta x}{V_0'^2} \text{ vs } \left[\left(V_{ph} - V_0 \right)^{-1} V_0' \Delta x \right] \sim O(1)$$

←→ Richardson # (screened) for blob ~ 1

$$\frac{\Delta P}{\Delta x} \rightarrow \frac{\text{Blob size}}{\text{Blob extent}}$$

$$\neq \partial \langle P \rangle / \partial r$$

$$Ri = \omega_B^2 / V'^2 \rightarrow \text{buoy energy}$$
vs shear

- Consistent with qualitative expectations of marginality. Note screening enters!
- Blob vs Void \rightarrow sign G! (screening) \rightarrow structure ExB shear layer, resonance

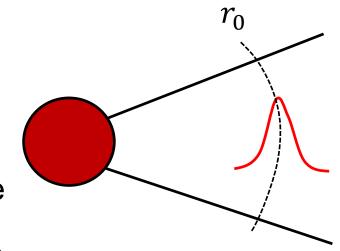
←→ location relative to shear layer $(V_{ph} = \omega/k \text{ vs } V_0(x))$ matters

N.B.: Begs question of SOL blob data vs Ri → unanswered

N.B.: Boedo 2003, et. seq noted pronounced effect of shearing on blob population

- Message: Can formulate physically meaningful coherecy or 'self-binding' criterion for blobs, voids in base state
- ~ Richardson # criterion interesting
 - amplitude ΔP and extent Δx combine vs shear \rightarrow minimal structural characterization. Screening enters.
 - how does it fare vs data?, simulation? Serious answer possible
- Need better understanding of role of resonance between V_{ph} and $V_0(x)$

From "Blobs" to "Bump"


- Samantha Chen +, TTF '23
 - density bump in disk
 - modifies PV profile → stability etc. to Rossby wave
 - Rossby wave → momentum transport → accretion

• i.e.
$$\omega = -k_x \beta/k^2$$
 now $\beta \rightarrow \beta + \delta \beta(x)$

localized defect. Persistence?

• so
$$(\omega - kV_0(x)) k_{\perp}^2 \phi = -k_x (\beta + \delta \beta(x_0)) \phi$$

From "Blobs" to "Bump", cont'd

Similar analysis →

$$(\omega - kV_0)^2 = (k_x V_0' \Delta x)^2 + G k_x^2 V_0' \Delta \beta \Delta x$$
 (shearing) (self-field of bump)

• Critical competition:

$$V_0'$$
 vs $G \Delta \beta / \Delta x$ set bump size, scale

• Relevance to staircases? i.e. staircase as array of bumps?

Thoughts for Experiment and Analysis

- Pulse propagation studies in SOL environments, i.e. Tubes?
- Track blob-void:
 - Pair size distribution. Plot vs GRE strength
 - Separation speed and growth. Plot vs. GRE strength
 - → momentum relation?
- Test Ri scaling of ejected blob distribution via electrode bias-driven shear layer (JTEXT)

Discussion

- Turbulent pedestals have many advantages
 - i.e. Grassy ELM, WPQHM, I-mode, Neg. Triang, L-mode+ITB
- Confinement Trade-offs?
- Best road forward for burning plasma?

Thanks for Attention!

Supported by U.S. Dept. of

Energy under Award Number

DE-FG02-04ER54738