Physics of SOL Broadening by Turbulence

P.H. Diamond UC San Diego

ITPA-PEP, April 2023

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Background

• Conventional Wisdom of SOL:

(cf: Stangeby...)

- Turbulent Boundary Layer, ala' Blasius, with D due turbulence
- $\ \delta \sim (D\tau)^{1/2}, \tau \approx L_c/V_{th}$
- $D \leftrightarrow$ local production by SOL instability process
 - \rightarrow familiar approach, D ala' QL
- Features:
 - Open magnetic lines → dwell time τ limited by transit,
 conduction, ala' Blasius
 - Intermittency \rightarrow "Blobs" etc. Observed. Physics?

Fluid Mechanics 2nd edition

Course of Theoretical Physics Volume 6

L.D. Landau and E.M. Lifshitz Institute of Physical Problems, USSR Academy of Sciences, Moscow

Background, cont'd

• But... Heuristic Drift (HD) Model (Goldston +)

$$- V \sim V_{\text{curv}}$$
, $\tau \sim L_c/V_{thi}$, $\lambda \sim \epsilon \rho_{\theta i} \rightarrow \text{SOL width}$

- Pathetically small
- Pessimistic B_{θ} scaling, yet high I_p for confinement
- Fits lots of data.... (Brunner '18, Silvagni '20)

• Why does neoclassical work? \rightarrow ExB shear suppresses SOL modes i.e.

$$\gamma_{\text{interchange}} \sim \frac{c_s}{(R_c \lambda)^{\frac{1}{2}}} - \frac{3T_{edge}}{|e|\lambda^2}$$

shearing $\leftarrow \rightarrow$ strong λ^{-2} scaling

from:
$$\frac{c_s}{(R_c\lambda)^{\frac{1}{2}}} - \langle V_E \rangle'$$

Background, cont'd

• THE Existential Problem... (Kikuchi, Sonoma TTF):

```
∠Confinement → H-mode \leftarrow → ExB shear
```

Desire <

Power Handling \rightarrow broader heat load, etc

How reconcile? – Pay for power mgmt with confinement ?!

- Spurred:
 - Exploration of turbulent boundary states with improved confinement: Grassy ELM, WPQHM,
 I-mode, Neg. D ... N.B. What of ITB + L-mode edge?

 \rightarrow <u>Both</u> to be good !

- SOL width now key part of the story

- Simulations, Visualizations (XGC, BOUT...) ~ "Go" to ITER and all be well
- But... What's the Physics ?? <u>How</u> is the SOL broadened?

SOL BL Problem

- SOL Excitation
 - Local production (SOL instabililties)
 - Turbulence energy influx from pedestal
- Key Questions:
 - Local drive vs spreading ratio $\rightarrow Ra$
 - Is the SOL usually dominated by turbulence spreading?
 - How far can entrainment penetrate a stable SOL \rightarrow SOL broadening?
 - Effects ExB shear, role structures ?

Physics Issues – Part II

[C.f. Chu, P.D., Guo, NF 2022]

- How <u>calculate</u> SOL width for turbulent pedestal but a locally <u>stable</u> SOL?
 - -spreading penetration depth
 - must recover HD in WTT limit
- Scaling and cross-over of λ_q relative HD model
- What is effect/impact of barrier on spreading mechanism?
 - Can SOL broadening and good confinement be reconciled ?

Model 1 – Stable SOL – Linear Theory

 Standard drift-interchange with sheath boundary conditions + ExB shear (after Myra + Krash.)

Linear Growth Rate of a specific mode (fixed k_y) v.s. $E \times B$ shear at $q = 5, \beta = 0.001, k_y \cdot \lambda_{HD} = 1.58$.

- Relevant H-mode ExB shear strongly stabilizing $\gamma_{HD} = c_s / (\lambda_{HD} R)^{1/2}$
- Need λ/λ_{HD} well above unity for SOL instability. $V'_E \approx \frac{3T_e}{|e|\lambda^2} \rightarrow$ layer width sets shear

Model 2 – Two Multiple Adjacent Regions

• "Box Model" – after Z.B. Guo, P.D.

Illustration of Two Box Model: SOL driven by particle flux, heat flux and intensity flux (Γ_e) from the pedestal. The horizontal axis is the radial direction, and vertical axis is the poloidal direction.

- Key Point:
 - Spreading flux from pedestal can enter stable SOL
 - Depth of penetration
 → extent of SOL broadening

➔ Problem in one of entrainment/penetration

Width of Stable SOL

• Fluid particle:
$$\frac{dr}{dt} = V_{Dr} + \tilde{V}$$

• Dwell time: τ_{\parallel}
• $\int \delta^2 = \langle (\int (V_D + \tilde{V}) dt) (\int (V_D + \tilde{V}) dt) \rangle$
 $\langle (\text{step})^2 \rangle = V_D^2 \tau_{\parallel}^2 + \langle \tilde{V}^2 \rangle \tau_c \tau_{\parallel}$ correlation time
 $= \lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2$ correlation time
 $= \lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $= \delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solution time
 $\delta_{HD}^2 + \varepsilon \tau_{\parallel}^2$ for a solutio

• How compute ε ? \rightarrow turbulence energy !

Calculating the SOL Turbulence Energy 1

- $K \epsilon$ type model, mean field approach (c.f. Gurcan, P.D. '05 et seq)
 - Can treat various NL processes via σ, κ
 - Exploit conservative form model
- $\partial_t \varepsilon = \gamma \varepsilon \sigma \varepsilon^{1+\kappa} \partial_x \Gamma_e$ \longrightarrow Spreading, turbulence energy flux Growth $\gamma < 0$ NL transfer $\gamma_{NL} \sim \sigma \varepsilon^{\kappa}$ here contains shear + sheath
- N.B.: No Fickian model of Γ_e employed
- Readily extended to 2D, improved production model, etc.

Calculating the SOL Turbulence Energy 2

- Integrate ε equation \int_0^{λ}
- Take quantities = layer average

•
$$\Gamma_{e,0} + \lambda_e \gamma \varepsilon = \lambda_e \sigma \varepsilon^{1+\kappa}$$

Separatrix fluctuation energy flux \longrightarrow Single parameter characterizing spreading

 λ_e = layer width for ε

So for $\gamma < 0$, $\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$

 $\Gamma_{e,0}$ vs linear + nonlinear damping

Calculating the SOL Turbulence Energy 3

[Mean Field Theory]

• Full system:

$$\begin{split} \Gamma_{e,0} &= \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa} \\ \lambda_e &= \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2 \right]^{1/2} \end{split}$$

Simple model of turbulent SOL broadening

• $\Gamma_{0,e}$ is single control parameter characterizing spreading

•
$$\tilde{\Gamma}_{0,e}$$
 ? Expect $\tilde{\Gamma}_e \sim \Gamma_0$

SOL width Broadening vs $\Gamma_{e,0}$

• SOL width broadens due spreading

 λ/λ_{HD} plotted against the intensity flux Γ_{e0} from the pedestal at $q = 4, \beta = 0.001, \kappa = 0.5, \sigma = 0.6$

Variation indicates need for detailed scaling analysis

- Clear decomposition into
 - <u>Weak</u> broadening regime \rightarrow shear dominated

relevant

- <u>Cross-over</u> regime
- <u>Strong</u> broadening regime
- → NL damping vs spreading

- Cross-over for:
 - $\langle \tilde{V}^2 \rangle \sim V_D^2 \rightarrow \text{cross-over } \Gamma_{0,e}$
- Cross-over for $\tilde{V} \sim O(\epsilon) V_*$

- Need consider pedestal to actually compute $\Gamma_{e,0}$
- Two elements

Does another trade-off loom? -- Pedestal Turbulence: Drift wave? Ballooning? -- Effect of transport barrier $\leftarrow \rightarrow$ ExB shear layer \rightarrow barrier permiability!?

• Key Point: shearing limits correlation in turbulent energy flux

i.e.
$$\Gamma_{e,0} \approx -\tau_c I \partial_x I \approx \tau_c I^2 / w_{ped}$$
 (Hahm, PD +)
ped turbulence correlation time \rightarrow strongly sensitive to shearing

N.B. Caveat Emptor re: intensity flux closure !

• Familiar analysis for $D \rightarrow Kubo$

•

$$D = \int_0^\infty d\tau \, \langle V(0)V(\tau) \rangle = \int_0^\infty d\tau \, \sum_k \left| \tilde{V}_k \right|^2 \exp\left[-k_y^2 \omega_s^2 D\tau^3 - k^2 D\tau \right]$$

Strong shear (relevant) $\tau_c = \tau_t^{1/2} \omega_s^{-1/2}$
 $\tau_t \sim 1 / k \tilde{V}, \quad \omega_s \sim V'_E$

Here, via RFB
$$\rightarrow \omega_s = \partial_r \frac{\nabla P_i}{n|e|} \sim \frac{\rho^2}{w_{ped}^2} \Omega_{ci}$$

- $\tau_c + w_{ped}$ + turbulence intensity in pedestal gives $\Gamma_{e,0} \approx \tau_c I^2 / w_{ped}$
- Need $\Gamma_{e,0} \geq \Gamma_{e,\min} \approx |\gamma| \lambda_{HD}^3 \tau_{\parallel}^{-2}$

- Pedestal → Drift wave Turbulence
- Necessary turbulence level:
 - Weak Shear $\frac{\delta V}{c_s} \sim \left(\frac{\rho}{R}\right)^{1/2} q^{-1/4}$

- → λ/λ_{HD} vs $|e|\hat{\phi}/T_e$ in pedestal
- → ρ/R is key parameter
- Broadens layer at acceptable fluctuation level

- Pedestal → Ballooning modes → Grassy ELMs
- Necessary relate turbulence to $L_{P,crit} / L_P 1$
- Strong shear:

$$\frac{L_{P_c}}{L_P} - 1 \sim \left(\frac{q\rho}{R}\right)^{\frac{10}{7}} \left(\frac{R}{w_{ped}}\right)^{\frac{16}{7}} \left(\frac{w_{ped}}{\Delta_r}\right)^{\frac{16}{7}} \beta$$

• Supercriticality scales with $\frac{\rho}{R}$, β_t

Figure 10. Typical cases for ballooning. The normalized pedestal width $\lambda/\lambda_{\rm HD}$ is plotted against supercriticality $L_{\rm pc}/L_{\rm p} - 1$ at different mode width $\Delta/L_{\rm p}$.

Computing the Turbulence Energy Flux 5 → Bottom Line

- SOL broadening to $\lambda > \lambda_{HD}$ achieveable at tolerable pedestal fluctuation levels
- DW levels scale ~ $\left(\frac{\rho}{R}\right)^{1/2}$
- Ballooning supercritical scale ~ $\left(\frac{\rho}{R}\right)^{10/7} \beta$
- 'Grassy ELM' state promising
- Sensitivity analysis \rightarrow Cross over ε determined primarily by linear damping (shear). Conclusion ~ insensitive to NL saturation

Partial Summary

• Turbulent scattering broadens stable SOL

 $\lambda = \left(\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right)^{1/2}$

Separatrix turbulence energy flux specifies SOL turbulence drive

$$\Gamma_{0,e} = \lambda_e |\gamma|\varepsilon + \lambda \sigma \varepsilon^{1+\kappa}$$

Broadening increases with $\Gamma_{0,e}$ cross-over for $\langle \tilde{V}^2 \rangle \sim V_D^2$

Non-trivial dependence

- $\Gamma_{0,e}$ must overcome shear layer barrier
- Yes can broaden SOL to $\lambda/\lambda_{MHD} > 1$ at tolerable fluctuation levels Further analysis needed

Broader Messages

- Turbulence spreading is important even dominant process in setting SOL width. $\Gamma_{0,e}$ is critical element. $\lambda = \lambda(\Gamma_{0,e}, \text{ parameters})$
- Production Ratio R_a merits study and characterization
- Spreading is important saturation meachanism for pedestal turbulence
 - Simulation should stress calculation and characterization of turbulence energy flux over
 visualizations and front propagation studies.
- Critical questions include local vs FS avg, channels and barrier interaction, Turbulence 'Avalanches'
- Turbulent pedestal states attractive for head load management

Open Issues

• Quantify
$$\lambda = \lambda \left(\frac{|e|\hat{\phi}|}{T} \Big|_{ped} \right)$$
 dependence

- Structure of Flux-Gradient relation for turbulence energy?
 - Phase relation physics for intensity flux? crucial to ExB shear effects
 - Kinetics $\rightarrow \langle \tilde{V}_r \delta f \delta f \rangle$, Local vs Flux-Surface Average, EM
 - SOL Diffusive? → Intermittency('Blob'), Dwell Time ?
 - SOL \rightarrow Pedestal Spreading ? $\leftarrow \rightarrow$ HDL (Goldston) ?
 - i.e. Tail wags Dog ? Both wagging ? \rightarrow Basic simulation, experiment ?

Counter-propagating pulses ?