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Outline

• 40 years of H-mode à the Lessons

• ‘Phases’ and Transitions of the Edge plasma à  as Order Parameter

• OV of Density Limit Phenomenology (L-mode)

• Reality: Some Recent Experiments

• Theory: Là DL-Back Transition Model, Power Scaling Physics (K-D returns!)

• The H-mode Density Limit – Thoughts

• Conclusion



40 Years of H-mode - Lessons
• Saved MFE from Goldston scaling

Also:

• Introduced transport barrier, bifurcation à state ‘phases’ and transitions

• Role of flow profile in confinement (BDT ’90)

• Dynamical feedback loops à Predator-Prey cycles, Zonal flows, etc. 

(PD+’94,05; K-D ‘03)

• Consequences of marked transport reduction

• Need for transport regulation, not transport elimination



Phases and Transitions of the Edge Plasma



Preview: A Developing Story
From Linear Zoology to Self-Regulation and its Breakdown

(Drake and Rogers, PRL, 1998) (Hajjar et al., PoP, 2018)

Secondary modes and states of particle confinement

•   = −  → ∇P and ballooning drive 
to explain the phenomenon of density limit.

• Invokes yet another linear instability of RBM.
• What about density limit phenomenon in 

plasmas with a low ?

L-mode: Turbulence is regulated by shear flows, but not 
suppressed.
H-mode: Mean ExB shear ↔∇pi suppresses turbulence and transport.
Density Limit: High levels of turbulence and particle 
transport, as shear flows collapse.
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• Shear layer impacts/regulates edge turbulence even in Ohmic/L-mode, enhanced in H-mode

• Ritz, et. al. 1990

è Role of Shear Layer in LàDL ?

Title: “Evidence for Confinement Improvement by Velocity Shear Suppression of Edge Turbulence”

n.b. not H-mode!
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density 

Shear layer

Peak

correlation

Shear Layer in L-mode?



A Look at Density Limit Phenomenology

à Greenwald Limit

 =  ∼ /
à Line averaged

à Critical to ITER, CFETR, FPP, …



A Brief History of Density Limits
à Conventional Wisdom

• High density à edge cooling (transport?!)

• Cooling edge à MARFE (Multi-faceted Axisymmetric Radiation 

from the Edge) by Earl Marmar and Steve Wolfe

MARFE = Radiative Condensation Instability in Strong 
after G. Field ’64, via J.F. Drake ‘87 : Anisotropic conduction is key

• MARFE à Contract J-profile à Tearing, Island … à Disruption

after: Rebut, Hugon ‘84, … , Gates …

• But: more than macroscopics going on… 



• Argue: Edge Particle Transport is fundamental

– ‘Disruptive’ scenarios secondary outcome, largely consequence of edge 

cooling, following fueling vs. increased particle transport

–  reflects fundamental limit imposed by particle transport

• An Important Experiment (Greenwald, et. al. ‘88)

– Density decays without disruption after 

shallow pellet injection

–  asymptote scales with 
– Density limit enforced by transport-

induced relaxation

– Relaxation rate not studied

– Fluctuations?
(Alcator C)






Toward Microphysics: Recent Experiments - 1
(Y. Xu et al., NF, 2011)

• Decrease in maximum correlation value of LRC 
(i.e. ZF strength) as line averaged density 
increases at the edge (r/a=0.95) in both 
TEXTOR and TJ-II.

• The reduction in LRC due to increasing density 
is also accompanied by a reduction in edge 
mean radial electric field (Relation to ZFs).

Is density limit related to edge shear decay?!

Yes !

LRC vs 


See also: Pedrosa ‘07, Hidalgo ‘08 …



Fluctuation + /  , R. Hong et. al. (NF 2018)

• Joint pdf of  ,  for 3 densities,  → 
•  −  = −1
• Note: 

– Tilt lost, symmetry restored as  → 
– Consistent with drop in  observed

èWeakened shear flow 

production by Reynolds stress

as  → 

Distribution

Fluctuating

Velocities



An In-depth Look at New Experiments

Ting Long, P.D. et. al.   2021 NF

Rui Ke, P.D., T. Long et. al. submitted 2022



J-TEXT  – Ohmic

•  ~ 1.6 − 2.2          ~0.7            ~ 6.4 → 9.3 × 10 
•  ~ 130 − 190            ~ 2.0 − 5.3 × 10 
• Principal Diagnostics: Langmuir Probes

– Shear layer collapses as / increases

– Turbulence particle flux increases

– Reynolds force decays

– Velocity fluctuation PdF à symmetry



Mean-Turbulence Couplings
• In standard CDW model:

Production ≡ Input from 
 = −     

Reynolds Power ≡ Coupling to Zonal Flow = −    
– Reynolds power drops as / rises (see Hong+,’18)

– / drops as / rises 

è Fate of the Energy ?

 = /



Fate of the Energy ?
• Turbulence Energy Budget

 +   =   − Dissipation

 =  +           =   / 
• Then   à Power coupled to internal energy flux à Turbulence 

spreading = −  = −  /2

Triplet

Spreading

Production

Turbulence Spreading Power



Fate of the Energy, Cont’d

• Turbulence Spreading !

– Power drops

–  increases;  transitions  < 0 to  > 0
• Where does the shear layer energy go?/  × /    ~  0.3, 0.5, 0.4, 0.4 × 10 as / ↑≈ constant

Energy diverted from shear layer to spreading at LàDL



Characteristics of Spreading

• Low frequency content of sat/sat increases

• sat autocorrelation time 

increases

Pdf sat develops positive 

skewness as / increases



Characteristics of Spreading, Cont’d

• Enhanced turbulent particle transport events accompany LàDL back transition

• Events are quasi-coherent density fluctuations. Diffusive model of spreading 

dubious

• Localized over-turning events, small avalanches, blobs, …

N.B. “The limits of my language means the limits of my world.”

- Ludwig Wittgenstein



Is there a key parameter? – Adiabaticity!

• Adiabaticity    =   ∥ / drops < 1 as / increases

•  rises with  ↑ decreases with  ↑()/ decreases with  ↑/ decreases with  ↑



The Obvious Question
• Can driving the shear layer sustain high densities, where LàDL, otherwise ?

• “Driving”           bias electrode – here (J-TEXT) 

power scan à Theory (c.f. Singh, P.D.)

• Long history of bias-driven shear layers in LàH saga – R.J. Taylor, et. seq.

• Recent: Shesterikov, Xu et. al. 2013 - Textor

• Electrode à   →  →  etc.

• New Here? 

– High Density

– Gas Puffing à push on DL

– Analysis



The Answer – Looks Promising!

• Edge density doubled for +240V bias

• max,bias > max,float
• Note:  max,float ~ 0.7

Experiment limited by graphite probe sputtering

• Key parameter?

–  systematically higher with +bias

–  ~ /



The Physics

• Edge Shear Layer produced for +bias

• Reynolds stress, force increase for +bias



The Physics, Cont’d

•  / (→ /) fluctuations sharply reduced 

by +bias

• Turbulence spreading quenched by +bias



Key Parameter?

•  vs  exhibits hysteresis loop during 

bias switch on,off

• Cntr clockwise rotation à  ‘leads’ 
• Is  unique ‘key parameter’?

• For drift waves,  ~ /
à shear ↑ à turbulence ↓ à heat transport ↓



Coming Attractions

• Re-visit bias experiment with tungsten probe +

• Slow bias ramp ↑ ↓ à causality, hysteresis

•  ramp down (M. Greenwald)

• Theory



Some Theoretical Matters



Simulations !?

• Extensive studies of Hasegawa-Wakatani system                                             for ∥ / < 1, > 1 regimes.

• All note weakening or collapse of ordered shear flow in hydrodynamic regime (∥ / < 1), which resembles 2D fluid/vortex turbulence – i.e.  < 1
• Physics of collapse left un-addressed, as adiabatic regime  (∥ /) dynamics of 

primary interest – ZFs

• Shear Layer Collapse ↔  < 1 Generic

i.e. Numata, et al ’07 

Gamargo, et al ’95

Ghantous and Gurcan ’15

+ many others

è



Step Back: Zonal Flows Ubiquitous! Why?

• Direct proportionality of wave group velocity and wave energy density flux 

to Reynolds stress ßà spectral correlation 
i.e. = − /  : (Rossby), = 2 /  

 = − ∑   
So:   > 0  > 0 çè  > 0 è  < 0

• Outgoing waves generate a flow convergence!  è Shear layer spin-up

è

è

Causality ßà Eddy Tilting

Propagation ßà Stress



But NOT for hydro convective cells:  (i.e.  < )

•  = ∗  
/

à for convective cell of H-W (enveloped damped)

•  = −     ß??à  = −  ;  direct link broken!

à Energy flux NOT simply proportional to Momentum flux è

à Eddy tilting (  ) does not arise as direct consequence of causality

è ZF generation not ‘natural’ outcome in hydro regime!

è Physical picture of shear flow collapse emerges, as change in branching ratio of 

vorticity flux to particle flux as  drops



Desperately Seeking Greenwald
- How  > 1 →  < 1 – Back-Transition Mechanism

- Origin of Current Scaling

- Dimensionless Parameter?



What of the Current Scaling?

• Obvious question: How does shear layer collapse 

scenario connect to Greenwald scaling  ∼ ?

• Key physics: shear/zonal flow response to drive is 

‘screened’ by neoclassical dielectric

–  = 1 + 4/
–  as screening length

– effective ZF inertia lower for larger 
i.e.

N.B.: Points to
ZF response as
key to stellarator.



Current Scaling, cont’d

• Shear flow drive:

    ≈ ∑ , ,  
– Production ßà beat drive

– Response (neoclassical)

• Rosenbluth-Hinton ‘97 et seq

  ≈  ,1 + 1.16 (())/    

emission from ‘drift-mode’ interaction

production

Increasing  decreases  and 
off-sets weaker ZF drive

neo
zonal wave #classical

neoclassical response

incoherent
emission

S à polarization NL



Current Scaling, cont’d

  ≈ , + 1.6 ∼   
  ∼    



• Higher current strengthens ZF shear, for fixed drive

• Can “prop-up” shear layer vs weaker production

• Collisionality? – Edge of interest!?

production factor
Production ↔ 



Screening in the Plateau Regime!?  (Relevant)

 ∞ 0  = /  /   +  ≈ /   = 1 


 = 32  
 ∫ 2 ℎ ≈ 1 − 43 2 /

• Favorable  scaling of time asymptotic RH response persists in plateau 

regime. Robust trend.

• Compare to Banana ( = 1);

 ∞ 0  =  


Current scaling but smaller ratio



Revisiting Feedback in Reduced Model (c.f. Singh, P.D. PPCF ‘21)

• How combine noise, neoclassical dielectric and feedback dynamics? à back to Predator-Prey…

 =   −   −                          ~   ~  ~ 
 =   −  +                        ~   ~  ~ 

Re: Developments:

• Zonal flow and turbulence always co-exist

• Zonal flow energy increases with current

• Turbulence energy never reaches ‘old’ modulation threshold

• Zonal cross-correlation import TBD

shear satn.

modulation growth damping nonlinear noise

*

N.B.:  enhances modulational growth

Limiting reduction 
of complex ZF, 
corrugation 
evolution

High  enhances 
ZF coupling

High  enhances 
noise

cf: extends P.D. et. al. ’94; Kim, PD ‘03



Criterion for Shear Layer Collapse

• For collapse limit, criterion without noise is good approximation to with noise

• Derive shear layer persistence criterion

  > crit.
 .  =   

è Dimensionless parameter    Larger  enhances persistence of ZF

ZF energy

turbulence energy

w/ noise w/o noise

S - D



Power Scaling and Physics of L-mode 
Density Limit (Singh, P.D. in preparation)

• Scaling is an old story, keeps returning

• Zanca (2019) fits è  ~ /

• Ricci + Simulations…

• | will drive shear layer à familiar from LH mechanism

•  ↔  shear layer physics?



Expanded Kim-Diamond Model

• KD ‘03 – useful model of LàH dynamics

• See also Miki, P.D. et al ’12, et. seq.

• Evolve ,  , , 
• Run Model in ‘L-mode’

• Coeffs derived for ITG



L à DL Studies

• Look for shear layer collapse

•  ramp-up in L-mode, followed by  ramp-up

• Oscillations à predator-prey

•  for ZF collapse increases with 
•  scaling 



Power Scaling

• crit ~ /
• Distinct from Zanca, but close

• In K-D, with neoclassical screening crit ~ 
• Physics is () vs ZF damping

• Shear layer physics seems to imply power scaling



If it Flux Like a Duck… (M.N. Rosenbluth, after F. Wagner)

• Hysteresis ! in  vs Q

• Expected, given 2 states transport

• Recall J-TEXT....

• Physics prediction…. beyond scaling

• Is there torque scaling of density limit, i.e. / vs  ?



From L-DL to H-DL

• H-mode density limit is back transition HàL at high density, 

usually followed by progression to 
• Key issue !

• Candidates

– AUG:   at separatrix (Eich, Manz)

– Goldston, Brown: Conduction broadens SOL, reduces  à
instability & inward spreading hypothesized

• Experiments needed! 

c.f. Dog + Tail problem !?

N.B. Gentle “pump-and-puff” (Mahdavi) has beat Greenwald



Conclusions:  as Edge Order Parameter

• Density limits as back-transition phenomena;  physics crucial

• L-DL mechanism:

– Shear layer collapse

– Strong turbulence spreading

•  is key parameter, but not only

• Scalings of L-DL merge from zonal flow physics

–  scaling à neo dielectric

–  scaling à Reynolds stress

• Hysteresis evident in L-DL dynamics



Speculations

• Is H-DL due turbulent degradation of  in pedestal? Mechanism?

• Can external means (NTV?) be used to enhance edge density?

• Collisionless regimes? - n TEM

• D-L-H triple point, ala’ phase transitions?

• New states: 

– Fusion power + L-mode  () ?

– Neg. Tri. ?



Thank You !
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