Electric Field <u>Profile</u> as the Order Parameter for the Edge Plasma: From L→H Transition to <u>Density Limit</u>

P.H. Diamond

U.C. San Diego, USA

Royal Society Meeting '22

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

<u>Or</u>

How the Birth and DEATH of Shear Layers Determines Confinement Transitions → Transport Physics of Density Limit <u>Or</u> Old L→H Wine in New Bottles

Collaborators:

Theory: <u>Rameswar Singh</u>, R. Hajjar, M. Malkov (NF 2021, PoP 2018, PPCF 2021, NF – in preparation)

Experiments: <u>Ting Long</u>, <u>Rui Ke</u>, and J-TEXT and SWIP Teams <u>Rongjie Hong</u>, G. Tynan and HL-2A Teams (NF 2021, NF 2018, NF – submitted 2022)

Acknowledge:

M. Greenwald, C. Hidalgo, A. Garofalo,

G. McKee, Z. Yan, C. Holland, P. Manz, N. Fedorczak,

L. Schmitz, H.J. Sun

Outline

- 40 years of H-mode \rightarrow the Lessons
- 'Phases' and Transitions of the Edge plasma $\rightarrow V'_E$ as Order Parameter
- OV of Density Limit Phenomenology (L-mode)
- Reality: Some Recent Experiments
- Theory: L→ DL-Back Transition Model, Power Scaling Physics (K-D returns!)
- The H-mode Density Limit Thoughts
- Conclusion

40 Years of H-mode - Lessons

• Saved MFE from Goldston scaling

Also:

- Introduced transport barrier, bifurcation \rightarrow state 'phases' and transitions
- Role of flow profile in confinement (BDT '90)
- Dynamical feedback loops → Predator-Prey cycles, Zonal flows, etc.
 (PD+'94,05; K-D '03)
- Consequences of marked transport reduction
- Need for transport regulation, not transport elimination

Phases and Transitions of the Edge Plasma

Preview: A Developing Story

From Linear Zoology to Self-Regulation and its Breakdown

Shear Layer in L-mode?

٠

• Shear layer impacts/regulates edge turbulence even in Ohmic/L-mode, enhanced in H-mode

current of 200 kA, and chord-averaged density of nchord

 $=2 \times 10^{13}$ cm⁻³. (a) Phase velocity of the fluctuations $v_{\rm ph}$

(closed circles), $v_{E, \times B}$ plasma rotation (open circles), and drift velocity v_{de} . (b) Density and floating potential fluctuations. (c) Density and velocity shear. The statistical error for individual shots is of order the symbol size and shot-to-shot reproducibility is given by the individual symbols. The systematic er-

ror in the plasma position is 0.5 cm or $r/a \simeq 0.02$.

FIG. 3. Peak values of the normalized two-point correlation function for poloidally and radially separated probes with fixed separations of $\delta r = 3$ mm.

Title: "Evidence for Confinement Improvement by Velocity Shear Suppression of Edge Turbulence" n.b. not H-mode!

→ Role of Shear Layer in L→DL?

A Look at Density Limit Phenomenology → Greenwald Limit

$$\bar{n} = \bar{n}_G \sim I_p / \pi a^2$$

 \rightarrow Line averaged

 \rightarrow Critical to ITER, CFETR, FPP, ...

A <u>Brief</u> History of Density Limits → Conventional Wisdom

- High density \rightarrow edge cooling (transport?!)
- Cooling edge → MARFE (<u>Multi-faceted Axisymmetric Radiation</u> <u>from the Edge</u>) by Earl <u>Mar</u>mar and Steve Wolfe
 MARFE = Radiative Condensation Instability in Strong B₀ after G. Field '64, via J.F. Drake '87 : Anisotropic conduction is key
- MARFE → Contract J-profile → Tearing, Island ... → <u>Disruption</u> after: Rebut, Hugon '84, ..., Gates ...
- But: more than macroscopics going on...

- Argue: Edge Particle Transport is fundamental
 - 'Disruptive' scenarios <u>secondary</u> outcome, largely consequence of <u>edge</u>
 <u>cooling</u>, following fueling vs. increased particle transport
 - \bar{n}_q reflects fundamental limit imposed by particle transport
- An Important Experiment (Greenwald, et. al. '88)

- Density decays <u>without disruption</u> after shallow pellet injection
- \bar{n} asymptote scales with I_p
- Density limit enforced by transportinduced relaxation
- Relaxation rate not studied
- Fluctuations?

Toward Microphysics: Recent Experiments - 1

(Y. Xu et al., NF, 2011)

See also: Pedrosa '07, Hidalgo '08 ...

LRC vs \bar{n}

- Decrease in maximum correlation value of LRC (i.e. ZF strength) as line averaged density n
 increases at the edge (r/a=0.95) in both
 TEXTOR and TJ-II.
- The reduction in LRC due to increasing density is also accompanied by a reduction in edge mean radial electric field (Relation to ZFs).

Fluctuation + $n/n_G scan$, R. Hong et. al. (NF 2018)

- Joint pdf of $\tilde{V}_r, \tilde{V}_\theta$ for 3 densities, $\bar{n} \to n_G$
- $r r_{sep} = -1 on$
- Note:
 - Tilt lost, symmetry restored as $\bar{n} \rightarrow \bar{n}_g$
 - Consistent with drop in P_{Re} observed
- → Weakened shear flow production by Reynolds stress as $n \rightarrow n_g$

An In-depth Look at New Experiments

Ting Long, P.D. et. al. 2021 NF Rui Ke, P.D., T. Long et. al. submitted 2022

J-TEXT – Ohmic

- $B_T \sim 1.6 2.2 T$ $\frac{n}{n_G} \sim 0.7$ $n_G \sim 6.4 \rightarrow 9.3 \times 10^{19} m^{-3}$
- $I_p \sim 130 190 \, kA$ $\bar{n} \sim 2.0 5.3 \times 10^{19} m^{-3}$
- Principal Diagnostics: Langmuir Probes
 - Shear layer <u>collapses</u> as n/n_G increases
 - Turbulence particle flux increases
 - Reynolds force decays
 - Velocity fluctuation PdF \rightarrow symmetry

Mean-Turbulence Couplings

• In standard CDW model:

Production \equiv Input from ∇n

 $P_{I} = -c_{s}^{2} \langle \tilde{V}_{r} \delta n \rangle \left(\frac{1}{n_{0}} \frac{\partial \langle n \rangle}{\partial r} \right)$

Reynolds Power \equiv Coupling to Zonal Flow

 $P_k = -\langle \tilde{V}_r \tilde{V}_\theta \rangle \, \langle V_E \rangle'$

- Reynolds power drops as n/n_G rises (see Hong+,'18)

 $\delta n = \tilde{n}/n_0$

- P_k/P_I drops as n/n_G rises
- → Fate of the Energy ?

Fate of the Energy ?

Turbulence Energy Budget

Triplet Production $\frac{\partial \varepsilon}{\partial t} + \frac{\partial}{\partial r} \langle v_r \varepsilon \rangle = P_I - \text{Dissipation}$ Spreading $\varepsilon = \varepsilon_k + \varepsilon_I \qquad \varepsilon_I = \frac{c_s^2}{2} \langle (\tilde{n}/n_0)^2 \rangle$

• Then $P_S \rightarrow$ Power coupled to internal energy flux \rightarrow Turbulence spreading

$$P_{S} = -\partial_{r} \langle \tilde{v}_{r} \varepsilon_{I} \rangle = -\partial_{r} \langle \tilde{v}_{r} \tilde{n}^{2} c_{s}^{2} \rangle / 2n^{2} \longrightarrow \text{Turbulence Spreading Power}$$

Fate of the Energy, Cont'd

- Turbulence Spreading !
 - Power drops
 - P_s increases; transitions $P_s < 0$ to $P_s > 0$
- Where does the shear layer energy go?

$$(P_k/P_I)_{peak} \times (P_s/P_I)_{peak} \sim 0.3, 0.5, 0.4, 0.4 \times 10^{-3} \text{ as } n/n_G \uparrow$$

 \approx constant

Energy diverted from shear layer to spreading at $L \rightarrow DL$

Characteristics of Spreading

- Low frequency content of \tilde{I}_{sat}/I_{sat} increases
- *Ĩ*_{sat} autocorrelation time increases
- Pdf \tilde{I}_{sat} develops positive skewness as n/n_G increases

Characteristics of Spreading, Cont'd

- Enhanced turbulent particle transport events accompany $L \rightarrow DL$ back transition
- Events are quasi-coherent density fluctuations. Diffusive model of spreading dubious
- Localized over-turning events, small avalanches, blobs, ...

N.B. "The limits of my language means the limits of my world."

- Ludwig Wittgenstein

Is there a key parameter? – Adiabaticity!

• Adiabaticity $\alpha = k_{\parallel}^2 V_{the}^2 / \omega v$

 α drops < 1 as n/n_G increases

• V'_E rises with $\alpha \uparrow$

 τ_{ac} decreases with α 1

 $\sigma(\tilde{I})/I$ decreases with $\alpha\uparrow$

 P_s/P_I decreases with $\alpha \uparrow$

The Obvious Question

- Can <u>driving the shear layer</u> sustain high densities, where $L \rightarrow DL$, otherwise ?
- "Driving" → bias electrode here (J-TEXT)
 power scan → Theory (c.f. Singh, P.D.)
- Long history of bias-driven shear layers in $L \rightarrow H$ saga R.J. Taylor, et. seq.
- Recent: Shesterikov, Xu et. al. 2013 Textor
- Electrode $\rightarrow J_r \rightarrow V_\theta \rightarrow V'_E$ etc.
- New Here?
 - High Density
 - Gas Puffing \rightarrow push on DL
 - Analysis

The Answer – Looks Promising!

- Edge density <u>doubled</u> for +240V bias
- $\bar{n}_{max,bias} > \bar{n}_{max,float}$
- Note: $\bar{n}_{\text{max,float}} \sim 0.7 n_G$

Experiment limited by graphite probe sputtering

- Key parameter?
 - $-\alpha$ systematically higher with +bias

 $-\,\alpha \sim T^2/n$

The Physics

• Edge Shear Layer produced for +bias

• Reynolds stress, force increase for +bias

The Physics, Cont'd

• $\delta I / I \quad (\rightarrow \tilde{n} / n)$ fluctuations sharply reduced by +bias

• Turbulence spreading quenched by +bias

Key Parameter?

- α vs ω_{shear} exhibits hysteresis loop during bias switch on,off
- Cntr clockwise rotation $\rightarrow \omega_{shear}$ 'leads' α
- Is α unique 'key parameter'?
- For drift waves, $\alpha \sim T^2/n$

 \rightarrow shear $\uparrow \rightarrow$ turbulence $\downarrow \rightarrow$ heat transport \downarrow

Coming Attractions

- Re-visit bias experiment with tungsten probe +
- Slow bias ramp $\uparrow \downarrow \rightarrow$ causality, hysteresis
- I_p ramp down (M. Greenwald)
- Theory

Some Theoretical Matters

Simulations !?

Extensive studies of Hasegawa-Wakatani system

 $k_{\parallel}^2 V_{the}^2 / \omega \nu < 1$, > 1 regimes.

i.e. Numata, et al '07

Gamargo, et al '95

Ghantous and Gurcan '15

+ many others

• All note weakening or collapse of ordered shear flow in hydrodynamic regime $(k_{\parallel}^2 V_{the}^2 / \omega \nu < 1)$, which resembles 2D fluid/vortex turbulence – i.e. $\alpha < 1$

for

- Physics of collapse left un-addressed, as adiabatic regime $(k_{\parallel}^2 V_{the}^2 \omega / \nu)$ dynamics of primary interest ZFs
- Shear Layer Collapse $\leftrightarrow \alpha < 1$ <u>Generic</u>

→

Step Back: Zonal Flows Ubiquitous! Why?

Direct proportionality of wave group velocity and wave energy density flux ٠ to Reynolds stress $\leftarrow \rightarrow$ spectral correlation $\langle k_{\chi}k_{\gamma}\rangle$ Causality $\leftarrow \rightarrow$ Eddy Tilting i.e. $\omega_k = -\beta k_x/k_\perp^2$: (Rossby) $\bullet \quad V_{q,y} = 2\beta \ k_x k_y / (k_\perp^2)^2$ $\Rightarrow \quad \langle \tilde{V}_{v}\tilde{V}_{x}\rangle = -\sum_{k}k_{x}k_{v}|\phi_{k}|^{2}$ So: $V_q > 0 \ (\beta > 0) \bigstar k_x k_y > 0 \twoheadrightarrow \langle \tilde{V}_y \tilde{V}_x \rangle < 0$ Propagation $\leftarrow \rightarrow$ Stress Outgoing waves generate a <u>flow convergence</u>! → <u>Shear layer spin-up</u>

But NOT for hydro convective cells: (i.e. $\alpha < 1$)

•
$$\omega_r = \left[\frac{|\omega_{*e}|\hat{a}|}{2k_{\perp}^2\rho_s^2}\right]^{1/2} \Rightarrow$$
 for convective cell of H-W (enveloped damped)
• $V_{gr} = -\frac{2k_r\rho_s^2}{k_{\perp}^2\rho_s^2} \omega_r \quad \leftarrow ?? \Rightarrow \quad \langle \tilde{V}_r \tilde{V}_\theta \rangle = -\langle k_r k_\theta \rangle;$ direct link broken!
 \Rightarrow Energy flux NOT simply proportional to Momentum flux \Rightarrow

- → Eddy tilting ($\langle k_r k_\theta \rangle$) does <u>not</u> arise as direct consequence of causality
- → ZF generation <u>not</u> 'natural' outcome in hydro regime!
- → <u>Physical</u> picture of shear flow collapse emerges, as change in branching ratio of vorticity flux to particle flux as α drops

Desperately Seeking Greenwald

- How $\alpha > 1 \rightarrow \alpha < 1 Back$ -Transition Mechanism
- Origin of Current Scaling
- Dimensionless Parameter?

What of the Current Scaling?

- Obvious question: How does shear layer collapse scenario connect to Greenwald scaling $\bar{n} \sim I_p$?
- Key physics: shear/zonal flow response to drive is 'screened' by neoclassical dielectric

i.e.
$$-\epsilon_{neo} = 1 + 4\pi\rho c^2/B_{\theta}^2$$

- $-\rho_{\theta}$ as screening length
- effective ZF inertia lower for larger I_p

N.B.: Points to ZF response as key to stellarator.

Current Scaling, cont'd

Rosenbluth-Hinton '97 et seq

Increasing I_p decreases ρ_{θ} and off-sets weaker ZF drive

Current Scaling, cont'd

$$\left(\tilde{V}'_E \right)_Z \approx \frac{S_{k,q}}{\left[\rho_i^2 + 1.6\epsilon_T^{\frac{3}{2}} \rho_{\theta i}^2 \right]} \sim P \frac{\left(\frac{e\phi}{T} \right)^2}{\rho_{\theta i}^2} \sim B_{\theta}^2 P \left(\frac{e\phi}{T} \right)_{DW}^2$$
 production factor

Production $\leftrightarrow \tau_c$

- Higher current strengthens ZF shear, for fixed drive
- Can "prop-up" shear layer vs weaker production
- Collisionality? Edge of interest!?

Screening in the Plateau Regime!? (Relevant)

$$\left(\frac{\phi_k(\infty)}{\phi_k(0)}\right)^{ZF} = \frac{\epsilon^2/q(r)^2}{\left(\epsilon/q(r)\right)^2 + L} \approx \frac{\epsilon^2/q(r)^2}{L} = \frac{1}{L} \left(\frac{B_\theta}{B_T}\right)^2$$
$$L = \frac{3}{2} \int_0^{1-\epsilon} d\lambda \frac{\int d\theta}{2\pi} h^2 \rho \approx 1 - \frac{4}{3\pi} (2\epsilon)^{3/2}$$

- Favorable I_p scaling of time asymptotic RH response persists in plateau regime. Robust trend.
- Compare to Banana (L = 1);

$$\left(\frac{\phi_k(\infty)}{\phi_k(0)}\right)^{ZF} = \left(\frac{B_\theta}{B_T}\right)^2 \quad \text{Current scaling but smaller ratio}$$

Revisiting Feedback in Reduced Model (c.f. Singh, P.D. PPCF '21)

How <u>combine</u> noise, neoclassical dielectric and feedback dynamics? → back to Predator-Prey...

Zonal cross-correlation import TBD

Criterion for Shear Layer Collapse

• For collapse limit, criterion without noise is good approximation to with noise

Power Scaling and <u>Physics</u> of L-mode Density Limit (Singh, P.D. in preparation)

- Scaling is an old story, keeps returning
- Zanca (2019) fits $\rightarrow \bar{n} \sim P^{+4/9}$

- Ricci + Simulations...
- $Q_i|_{\text{bndry}}$ will drive shear layer \rightarrow familiar from LH mechanism
- $P_{\text{scahg}} \leftrightarrow \text{shear layer physics}?$

Expanded Kim-Diamond Model

- KD '03 useful model of L→H dynamics
- See also Miki, P.D. et al '12, et. seq.
- Evolve ε , V_{ZF} , n, T_i
- Run Model in 'L-mode'
- Coeffs derived for ITG

$\frac{\partial \mathcal{E}}{\partial t}$	=	$rac{a_1\gamma(\mathcal{N})}{1+a_1}$	$(\mathcal{T},\mathcal{T})\mathcal{E} = \frac{1}{2}$	$-a_2\mathcal{E}^2$ –	$\frac{a_4 v_z^2 \mathcal{E}}{1 + b_2 \mathcal{V}}$	2
$\frac{\partial v_z^2}{\partial t}$	H	$\frac{b_1\mathcal{E}i}{1+b_2}$	$\frac{v_z^2}{2V^2} = b$	$v_3 n v_z^2 + b$	$_4\mathcal{E}^2$	
$\frac{\partial T}{\partial t}$	=	$-c_1\overline{1}$	$\mathcal{ET} + c_2 \mathcal{V}^2$	$-c_3T$ +	- Q	
$rac{\partial n}{\partial t}$	20	$-d_1\overline{1}$	$rac{\mathcal{E}n}{+ d_2 \mathcal{V}^2}$	$-d_3n$ +	- S	
V_E'	-	$-\rho_i v_{thi}$	$L_n^{-1}(L_n^{-1})$	$L_{T}^{-1} + L_{T}^{-1}$)	
ν≡	$\equiv \frac{V}{\rho^*}$	$\frac{v'_E a}{v_{thi}} =$	$=-\frac{n_0}{n}$	$\mathcal{N}\left(\frac{n_0}{n}\right)$	$V + \frac{T_0}{T} \tau$	-)

$L \rightarrow DL$ Studies

- Look for shear layer collapse
- *Q* ramp-up in L-mode, followed by
 S ramp-up
- Oscillations \rightarrow predator-prey
- *n* for ZF collapse increases with *Q*
- Q scaling n_{at}

Power Scaling

- $n_{\rm crit} \sim Q^{1/3}$
- Distinct from Zanca, but close
- In K-D, with neoclassical screening $n_{\rm crit} \sim I_p$
- Physics is $\gamma(\nabla T)$ vs ZF damping
- Shear layer physics seems to imply power scaling

If it Flux Like a Duck... (M.N. Rosenbluth, after F. Wagner)

- Hysteresis ! in ε_{ZF} vs Q
- Expected, given 2 states transport
- Recall J-TEXT....
- Physics prediction.... beyond scaling
- Is there torque scaling of density limit, i.e. $\nabla P/n \text{ vs } B_{\theta}V_{\phi}$?

From L-DL to H-DL

- H-mode density limit is back transition $H \rightarrow L$ at high density, usually followed by progression to n_G
- Key issue ! N.B. Gentle "pump-and-puff" (Mahdavi) has beat Greenwald
- Candidates
 - AUG: α_{MHD} at separatrix (Eich, Manz)
 - − Goldston, Brown: Conduction broadens SOL, reduces $V'_E \rightarrow$ instability & inward spreading hypothesized
- Experiments needed!

c.f. Dog + Tail problem !?

Conclusions: V'_E as Edge Order Parameter

- Density limits as back-transition phenomena; V'_E physics crucial
- L-DL mechanism:
 - Shear layer collapse
 - Strong turbulence spreading
- α is key parameter, but not only
- Scalings of L-DL merge from zonal flow physics
 - I_p scaling → neo dielectric
 - *P* scaling \rightarrow Reynolds stress
- Hysteresis evident in L-DL dynamics

Speculations

- Is H-DL due turbulent degradation of V'_E in pedestal? Mechanism?
- Can external means (NTV?) be used to enhance edge density?
- Collisionless regimes? ∇n TEM
- D-L-H triple point, ala' phase transitions?
- New states:

- Fusion power + L-mode n_{at} (Q) ?

– Neg. Tri. ?

Thank You !

Supported by U.S. Dept. of Energy under Award Number DE-FG02-04ER54738