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Preliminaries

• Why?

– “Shortfall problem” has resisted efforts for long time [n.b.: 

problem is controversial]

– Multi-scale approach                 suggested as a road 

forward (c.f. Holland, et. al. 2014-2017), via GYRO simulations

– Physics of interactions not elucidated è prediction is highly 

problematic 

And 

– Physics is interesting!
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ETG - 



Conceptual Elements



• Interactions of disparate scale populations

à Classics:   Langmuir turbulence

Drift wave – Zonal Flow

à Familiar, though well understood in simplest cases, only

à Interaction with free energy complicates dynamics

Multi-Scale Problems

Langmuir collapse is pathway 

to singularity formation
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Stress
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à Mode competition is some set of                      competing for available 

drive/free energy

à Analogy from ecology à niche overlap (c.f. R. May)

à Question is stability of system, distribution of populations

Mode Competition à One Complication
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• Populations 
  =  	 		 − 


• Extends familiar predator-prey idea, where one species 

accesses free energy, one is symbiotic

• Structure, eigenvalues of competition matrix è system state

• Noise strongly affects overlap 

Competition 
matrix

Overlap of
population



Spatial Patterns

(with A. Ashourvan)



Some Questions
I) 

Re: Drift-ZF Turbulence

– Impact of ZF well established

– Effectively linear modulation theory developed

But:

– What sets scale of ZF field? à 
– How does modulational instability evolve nonlinearly, saturate

– N.B.: Predator-Prey feedback channel

– Saturation ßà scale connection?

Cf:
- Gurcan, P.D. ’14- , ‘05



Staircase structure
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Densityshearing 

oStaircase in density profile: 

jumps         regions of steepening 

steps          regions of flattening 

oAt the jump locations, turbulent PE is suppressed.

oAt the jump locations, vorticity gradient is positive

Initial conditions:   

� 

n = g0(1 - x),    u = 0,   e = e 0

  

� 

n(0, t) = g0,  n(1, t) = 0;    u(0,1;t) = 0;   ¶xe (0,1;t) = 0Boundary conditions:

density grad. 

turb. PE

Snapshots of evolving profiles at t=1 (non-dimensional time) 

Density
+
Vorticity
lattices

Structures:



oShear pattern detaches and delocalizes from 
its initial position of formation.

oMesoscale shear lattice moves in the up-
gradient direction. Shear layers condense  and 
disappear at x=0.   

oShear lattice propagation takes place over 
much longer times. From t~O(10) to t~(104).

Dynamic Staircases
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oBarriers in density profile move upward in 
an “Escalator-like” motion.

t=700

t=1300

è Macroscopic Profile Re-structuring

‘Non-locality’



(a) Fast merger of micro-scale SC. Formation 
of meso-SC.

(b) Meso-SC coalesce to barriers
(c) Barriers propagate along gradient, 

condense at boundaries
(d) Macro-scale stationary profile   

Time evolution of profiles    
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Lessons
• Staircases happen – Important spatial pattern

– Staircase is ‘natural upshot’ of modulation in bistable/multi-stable system

– Bistability is a consequence of mixing scale dependence on gradients, 

intensity ßà define feedback process

– Bistability effectively locks in inhomogeneous PV mixing required for zonal 

flow formation

– Mergers result from accommodation between boundary condition, drive(L), 

initial secondary instability

– Staircase is natural extension of quasi-linear modulational

instabilty/predator-prey model à couples to transport and b.c. ßà simple 

natural phenomenon



Towards a Reduced Model



Re-visiting Feedback Loops (Minimal)

• Sources and Sinks

–  ⇒ 		 , etc

– Collisional damping of Z.F.

– Boundary conditions, 

outflow

Flux 
stresses

Long
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Mean

Stress,
Flux (?!)
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Observations re: Modelling
• H+D ‘04 key elements:

① Straining of ETG scales by D.W.’s                                     

~  ⋅  ⋅ 〈〉 à random shearing

② ETG stresses negligible, in general

③ Noted   modulations by drift wave, but did not develop 

implication

èConclusion that long wavelength activity could regulate short 

wavelengths, little effect short à long

èExpect robust large scale activity will suppress short



Other Elements
• Mode competition for free energy:

N.B. Flux driven simulation ultimately required

àSpatial scattering (i.e. ‘turbulence spreading’) accompanies    

straining/shearing

i.e.   =  ⋅  ⋅   +⋯
à Weak nonlocality introduced

Heat source  ,	,	 Control to
population
balance



Other Elements, cont’d
• Local energy transfer, via inverse cascade

  	∼ 		−   	 		→ 		  	
~ effective noise source for ion scale turbulence

• Small scale       fine scale envelope

– Short wavelength envelope field smooth

– Both scales contribute to ZF field

– Enhance inertia due Boltzmann ions is ‘linear’ effect

– Suggests ,  as fluctuation fields

n.b.: Energy 
conservation!



A Simple, Tractable Model
• Aims are understanding/insight

• Primitive equations:

– Fluid DWs, evolving , 
– ETG, evolving , 
–  , 〈〉 couple to both populations

• Reduced model:

– Evolve  , 〈〉 via ion, electron scale vorticity flux, heat flux

– Evolve ,  envelope fields

è Ultimately 4 fields in (, )



Elements
• Mean  evolution  = − 	 	 	 		  + 	 		  	+ 		  + 			 , 		→ 			 ,  , ,  			→ characteristic scales, evolving

• Key Point:

– Population induced transports compete to carry heat flux

– Spreading/spatial scattering à weak nonlocality

– Relative thresholds important



• Mean 〈〉 evolution  = − 	 	 	  +	 	  	−  	 
Taylor identity:  −  	 		→ 			 〈 	〉

 	 	= 		−  	  + Π
 		→ 		  	,	 	
Π 		→ 			 /	,	 		  

; Similarly
ETG scales

Weighting for electron inertia correction

Off diagonal,  driven
See Ashourvan, PD 
for calculation



• Drift Wave Energetics:

 + Γ = −,   	−   
− // 		+ 	// 	+ 	 | 

Γ = spreading = 	−  	
,   	 =  relaxation ↔ ,
   			⇒ 			  	    +  Π,

Reynolds workRelaxation

Inverse cascade from ETG à excitation

 = (, )
à DW envelope scale



• ETG Energetics:

 + Γ = −,,   −  	    
−/	// 	+ 	  |  , 	Γ = spreading = 	−  /	 è significant

−,   	= 		  	,	 	  /   
 	    = 	,    +  Π,
, =  	  /, 		 Π, = / 	 	Ω/

Energy drain to DW

 = (, )
à ETG envelope scale



Characteristic Scales:
• Need to specify ,  as basic correlation scales on DW, ETG 

scales

• These are modified by shearing, with shear computed self-

consistently

• Envelope scales à i.e. ,  scales evolved self-consistently 

with profiles: n.b.  not obviously limited to electron scale , 	= 		 , 	/	 1 +   , 	;  with  hybrid (BDT)→		 , 	/	 1 +  	/	,		 | ;  ETG, D à E



Cross-Scale Coupling: Nonlocal in scale

• Straining and Scattering of shorts by longs are essential

• Adiabatic theory for shorts à 〈〉:  	=  ⋅  ⋅  	  +  ⋅  ⋅  	  ,  set by DW field = ∑  ,, = ∑    −  ⋅ ,,
 = ∑    + 	,  ,, 





Cross-Scale Coupling, cont’d

 |  =  	   	 	−∫ , ⋅   ⋅   
For power law spectrum:

 | = spreading(above) + 
 	  		

n.b.: −/	 < 0 à backward wave è straining decrement

è Spectral structure enters multi-scale problem. Resolution 

challenges to DNS – link cross-scale interaction spectral structure

DW induced “spreading’ of ETG’s 
envelope!

index



So, the model
• 4 equations in ,  + mixing lengths (with shearing)

• Calculate  ,  ,  ,  ,  ,  ,  , 
n.b. 1 equation beyond Ashourvan, P.D. ‘16, ‘17

• Control parameters:

– Heat source à DW, ETG compete

– Mean flow decrements

– ,	 	, ,		
• Un-resolved questions

– ETG stress on DW

– Inverse cascade to mean?  à ZF Noise + Modulation*



Consideration of system suggests:

• ‘Dimits Shifts’ like state for ETG’s should exist

– ETG can generate a state of ion scale ZF ?!

– Regulate DW’s by shearing

– Lesson: Beware assumptions re:  envelope scale

ETG DW ZF

Inverse cascade stresses

shearing



• Transition from low k à ‘Dimits Shift’ regime as   increased

• How are ion ZF’s energized in ETG regime? à inverse cascade as channel ?!

C. Holland, et. al.
NF 2017

Low k
dominated 

“Dimits Shift”
Regime à
ZF dominated



Multi-Scale, Multi-Step Staircases

• DW + ZF forms staircase structure (Dif-Pradalier, 

Ashourvan, P.D. ‘10, ‘16, ’17 after Dritchel, McIntyre ‘08)

• Mechanism is 

– Inhomogeneous mixing(PV) via modulation

– Feedback on flux 

↔ Envelope scale selection

• Region of steep  form 

• DW suppressed, but ETG ~ insensitive 

mean  




So

• ETG staircase forming in  jumps !?

(survive strong DW shears?)

Or

• ETG transport limits staircase formation via feedback on 
(damp ion staircase as  steepens?)

è

• DW, ETG competition for free energy source is essential!

• Relative thresholds significant



Ongoing and Plans:
• Numerical solution (1+1) of 4 equation model (easily 

implemented)

• Explore:

– Threshold + flow damping scans

– Spatial patterns – staircase (and its fate)

– Dimits shift regimes, ETG driven ZFs structure

– ,  branching ratio vs 
– Roles of straining, scattering in cross-scale interaction



• How understand interaction between Reynolds stresses and 

inverse cascade in Zonal Flow formation?

i.e.

• Noise alone insufficient! 

• ‘Diagonal’ part of R.S. / vorticity flux plays essential role!

è coming attraction ….

A New Question re: Old Friend

DW

Mean

• ‘Predator-Prey’ formulations have 

focused on Reynolds stress

• R,H retained noise, missed  < 0



• Multi-scale physics still yield new questions for 

research.

• Yet to confront non-locality, avalanching etc.

• Theory, reduced modelling necessary for 

understanding large scale simulations.

Conclusion
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