Dynamics of Turbulence Entrainment: A Comparative Study

P.H. Diamond⁽¹⁾ and Runlai Xu⁽²⁾

- 1) Newton Institute, Cambridge and UC San Diego
- 2) University of Oxford

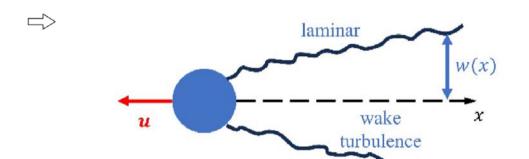
Leeds Math Seminar 15/4/2024

N.B. "Turbulence Spreading" ≅ Entrainment

1

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Wake-Classic Example of Turbulence Spreading



Similarity Theory
Mixing Length Theory

$$W \sim (F_d/\rho U^2)^{1/3} X^{1/3}$$
,

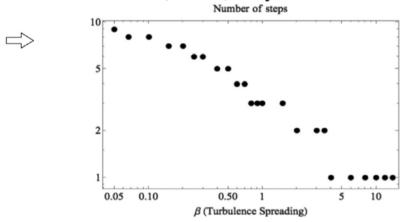
$$F_d \sim C_D \rho U^2 A_s$$

 C_D independent of viscosity at high Re

- Physics: Entrainment of laminar region by expanding turbulent region. Key is <u>turbulent mixing</u>. > Wake expands
- ⇒ Townsend '49:
 - Distinction between momentum transport eddy viscosity—and fluctuation energy transport
 - Failure of eddy viscosity to parametrize spreading
 - Jet Velocity: $V = \frac{\langle V_{perp} * V^2 \rangle}{\langle V^2 \rangle}$ spreading flux FOM

Why Study Spreading?

⇒ Spreading strength sets staircase step size via intensity scattering. See also F. Ramirez, P.D., Phys Rev E 2024



from A. Ashourvan, P.D. (in spirit of BLY, for drift wave turbulence)

- Spreading potentially significant in determining
 - Physical turbulence profiles
 - Non-locality phenomena
- It's observed! M. Kobayashi + 2022
 T. Long, T. Wu (2021, 2023)
 Estrada + (2011)

Spreading in MFE Theory

- Numerous gyrokinetic simulations
 - N.B. <u>Basic</u> studies absent ...

i. e.

$$\partial_t \xi = \gamma \xi (1 - \xi) + \partial_x D(\xi) \partial_x \xi + D_0 \partial_x^2 \xi$$

⇒ Diagnosis primarily by:

color VG

 $\gamma \sim 0(\epsilon)$

- tracking of "Front"

⇒ Theory ⇒ Nonlinear Intensity diffusion models

⇒ Reaction-Diffusion Equations - especially Fisher + NL diffusion

Continuum DP Models - Later......

Recently:

 \Rightarrow Renewed interest in context of λ_q broadening problem, cf. P. Diamond, Z. Li, Xu Chu

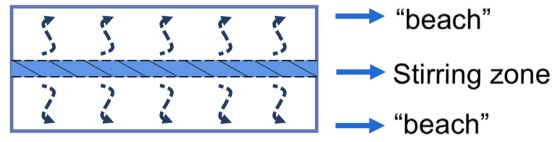
 \implies Simulations measure correlation of spreading $\langle V_r \widetilde{p} \widetilde{p} \rangle$ with λ_q broadening (Nami Li, P.D.,

Intermittency effects T. Wu, P. D. + 2023, A. Sladkomedova 2024, Xu NF 2023)

Especially blobs, voids

Spreading Studies - Numerical Experiments

2D Box, Localized Stirring Zone



<u>System</u>	<u>Features</u>
2D Fluid	Selective Decay, Vortices How to Measure Spreading?
2D MHD with weak B_0 perp.	Alfvenization, Vortex Bursting, Zeldovich number
Forced Hasegawa-Mima with Zonal Flow	Waves + Eddies + ZF Multiple regimes and Mechanisms

N.B. Clear distinction between "spreading" and "avalanching"

Numerics: 2D Dedalus simulation

Box Characteristics:

 Dedalus Framework analogous to BOUT++

- Grid Size: 512×512

- Doubly Periodic boundary condition, beach regulates expansion

Forcing Characteristics:

- Superposition of Sinusoidal Forcing, vorticity
- Spectrum: Constant E(k), ensuring uniform energy distribution across wave numbers.
- Correlation Length: Approximately 1/10 of the box scale, some room for dual cascade.
- Localized through a Heaviside step function.
- Phase of forcing randomized every typical eddy turnover time

2D Fluid

2D Fluid - the prototype

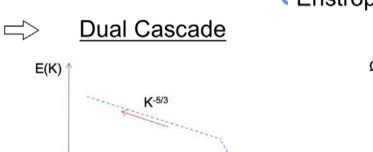
Vorticity Equation: $\frac{D\omega}{Dt} = v\nabla^2\omega - \alpha\omega$

Key Physics:

invariants

Inviscid, unforced Energy $E = \int d^2x (\nabla \varphi)^2/2$ Enstrophy $\Omega = \int d^2x (\nabla^2 \varphi)^2/2$

Kraichnan



Robust

(3/2 law proved)

 $\Omega(K)$

2D Fluid, Cont'd

⇒ Selective Decay

Forward 'Cascade' enstrophy Inverse 'Cascade' energy

- → Senses viscosity
- → Senses drag

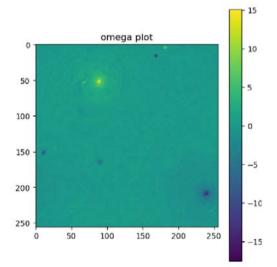
For Final State of Decay:

$$\delta(\Omega + \lambda E) = 0$$

Bretherton + Haidvogel

⇒ Role Coherent Structures (Vortices)

cf: B. Gallet, recent



 emergence isolated coherent vortices → survive decay

$$- \frac{d}{dt}\nabla\omega = (s^2 - \omega^2)^{1/2}$$

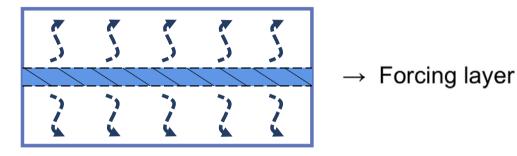
$$\omega = \nabla^2 \varphi \rightarrow \text{vorticity}$$

$$s = \partial_{xy}^2 \varphi \rightarrow \text{shear}$$

- Dipole vortices emerge, also

2D Fluid

⇒ Realize:



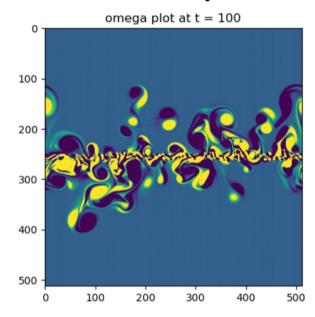
- Most of system in state of Selective Decay!
- Need Consider / Compare:

$$\langle V_y(\nabla^2 \varphi)^2/2 \rangle \rightarrow \text{Enstrophy Flux}$$

 $\langle V_y(\nabla \varphi)^2/2 \rangle \to \text{Energy Flux}$ as measures of "intensity spreading". \Longrightarrow Selective decay suggests these are radically different.

What Happens?

In Far Field, away from Forcing layer

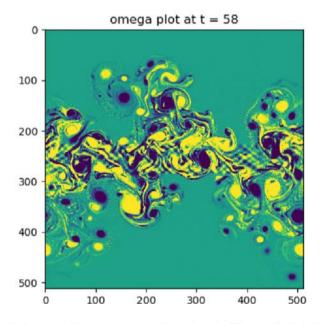


Vorticity snapshot at Re~100

Dipoles emerge

Spreading intermittent

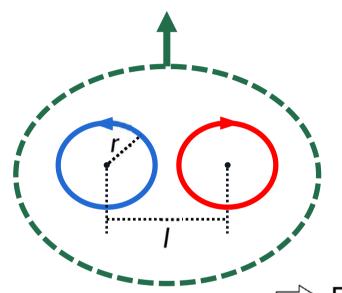
No apparent "Front"



Vorticity snapshot at Re~2000

- Dipoles, filaments, cluster
- Fractalized front

⇒ N.B. <u>Dipole Vortex</u>



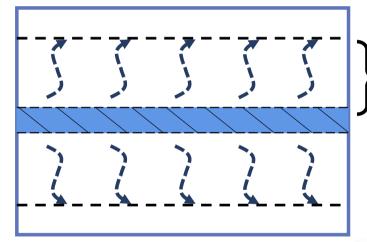
Uniform speed due to mutual induction

$$-C = \frac{\Gamma}{I} = \frac{vr}{I}$$

- Dipole Vortices propagate at constant speed, "free flyers"
- □ Physical origin of "ballistic spreading"?!
 - i.e. ensemble dipoles expands linearly in time
 - c.f. Zaslavskii comment circa 2000.

On Keeping Score

□ Loosely, interested in scaling of expansion of turbulent region with time

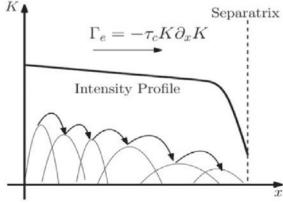


 $I \sim t^{\alpha}$

N.B. Contrast DP ⇒ critical single site

Many approaches to I...

MFE favorite:



Track footprint of $|\phi|^2$ Plot vs time, 1D projection

Keeping Score, cont'd

N.B.:

- Quantity weighting can differ; depending on quantity
- RMS velocity sensitive to how computed

Table 1: Table describing various velocity and transport parameters.

Parameter	Symbol	Equation	Description
RMS Velocity	V_{rms}	$V_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$	Root-mean-square velocity of turbulence, also known as tur- bulence intensity. This can ei- ther be measured near the forc- ing zone and averaged horizon- tally for a characteristic veloc- ity as a basis of comparison, or measured globally to obtain global energy.
Quantity- Weighted RMS Distance	X_{W-rms}	$X_{W-rms} = \sqrt{\frac{\int \delta(x) ^2 Q(x) dx}{\int Q(x) dx}}$	Quantity-weighted root-mean- square position represents the location of the quantity of in- terest, typically energy or en- strophy. One value is gener- ated for each time. The quan- tity Q is usually energy or en- strophy.
Quantity- Weighted RMS Spreading Velocity	V_{W-rms}	V_{W-rms} is the slope of X_{W-rms} plotted against time	Quantity-Weighted RMS Spreading Velocity represents the bulk motion. This is more comprehensive than the front velocity.

Keeping Score, cont'd

- Approaches, cont'd
- Front velocity is MFE favorite sensitive to 1D projection, definition
- Transport Flux $\langle V_y E \rangle$, $\langle V_y \Omega \rangle$, most physical, clearest connection to dynamics of 2D Fluid but: Sensitive to viscosity and selective decay dynamics
- Jet velocity very sensitive to viscosity, field chosen

Front Volocity	V.	V. is the slane	This is usually
Front Velocity	V_{front}	V_{front} is the slope	This is usually
		obtained from	comparable to V_{W-rms} ,
		tracking the	although front doesn't
		outermost	exist for low Reynolds
		turbulent patch	number.
Transport Flux	Φ_Q	$ \Phi_Q = < QV_{\perp} >$	The amount of certain
Density of			quantity passing
certain			through a unit length
quantity			per unit time; flux is
			the integral of flux
			density through the
			horizontal surface,
			which bounds half of
			the region and can be
			related to the rate of
			change of the quantity
			in that region.
Transport "jet"	V_Q	$V_Q = \frac{\langle QV_\perp \rangle}{\langle Q \rangle}$	Also known as
Velocity			normalized flux
			density. Average is
			usually taken
			horizontally. This
			velocity is separately
			obtained for each time.

Keeping Score, cont'd

Observation:

- —Lower Re → Significant speed, 'front' fluctuations due to variability in dipole population
- —Transport velocities quite sensitive to viscosity and selective decay

i.e. $\langle V_y \Omega \rangle$ drops $= \begin{cases} \text{especially for higher viscosity,} \\ \text{Due selective decay} \end{cases}$

- Formation of dipoles follows decay of enstrophy
- —Dipoles ultimately determine spreading

Results

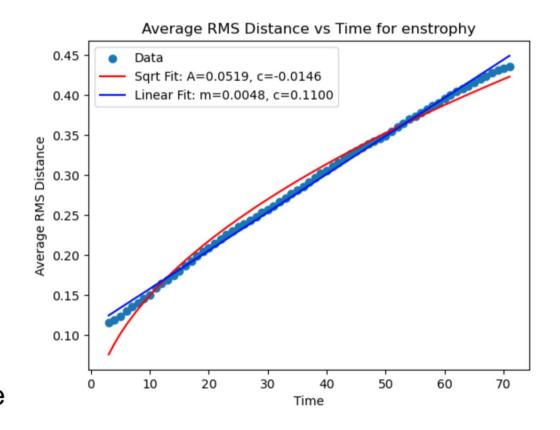
Re ~ 5000

Ω–weightedrms distance

—Constant spreading speed for enstrophy, i.e., I ~ ct

$$a = 1$$

- $-c/V_{rms} \sim 0.1$
- Consistent with picture of dipole vortices carrying spreading flux

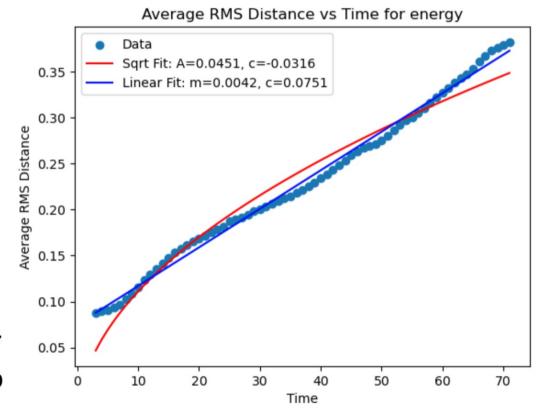


Results, cont'd

Re ~ 5000

E-weighted rms distance

- —Constant spreading speed for energy, i.e., $\alpha \simeq 1$
- $-c/V_{rms} \sim 0.1$



Summary - 2D Fluid

- Coherent structures Dipole vortices mediate spreading of turbulent region → free flyers
- Mixed region expands as $w \sim t$, consistent with dipoles.
- No discernable "Front", spreading is intermittent. (space+time)
- Spreading PDF is non-trivial. Requires further study.
- Turbulence spreading non-diffusive.

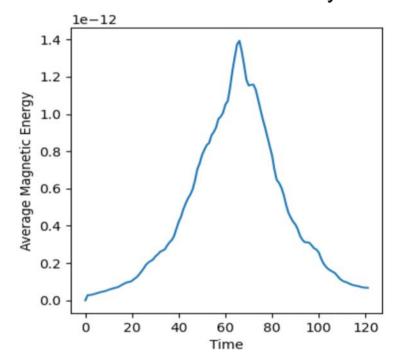
2D MHD + Weak B_0

2D MHD

- The equations: $\frac{d}{dt}(\nabla^2 \varphi) = v \nabla^2 \nabla^2 \varphi + \nabla A \times \hat{\boldsymbol{z}} \cdot \nabla \nabla^2 A + \hat{\boldsymbol{f}}$ $\frac{d}{dt} A = \eta \nabla^2 A$ $\frac{d}{dt} = \partial_t + \nabla \varphi \times \hat{\boldsymbol{z}} \cdot \nabla$
- Inviscid Invariants: $E = \langle V^2 + B^2 \rangle$, $H = \langle A^2 \rangle$, $H_c = \langle \vec{V} \cdot \vec{B} \rangle \Longrightarrow 0$, hereafter Conservation of H is Key!
- Consider weak mean magnetic field: B = B₀(y)x̂
 B₀(y) ~ B₀sin(y) ⇒ initial imposed field
- As before, localized forcing region, effectively unmagnetized

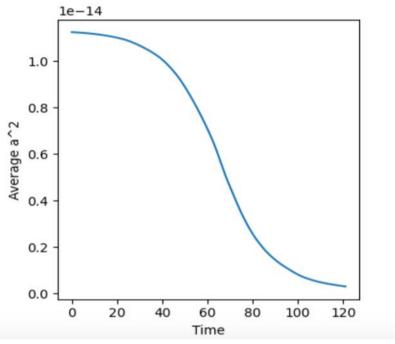
⇒ 2D MHD

- Zeldovich Theorem: No dynamo in 2D



⇒ Field ultimately decays

- Consequence of decay (A²)



$$\frac{d}{dt} \langle A^2 \rangle = -\eta \langle B^2 \rangle$$

$$\int_0^t \langle B^2 \rangle dt \le \frac{\langle A(0)^2 \rangle}{\eta}, :: \langle B^2 \rangle \text{ decays}$$

Key Physics of 2D MHD

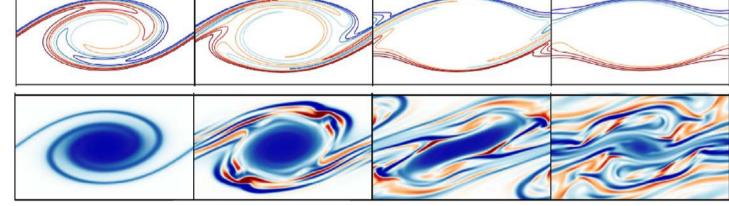
Lorentz force suppresses inverse kinetic energy cascade.
 Inverse cascade (A²) develops

- Single Eddy: Expulsion (Weiss'66)

vs. Vortex Disruption (Mak et. al 2017)

Key Parameter: $Z = Rm \frac{V_{A0}^2}{V_E^2}$ $Z \sim 1$ bounds the two regimes

Expulsion:



Vortex bursting:

from Mak et. al 2017

See also: Gilbert, Mason, Tobias

2016

Key Physics of 2D MHD, cont'd

Turbulent Diffusion: (Cattaneo + Vainshtein '92;
 Gruzinov + P.D. '94)

Closure + $\langle A^2 \rangle$ conservation \Rightarrow Quenched Diffusion of B - field

From: $D_t \sim \eta_{anom} \sim \langle \hat{V}^2 \rangle \tau_c$

To:
$$D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c / [1 + R_m V_{A0}^2 / \langle \tilde{V}^2 \rangle] \sim D_{Kin} / (1 + Z)$$

Once again,

Key Parameter:
$$Z = R_m \frac{V_{A0}^2}{\langle \tilde{V}^2 \rangle}$$

$$< \tilde{V}^2 > vs V_E^2$$

N.B.: - V_{A0} is initial weak mean magnetic field

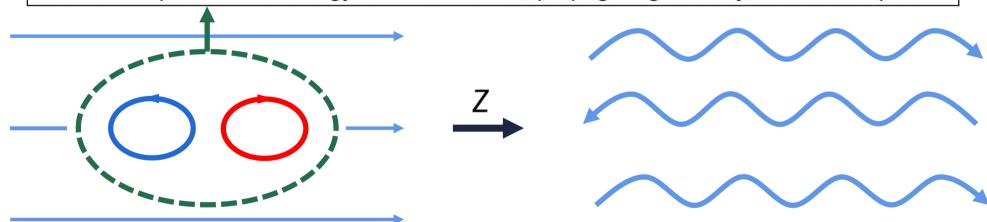
- R_m large...
- Physics is simply $\underline{V} \cdot \nabla \omega$ vs $\underline{B} \cdot \nabla$ J and stretching

Crux of the Issue!?

⇒ Hydrodynamics: Dipole vortex 'Carries' turbulence energy ⇒ spreading

 \Rightarrow But... weak B_0 can 'burst' vortices \Rightarrow

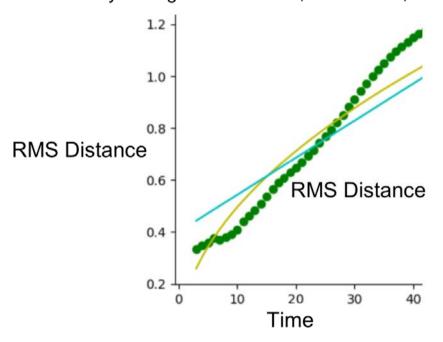
Converts dipole kinetic energy to Alfven waves, propagating laterally, and to dissipation.



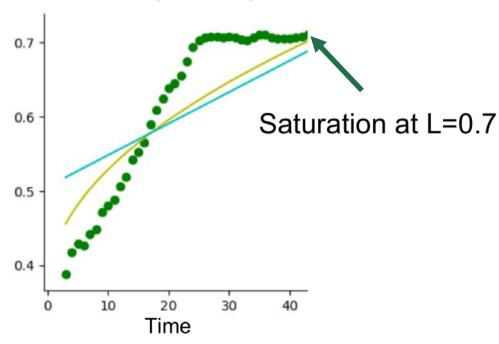
So, can a weak B₀ block spreading in 2D MHD!?
N.B. Perp Alfven waves observed

> Time evolution of Spreading

Hydro regime: Rm = 100, Bo = 0.001, Z = 0.01

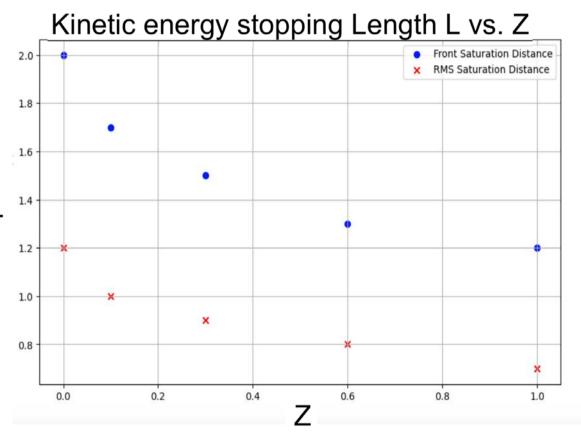


MHD:Rm = 100, Bo = 0.01, Z = 1

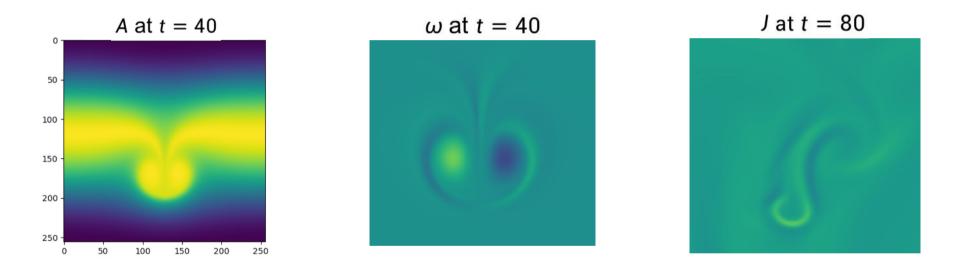


Spreading vs. Z - Turbulence

- Now consider turbulence:
- Kinetic Energy Stopping length decreases with increasing $Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$ N.B. Z reflects both R_m and B_0
- Systematic difference between Front and RMS saturation evident, trends match



⇒ Single Dipole in weak B₀

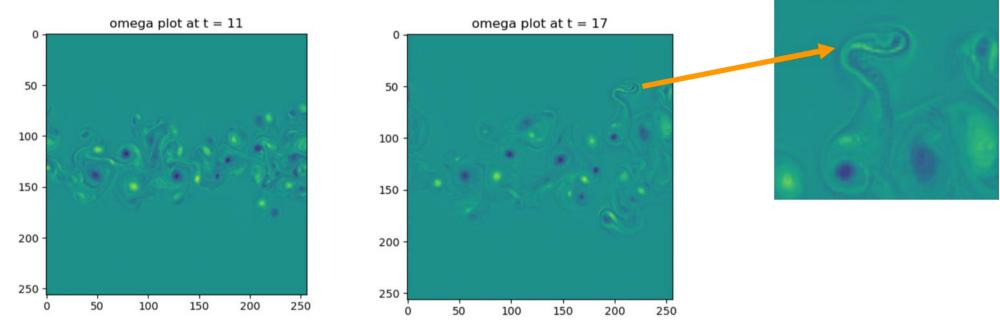


Note wrapping filament tends to cancel and push on dipole, so it distorts and ultimately bursts Filament and vortex bursting. Concentration of energy at small scale ⇒ fast dissipation

Connection: vortex busting⇔ MHD cascade singularity?!

Close Look at Vorticity Field

Bursting/Filamentation



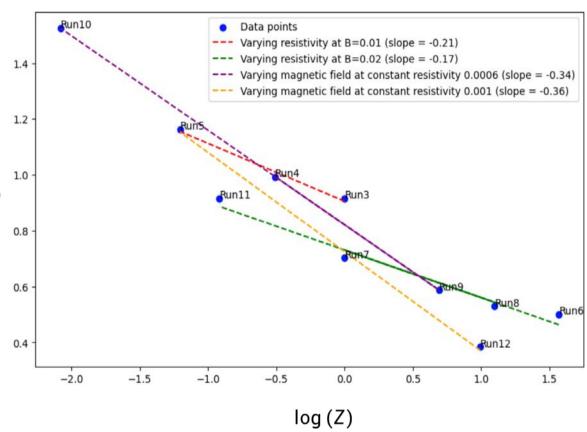
- Z=3, Rm≈50, Re≈500, B=0.01
- Dipoles evident at early times, but encounter stronger field as migrate
- Vortex bursting occurs at later times ⇒ Spreading halted.

Single Dipole Penetration

Log-Log Plot of L against Z

- Dipole penetration decreases with increasing Z
- Evidence that varying log(L) B_0 and R_m impact penetration.

But Z is not the full story... P_m dependance?



⇒ 2D MHD: Summary

- Weak B₀ enables vortex disruption
 Dipole bursting ⇒ Saturates spreading
- Weak $\underline{B_0}$ blocks advance of kinetic energy
- Process: Conversion dipole KE to Alfven waves, laterally propagating

-
$$Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$$
 as critical parameter

- Reinforces notion of "free flyer dipoles" as critical to spreading

<u>Forced Hasegawa – Mima + Zonal Flows</u>

H-M + Zonal Flow System

- System:

$$\frac{d}{dt}(\widetilde{\phi} - \rho_s^2 \nabla_{\perp}^2 \widetilde{\phi}) + v_* \frac{\partial \widetilde{\phi}}{\partial y} + v_{*u} \frac{\partial \widetilde{\phi}}{\partial y} = \frac{\partial}{\partial r} \rho_s^2 \langle \widetilde{v_r} \nabla_{\perp}^2 \widetilde{\phi} \rangle + v \nabla^2 \nabla^2 (\widetilde{\phi}) + \widetilde{F} \text{-Waves, Eddys}$$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \overline{v_z} \frac{\partial}{\partial y} - \nabla \widetilde{\phi} \times \widehat{\mathbf{z}} \cdot \nabla$$

$$\frac{\partial}{\partial t} \nabla_x^2 \bar{\phi_z} + \frac{\partial}{\partial r} \langle \tilde{v_r} \nabla_\perp^2 \tilde{\phi} \rangle + \mu \nabla_x^2 \bar{\phi_z} = 0 \text{ -Zonal Flow (Axisymmetric)}$$

N.B.
$$\bar{\phi}_z = \bar{\phi}_z(x)$$
, only.

N.B.: Electrons Boltzmann for waves, not for Zonal Flow

PV forced

- viscosity controls small scales
- drag controls zonal flow μ

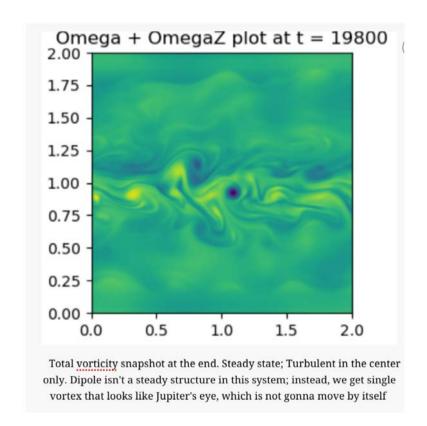
Energy
$$\longrightarrow \langle \tilde{\phi}^2 + \rho_s^2 (\nabla \tilde{\phi})^2 \rangle + \langle \rho_s^2 (\nabla \phi_z)^2 \rangle$$
 - conserved: Potential Enstrophy $\longrightarrow \langle (\tilde{\phi} - \rho_s^2 \nabla^2 \tilde{\phi})^2 \rangle + \langle (\rho_s^2 \nabla^2 \phi_z)^2 \rangle$

N.B. Energy, Pot Enstr. exchange between Waves and ZF possible.

Typical saturated snapshot(Kubo 0.2)

- Dipoles disappear
- Large coherent vortex

N.B. Density gradient precludes dipoles.



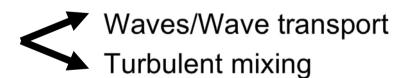
Total Vorticity: $\nabla^2 (\tilde{\phi} + \phi_z)$

H-M + Zonal Flow System, cont'd

$$\begin{array}{ll} \rightarrow \text{ Now:} & \textit{waves} \quad \omega = \omega_*/(1 + k_\perp^2 \rho_s^2), \quad \underline{v_{gr}} \\ & \text{eddies} \quad \tilde{v} & \begin{cases} \tilde{v} \text{ vs } \overline{v_*} \rightarrow \\ \text{mixing length} \end{cases} \end{array}$$

i.e.
$$\Rightarrow$$
 Energy Flux has two components:
$$\begin{cases} \sum_{k} v_{gr}(k) \xi_{k} \to 2^{\text{nd}} \text{ order in } e\tilde{\phi}/T \\ \langle \tilde{v_{r}} \xi \rangle \to 3^{\text{rd}} \text{ order in } e\tilde{\phi}/T \end{cases}$$

N.B. 2 channels for "turbulence spreading"



-Branching ratio, vs. Ku number?

For clarity; Contrast:

- ⇒ Spreading in presence of fixed, externally prescribed shear layer
- - : forcing (\tilde{v}_{rms}, Re) + drag \Rightarrow control parameters
- "weak" and "strong" Turbulence Regimes

$$V_{gr}$$
 VS $V_r \rightarrow \frac{\langle \tilde{v_r} \xi \rangle}{\sum_{\mathbf{k}} v_{gr}(\mathbf{k}) \xi_{\mathbf{k}}} \rightarrow \frac{\tilde{v_r} \tau_c f}{\Delta_c} \rightarrow Ku$ \longleftrightarrow 2nd vs 3rd order energy flux $\Delta_c \sim V_{gr} T_c$

Ku < 1 → wave dominated spreading
</p>

 $Ku > 1 \rightarrow \text{mixing dominated spreading} \stackrel{\longrightarrow}{\longrightarrow} \sim 2D \text{ fluid}$

H-M + Zonal Flow System, cont'd

- Enter the Zonal Flow...
 - Multiple channels for NL interaction
 - But with $ZF \longleftrightarrow eddy$, wave coupling to ZF dominant
 - ZF is the mode of minimal inertia, damping, transport

Waves:

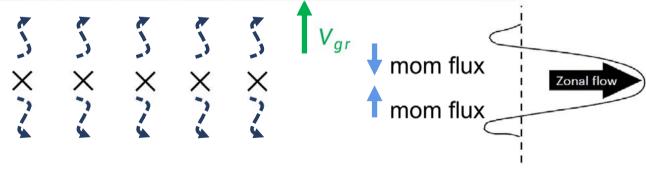
$$\frac{\partial}{\partial t} (1 + k_{\perp}^2 \rho_s^2) \widetilde{\phi} = \dots$$

$$\frac{\partial}{\partial t} (k_r^2 \rho_s^2) \overline{\phi}_z = \dots$$

ZF:

$$\frac{\partial}{\partial t}(k_r^2\rho_s^2)\bar{\phi_z} = \dots$$

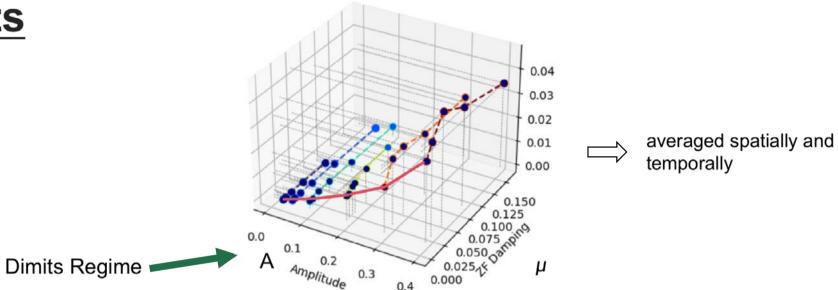
 \Rightarrow energy coupled to ZF ($\tilde{v_r} = 0$) cannot "spread", unless recoupled to waves



- Degradation of ZF (back transfer) is crucial to spreading
- \therefore μ must regulate spreading. What of $\mu \to 0$ regimes?

Potential Enstrophy Flux

Results



- Potential enstrophy flux generally <u>increases</u> as drag increases. "Dimits regime" for turbulence spreading. Spreading diminishes as power coupled to Z.F. (Fixed, spatially)
- Self-generated barrier to spreading.
- For A increasing, PE flux rises sharply, even for weak ZF damping. Fate of ZF?
- "KH-type" mechanism loss of Dimits regime at higher A? Characterization??

N.B. "Dimits Regime" = Condensation of energy into ZF for weaker forcing.

Results, Cont'd Wave Energy Flux

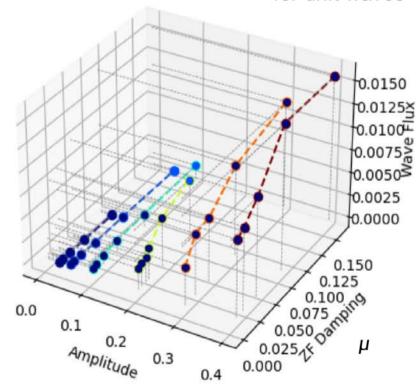
Wave Energy Flux
$$<-\frac{\partial \phi}{\partial t} \nabla \phi > \longrightarrow \sum_{\mathbf{k}} v_{gr}(\mathbf{k}) E_{\mathbf{k}}$$

for drift waves

- Dimits regime at low forcing and ZF damping
- -Increases with ZF damping and forcing amplitude
- Dominant K_x increases due ZF decorrelation
- Spectrum condensation towards low k with inverse cascade

implication for v_{gr} and $\sum_{\mathbf{k}} v_{gr}(\mathbf{k}) E_{\mathbf{k}}$

Take note of increasing W.E.flux as μ → 0,
 A increases.

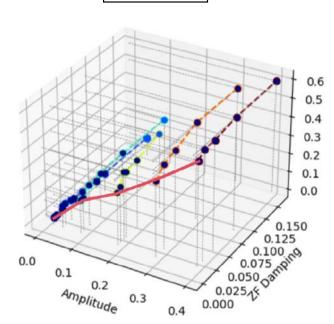


Results, Cont'd

$$\frac{\tilde{v_r}\tau_c f}{\Delta_{c_c}}$$
 where $\Delta_c \sim \langle K_x^2 \rangle^{-1/2}$

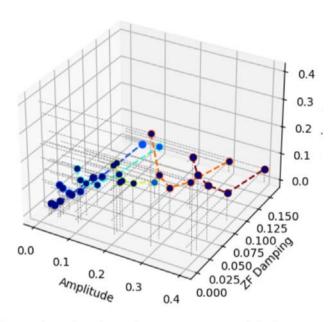
Kubo Number

 \Rightarrow



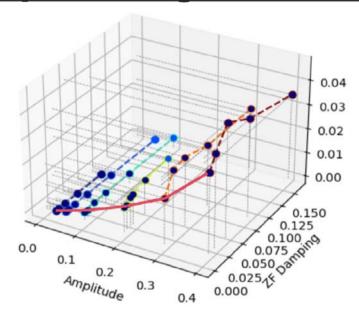
Fluctuation intensity <u>increases</u> as drag increases

zonal_velocity



Zonal velocity <u>decreases</u> with increasing drag (clear)

→Spreading and Fate of Zonal Flows



- → Spreading rises for increased forcing, even for $\mu \to 0$
- → Dimits regime destroyed. How?
- ⇒ Seems necessary for spreading in systems with ZF

→ Animal Hunt for linear instabilities(KH, Tertiary ...) seems pointless in turbulence

ightarrow Instead, $P_{\mathrm{Re}} = -\langle \widetilde{V_x} \widetilde{V_y} \rangle \cdot \frac{\partial \overline{V_y}}{\partial x}$ Power transfer [fluctuations ightarrow flow]

 $P_{Re} < 0$: Wave \rightarrow ZF transfer

 $P_{Re} > 0$: ZF \rightarrow Wave transfer \Rightarrow ZF decay

Quantifying Wave-ZF Power transfer

$$1/2*rac{\partial \overline{V}_y^2}{\partial t}=\omega_Z<\widetilde{v_x}\widetilde{v_y}>-drag*\overline{V}_y$$

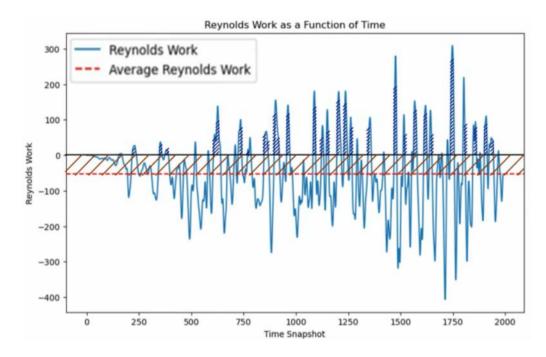
Reynolds power

We quantify ZF → Waves Power Transfer as the ratio of the area above the axis to mean work done on the zonal flow.

N.B.:

$$P_{\mathrm{Re}} = -\langle \widetilde{V_x} \widetilde{V_y}
angle \cdot rac{\partial \overline{V}_y}{\partial x}
ightarrow D_t (\partial \mathsf{V}_y^{\square} / \partial x)^2 ?$$

Mixing length model fails capture 2 signs

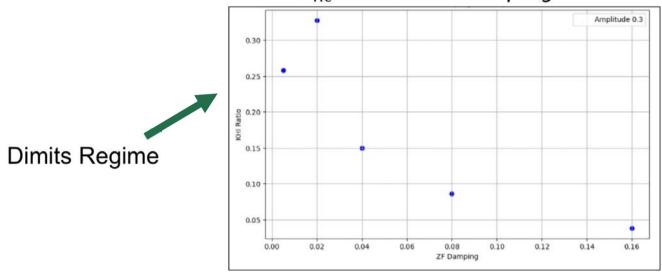


Reynolds power vs time

 $P_{Re} < 0 \Rightarrow \text{Wave} \rightarrow \text{ZF transfer}$

 $P_{Re} > 0 \Rightarrow ZF \rightarrow Wave transfer$

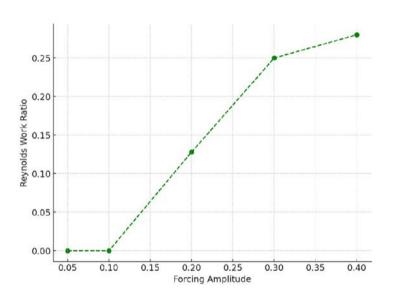
Results, Cont'd



- The ratio generally decreases as a function of ZF damping
- □ Damped Zonal Flow More Stable.

Results, Cont'd, P_{Re} Ratio vs Forcing Strength

 P_{Re} ratio vs forcing amplitude



Preliminary

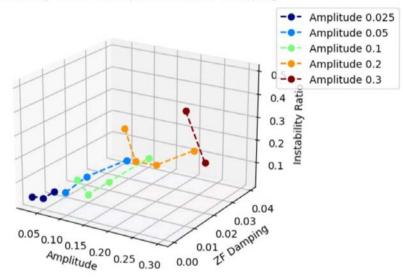
 \rightarrow Explore other FOMs

- The ratio decreases as a function of forcing strength
- Indicates that re-coupling of ZF energy to turbulence increases for stronger forcing
- This approach avoids instability morass.

44

P_{Re} Ratio vs A, μ

Instability Ratio vs Amplitude and ZF Damping



- P_{Re} back transfer increases with forcing, and as μ decreases
- Further analysis required
- Is vortex shedding the mechanism of turbulence propagation?

Related Problem: Jet Migration(Laura Cope)

i.e. - Here: Symmetry broken by forcing region Turbulence patch propagates, drags ZF/Jet along Zonon breaks symmetry - There: Jet migrates but Migration enabled by dynamics of fluctuation field, via zonon How does zonon modify turbulence field?

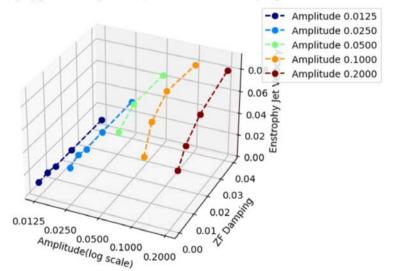
So Jet Velocity!?

→ As waves/eddys drag along zonal flow, Jet velocity(ala' Townsend) is related to Jet Migration.

SO

→ Enstrophy Jet Velocity?!

Enstrophy Jet Velocity vs Amplitude and ZF Damping



- Now familiar trends
- Seems semi-quantitatively consistent with Cope results.

Summary - Drift Wave Turbulence

- → Spreading fluxes mapped in forcing, ZF damping parameter space
- → Dimits-like regime discovered. Fixed ZF pattern.
- → ZF quenching intimately linked to spreading
- \rightarrow P_{Re} > 0 bursts track breakdown of Dimits regime and onset turbulent mixing Spreading increases.

→General Summary

- → Coherent structures dipoles frequently mediate spreading
- ←→ underpin "ballistic scaling"
- → Spreading dynamics non-diffusive; Conventional wisdom misleading, or worse.
- → In DWT, wave propagation and turbulent mixing both drive spreading
- → ZF quenching critical to spreading in DWT. Power coupling most useful to describe ZF quench.
- → Closely related to jet migration.

→ Future Plans

- High resolution studies
- Understand ZF quenching physics and calculate power recoupling-general case, GK formulation?
- What is physics of P_{Re} >0 bursts? shedding?
- Spreading in Avalanching. Relative Efficiency? Spreading and Transport? Flux-driven H-W System. Potential Enstrophy Flux!?

More general:

- Is spreading mechanism universal? Seems unlikely
- Towards a model, models… Ku~1 is an interesting challenge
- Relation/connection of DW+ZF spreading and Jet Migration (L. Cope)
- Is Directed Percolation of any use in this?
 Ideas, Approaches-yes?! Details-??