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Near-Marginal Systems
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Near-Marginal 
● Weak turbulence

○ E ⨯ B convective cells and magnetic islands 
excited but not strongly overlapping. 

→ Instabilities are excited but not so strong as to 
produce large transport.
 
Characteristic of Stiff profiles
● I.e., Profiles that adopt roughly the same shape 

regardless of the applied heating and fueling 
profiles

Idomura, 
2009

Kosuga, 2021

Near-marginal plasmas can sometimes naturally 
evolve towards a globally organized critical state of 
micro-barriers and strong avalanche-like transport.



E ⨯ B Staircase
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E ⨯ B staircase current subject in M.F.E

Suggested ideas:
● E ⨯ B shear feedback, predator-prey

○ Zonal flows predator and turbulence 
intensity prey

● Jams

Some Questions
● How does staircase beat homogenization?
● Is the staircase a meta-stable state?
● What is the minimal set of scales to recover layering?

Context: Flat spots of high transport and nearly vertical 
layers acting as mini-barriers coexist. In plasmas, avalanches 
happen in flat spots and shear layers due to zonal flows 
occur in the areas of mini-barriers.

Yellow and black colors are a rapid transition of 
the direction of flows around peaks in turbulence 
drive. 

Dif-Pradalier, 
2017

KSTAR

Choi, 2022

Jet like patterns in δT/<T> image correspond 
to staircase corrugations



Conventional Wisdom
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Two ideas from self-organization that can explain the E⨯B staircase are E⨯B shear feedback and jams.

Useful to view DW turbulence and ZF as separate 
populations, which interact via a “predator-prey” 
feedback loop:

● DW (the prey) grow due to the gradient 
(instability) drive, while ZF (the predator) 
“feed” upon the DW population by Reynold 
stresses.

For jams, it is useful to draw inspiration from traffic flow 
theory (Key element: time delay)

● A driver’s early reaction maintains smooth traffic, 
while longer reaction triggers jams.

● For flux driven turbulence, heat flux jams occur when 
there is sufficient time delay between temperature 
modulations and local heat flux. 

○ Leads to growth of shock trains…

Zonal 
Flow

Turbulence

Kosuga, 2013



FCA Problem
(another way to get a Staircase)
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But… is there an even simpler physical mechanism 
that can produce layering? 
Answer: Yes (e.g., pattern of cells)



FCA Problem (similar to E ⨯ B convection)
Transport of particle between non-overlapping or marginally overlapping cells (characteristic 
of near marginal) is an important topic in fusion plasma.
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Overlapping case: particles can transport directly from cell to cell, wandering along streamlines

Nearly-overlapping case (cells sit at near overlap): transport is a synergy of motion due to cells and 
random kicks (Collisional diffusion, ambient scattering) thru gap regions.

The transport over gap is random kicks 
(ambient diffusion): collisions, 
micro-turbulence. 

Characteristic of near marginal.

Coexistence of:
~ Fast transport - Mixing in cell
~ Slow transport - Kicks between cells

N.B.: “Profile stiffness” → Cells near overlap
   → Rapid increase in transport prevents strong overlap



What of Interest?
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● Relevant to key question of “near marginal stability”

→ Representative of state in marginal stability.
● Stiff systems hovering near threshold (relevant 

question) 
→ Natural candidate to near marginal stability!

● Zonal (mean) flows
● similarities SOC (fronts, spreading,...)
● Staircases

Back-of-Envelope Calculation
D* ≈ factive((Δx)² / Δt); 

factive ≡ active fraction ~ δ / ℓₒ
Δt ~ ℓₒ / vₒ → cell circulation time

So, δ² ~ D Δt ~ D ℓₒ / vₒ
D* ~ [(D ℓₒ / vₒ)½1 / ℓₒ] (ℓₒ² / ℓₒ) vₒ ~ [D Dcell]

½ 
~ D Pe½ 

Transport? Answer: Deff ~ D Pe½ {Not a simple addition of process!} 
→ Two time rates: τH=d / v (fast), τD=d² / D (slow)
→ Pe = v d / D  >>  1

Profile?
Consider concentration of injected dye (passive scalar transport in 
eddys) → profile

Consider a general case of a system of eddies not overlapping but tangent → Staircase



“Steep transitions in the density exist 
between each cell.”

Rosenbluth et. al. ‘87

Relevant to key question of “near 
marginal stability”

FCA → Staircase! 
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→ Layering!
→ Simple consequence of two rates
→ “Rosenbluth Staircase”

● Staircase arises in stationary array of passive 
eddies (Note that there is no FEEDBACK)

● Global transport hybrid:
→ fast rotation in cell
→ slow diffusion in boundary layer

● Irreversibility localized to inter-cell boundary.

Important:

Staircase arises in an array of 
stationary eddies!

Profile?
Consider concentration of injected dye (passive scalar transport in 
eddys) → profile

BUT, this setup is 
contrived, NOT 
self-organized!!!
Cellular array is 
severely constrained!

What about the dynamics of 
a less constrained cell array 
(i.e., vortex array with 
fluctuations) ?



Relaxing FCA with FVA 
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Consider a Broader Approach
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● We want to study a much more general and less constrained version of the cell array.
○ Consider a vortex array with fluctuations; jitters.

● How resilient is the staircase in the presence of these small variations to a fixed vortex array? 

In the process of studying the resilience of the 
staircase, we aim to answer the following:
1. What happens to interspersed regions of 

strong scalar concentration mixing as 
cells relax? What about general cell 
interactions/behavior?

2. What is the behavior of the scalar 
trajectory through the VA?

3. How does the increase of scattering in 
the VA affect the transport of scalar 
concentration? 

Example of less constrained cell array

To answer these questions, we use the idea of 
a Melting Vortex Crystal… 



Fluctuating Vortex Array

→ We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 
2010),
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→ The fluctuating flow structure is created by slowly increasing the Reynolds number in the NS equation 

→ By increasing the Reynolds number this modifies the forcing and drag term, thus, scattering the vortex 
array. The resilience of the staircase is studied by increasing disorder in the vortex crystal through F⍵  

→ The “vortex array” is simply the array of cells and “fluctuation” is related to turbulence induced 
variability in the structure. The fluctuating vortex array (FVA) allows us to study a less constrained version 
of the array! Improved model of cells near marginality.

The streamfunction, ψ, at different evolutionary stages of the “fluctuating” vortex array is inserted into 
the passive scalar equation to study the resilience of the staircase structure.

Why are we doing this? We know that a system with two disparate time scales forms a staircase!
● Now consider fluctuations… → Will staircase survive?
Vortex array is an alternative way to view convection cells!



What Happens to Staircase?
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The Staircase
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● For a weakly FVA we get a baseline staircase structure. 
● On the left figure the blue and red box correspond to the blue and red 

plot line on the right. Note that steps are evenly spaced!
○ Both blue and red average scalar concentration have the same 

profile in stable stage.

x’

x’ x’

y’

y’

Example of baseline staircase structure!

So what happens to 
the staircase if we 
increase the Reynolds 
number in the VA?



Staircase Resiliency to Fluctuations
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● As we increase fluctuations in VA through Ω, we can see merger/connections of vortex 
structures in the flow. 

● These vortex mergers are shown in the scalar profile plot as mergers in steps. 
→ As we increase jittering, staircase steps merge together.  

x’

x’ x’

y’

y’



Behaviour of Staircase as Cells Fluctuate
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● To quantify the different stages of the fluctuating 
process, we look at the curvature & step length in 
scalar concentration. 

● In general, as we increase Ω, the curvature 
decreases. 

○ Steps are starting to merge together as we 
increase Ω, thus scalar profile has less curvature. 

Main Point: Despite that vortex 
array becoming more turbulent, the 
staircase structure does not collapse. 

● Staircase steps become less 
regular. They merge into 
longer steps.



The Scalar Field
(transport in the FVA)



                           The Web
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Λ = mean sq. vorticity - mean sq. shear

Before the staircase structure forms, scalar concentration field 
forms a “web”:

● Scalar flows quickly in regions of strong shear and 
around vortices! 

○ Staircase barriers form first! Scalar travels along 
cell boundaries.

○ Overtime, vortex entrains scalar by a kind of 
“homogenization” process via the synergy of 
differential rotation and diffusion.

What does this mean for 
scalar front propagation?

General idea: 
Imaging of turbulence 
in near-marginal state



Trajectory in Scattered VA → How Avalanches Propagate
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Scalar concentration travels fast along areas of strong shear (Λ<0)
● Using Okubo-Weiss field, we can connect regions of strong 

shear to their nearest strong shear neighbor.
● Path can be mapped to scalar concentration contour to show that 

indeed scalar travels along areas of strong shear.
○ Distance travel can be quantified. 

Idea relevant here is the least time criterion. As the vortex array 
fluctuates, the path of least time would increase in length.

In addition to distance travel, we also quantify the time scalar takes to 
travel from one end to the other using a pulse train.

● As the scalar concentration gets injected into the flow, a 
flamelet network pattern forms (Pocheau 2008).
○ Fingers propagate through array. Over time, the scalar 

slowly enters the vortex structures. 
The scattering of vortices leads to an overall decrease in scalar 
concentration velocity! Agrees with least time criterion (similar idea to 
scattered path of light in atmosphere).

● Staircase curvature and scalar velocity are proportional.



Transport in FVA
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As cells fluctuate, the effective diffusivity deviates but 
remains close to the Rosenbluth effective diffusivity.

● Note: we fix flow velocity and background 
diffusivity.

○ Only dimensions of cells affect transport.
This suggests that the Rosenbluth effective diffusivity is 
a good approximation even if cells are irregular!

We find that as long as the boundaries and speed of 
the cells are maintained, the effective diffusivity and 
transport does not change.

● Since effective diffusivity is proportional to β 
= dx/dy, only through geometric properties of 
the cells does transport change!

Effective diffusivity increases/decreases if the cells 
length along the gradient (dx) increases/decreases 
compared to the length perpendicular to the gradient 
(dy).



Transport in FVA
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Effective diffusivity increases/decreases if the cells length along the gradient (dx) 
increases/decreases compared to the length perpendicular to the gradient (dy).
● Cells on average remain around β ~ 1, but there are cells that are larger in size 

due to cell mergers which cause the deviation of the effective diffusivity. 



Summary
● Staircase form and are resilient and persistent to increasing Reynolds number (i.e., fluctuating vortex 

array).

● Scalar concentration travels along regions of strong shear creating a “web” structure.
○ IMPORTANT: Staircase barriers form first! Vortex “homogenizes” scalar at a later time!

● The scattering of vortices leads to an overall decrease in scalar concentration velocity.
○ Agrees with least time criterion. 

● If flow velocity and background diffusion are kept fixed, only cell geometric properties affect the 
effective diffusivity! (D* ∝ D Pe1/2)

○  Effective diffusivity of the perturbed VA does not deviate significantly!



Why would a fusion experimentalist care about this?
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These results have interesting implications for experiment and theory:
1. Effective diffusivity derived by Rosenbluth et al (for fixed cellular array) is a suitable approximation 

for the fluctuating cellular array (not simple addition: D* = D0 + Dcell).
○ Relevant to cells touching (similar to what we find near-marginal stability).

2. Staircase structure is resilient in the regime of low-modest Reynolds numbers (this regime is relevant 
to drift-wave turbulence).

○ Structures/Profiles are not exotic.
■ Staircase profile structure does not require special tuning.

3. Geometry of streamlines is important. If more saddles than close vortices, Heat avalanches will first 
form the staircase barrier.

○ Fluctuating cellular flow hinders avalanche propagation.

IMPORTANT: We can test the 
theory presented here with actual 
experimental data.



                 LAPD Experiment
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A vortex array can be created in the large linear 
magnetized plasma device (LAPD)

● Modification of a cathode plasma source 
with designer masks that form multiple 
current channels in a cellular pattern → form 
staircase!

○ Experiment will be conducted in the 
afterglow phase of the main discharge.

● Staircase structure can be subject to 
controllable amount of of low frequency 
density fluctuations, which act as a noise 
source.

○ Allow us to test hypotheses and 
models of staircase resiliency!

Results of experiment will yield a unique set of 
observations that can be used to test staircase 
models.

Experiment happening July 2023!

Sydora,
Frontiers Proposal 
2022



Thank you!
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