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I. Motivation

There is an apparent drawback of amplitude modulation analysis:

*The structure of the generated ZF is sensitive to the seed ZF(i.e., initial condition).

 **So far such models have not explained the spatial distribution of ZF, which is 
crucial to understanding avalanche dynamics.

In other words, a deeper understanding of ZF physics in Tokamak requires an expanded 
framework that can describe the global dynamical process of the ZF generation.  
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ZF generation based on global phase modulation mechanism can overcome the drawbacks of 
amplitude modulation models.  

⇓



The general logic:

I. Motivation

Zonal flow is a meso-scale structure, while drift wave is a micro-scale structure.  

An essential step of generating zonal flow by drift waves is the global coupling of 
these micro-structures. 

⬇

⬇
Toroidal coupling  provides a mechanism of global coupling of the local structures!

A natural question: how toroidal coupling induces macro/meso-scale dynamics of the 
local structures? 

Answer in this work: via phase coupling!

note: In modulational analysis, it is the seed ZF that induces the nonlocal(in space) coherence of the local 
structures, which in turn amplifies the seed ZF. Thus, the long range coherence is not induced in an 
intrinsic way.
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How does phase patterning drives ZF??

∂
∂t

V =∑m ∂x
2φm ∂yφm

* − γ d 〈V 〉 ! ∂x
2Φ∂yΦ

* − γ d V

‘spiky’ distribution of the local 
structures. At each rational surface, we 

only keep the resonance mode.

−γ d V  represents a ZF friction term. 

Zonal flow evolution 

vorticity flux

〈∂x
2Φ∂yΦ

*〉 = ky ∂x S∂x Φ
2 + ky Φ

2 ∂x
2S

turbulence-intensity 
inhomogeneity

phase  
curvature  

∂
∂t

V = ky ∂x S∂x Φ
2 + ky Φ

2 ∂x
2S − γ d V➠

Note: ZF is driven by radial coherence of the micro-structures, we replaced      by its envelope       φ Φ.
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 II. Reynolds’ force driven by global phase curvature

Φ = Φ eiS ⇒

Phase curvature can drive a net vorticity flux!
⇓



2ω̂ deφm = ρscs
R0

ky φm+1 +φm−1( )+ kx φm+1 −φm−1( )⎡⎣ ⎤⎦

III. From linear coupled phase lattice to global phase continuum

Eikonal equation of the phase
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where hVi is the poloidally averaged zonal flow velocity,
hvxvyi is the Reynolds’ stress (x–radial direction,
y-poloidal direction) and γd is the ZF friction coefficient.
v ¼ −∇ϕ × ẑ is the E × B drift velocity with ϕ the
velocity stream function and proportional to the electro-
static potential. For simplicity, we take the toroidal mode
number n as fixed. After Fourier transformation in the
poloidal direction, each poloidal mode can be written as
ϕm ¼ jϕmjeiSmþimθ with Sm ¼ Smðx; tÞ the eikonal phase of
mode m. In a toroidally confined plasmas, the amplitude of
each poloidal harmonic mode peaks at or near its associated
rational surface and is coupled with its neighbors via the
toroidicity of the magnetic field. Thus, a quasiperiodic
“chain” (i.e., quasilattice) is formed, with each m corre-
sponding to the radial position of a particular resonant
surface (Fig. 1). A collective global oscillation can emerge
due to couplings of the local harmonics [16]. To explore the
global phase dynamics in this lattice, the global phase
function (S̄) is obtained by taking the continuum limit of
the phase lattice (Fig. 1), so one has Smðx; tÞ ¼ S̄þ ~s. ~s is
the local phase, associated with each drift wave and
∂x ~s ¼ kx is the local radial wave number of the drift wave.
Using the eikonal representation, ϕm can be written as
ϕm ¼ jϕmjeiS̄þi~sþimθ. The Reynolds’ stress at the resonance
surface xm then follows as

hvxvyi ¼ 2
X

m0

k0yk0xIðm0Þ þ 2
X

m0

k0yIðm0Þ ∂
∂x S̄; ð2Þ

where Iðm0Þ≡ jϕm0 j2=2 is the intensity of the turbulence.
ky is the poloidal wave number and is set by fast, small
scales. In the continuum limit, ky can be understood as a
continuous function of the radial position. ∂xS̄ can then be
moved out of the summation, since ∂xS̄≃ ∂xS̄jx¼xm . For the
first term to contribute, inhomogeneity of the turbulence
intensity spectrum is required. In amplitude modulational
stability, it is the seed ZF shear that modulates the
turbulence intensity, inducing long range coherence of
the turbulence, and hence, inhomogeneity of the
Reynolds’ stress. Note that since, after a reflection
m → −m, ky and S̄ flip sign simultaneously, the second

term in Eq. (2) is nonzero. So, we see that the global phase
gradient can induce a finite cross correlation between vx
and vy and hence, a finite Reynolds’ force if the global
phase curvature is nonzero. Note that this is the case even if
the turbulence is homogeneous. In other words, global
phase curvature induces a frequency modulation mecha-
nism, which is fundamentally different from the familiar
amplitude modulation. One should note that Eq. (2) gives a
general result for how the global phase pattern influences
turbulent momentum transport. Using the spiky distribution
and quasitranslation invariance (i.e., kx ≃ k0x) approxima-
tions at rational surfaces xm, we need only consider
contributions from the locally resonant mode m, i.e.,P

m0 …≃P
m0 δmm0…. Thus, Eq. (1) takes the form

∂
∂t hVi≃ 2kykx

∂
∂x I þ 2ky

∂
∂x I

∂
∂x S̄þ 2kyI

∂2

∂x2 S̄ − γdhVi:

ð3Þ

Note: the summation of the first three terms on the rhs is the
total Reynolds’ force and can be written in a conservative
form, ∂xð2kykxI þ 2kyI∂xS̄Þ. The first term is the ZF
acceleration driven by inhomogeneity of the turbulence
intensity, which is the most familiar and frequently involved
mechanism. The second term is due to the combined effects
of turbulence intensity inhomogeneity and the global phase
gradient. The third term is ZF acceleration by global phase
curvature. This contributes even when the turbulence inten-
sity is homogeneous; i.e., the global phase curvature itself
can still induce a finite Reynolds’ force and drive a ZF from
zero. This new ZF drive mechanism is the most significant
discovery of this Letter.
Focusing on this new mechanism, we consider ZF

evolution when we assume the turbulence intensity to be
homogeneous. The space-time structure of the turbulence
intensity and its relation to global phase patterning are
addressed later. ZF evolution driven by the global phase
curvature follows as

∂
∂t hVi ¼ 2kyI

∂2

∂x2 S̄ − γdhVi: ð4Þ

To understand the mechanism of the formation of the
global phase curvature, one needs to describe global phase
evolution. A general way to obtain the global phase
equation is by the eikonal equation

∂
∂t S ¼ −ω − k · ~v; ð5Þ

where ω ¼ ωk þ 2ω̂De þ kyhVi is the total linear fre-
quency, including its eigenfrequency (ωk), magnetic drift
frequency (2ω̂De), and the Doppler shift by the ZF. k · ~v is
the stochastic Doppler shift by the underlying turbulence.
With k ¼ ∇~s, k · ~v can be rewritten as k · ~v ¼ ∇ · Γs,

FIG. 1. Red: phase lattice; dashed black: continuous limit of the
phase lattice.
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where hVi is the poloidally averaged zonal flow velocity,
hvxvyi is the Reynolds’ stress (x–radial direction,
y-poloidal direction) and γd is the ZF friction coefficient.
v ¼ −∇ϕ × ẑ is the E × B drift velocity with ϕ the
velocity stream function and proportional to the electro-
static potential. For simplicity, we take the toroidal mode
number n as fixed. After Fourier transformation in the
poloidal direction, each poloidal mode can be written as
ϕm ¼ jϕmjeiSmþimθ with Sm ¼ Smðx; tÞ the eikonal phase of
mode m. In a toroidally confined plasmas, the amplitude of
each poloidal harmonic mode peaks at or near its associated
rational surface and is coupled with its neighbors via the
toroidicity of the magnetic field. Thus, a quasiperiodic
“chain” (i.e., quasilattice) is formed, with each m corre-
sponding to the radial position of a particular resonant
surface (Fig. 1). A collective global oscillation can emerge
due to couplings of the local harmonics [16]. To explore the
global phase dynamics in this lattice, the global phase
function (S̄) is obtained by taking the continuum limit of
the phase lattice (Fig. 1), so one has Smðx; tÞ ¼ S̄þ ~s. ~s is
the local phase, associated with each drift wave and
∂x ~s ¼ kx is the local radial wave number of the drift wave.
Using the eikonal representation, ϕm can be written as
ϕm ¼ jϕmjeiS̄þi~sþimθ. The Reynolds’ stress at the resonance
surface xm then follows as

hvxvyi ¼ 2
X

m0

k0yk0xIðm0Þ þ 2
X

m0

k0yIðm0Þ ∂
∂x S̄; ð2Þ

where Iðm0Þ≡ jϕm0 j2=2 is the intensity of the turbulence.
ky is the poloidal wave number and is set by fast, small
scales. In the continuum limit, ky can be understood as a
continuous function of the radial position. ∂xS̄ can then be
moved out of the summation, since ∂xS̄≃ ∂xS̄jx¼xm . For the
first term to contribute, inhomogeneity of the turbulence
intensity spectrum is required. In amplitude modulational
stability, it is the seed ZF shear that modulates the
turbulence intensity, inducing long range coherence of
the turbulence, and hence, inhomogeneity of the
Reynolds’ stress. Note that since, after a reflection
m → −m, ky and S̄ flip sign simultaneously, the second

term in Eq. (2) is nonzero. So, we see that the global phase
gradient can induce a finite cross correlation between vx
and vy and hence, a finite Reynolds’ force if the global
phase curvature is nonzero. Note that this is the case even if
the turbulence is homogeneous. In other words, global
phase curvature induces a frequency modulation mecha-
nism, which is fundamentally different from the familiar
amplitude modulation. One should note that Eq. (2) gives a
general result for how the global phase pattern influences
turbulent momentum transport. Using the spiky distribution
and quasitranslation invariance (i.e., kx ≃ k0x) approxima-
tions at rational surfaces xm, we need only consider
contributions from the locally resonant mode m, i.e.,P

m0 …≃P
m0 δmm0…. Thus, Eq. (1) takes the form

∂
∂t hVi≃ 2kykx

∂
∂x I þ 2ky

∂
∂x I

∂
∂x S̄þ 2kyI

∂2

∂x2 S̄ − γdhVi:

ð3Þ

Note: the summation of the first three terms on the rhs is the
total Reynolds’ force and can be written in a conservative
form, ∂xð2kykxI þ 2kyI∂xS̄Þ. The first term is the ZF
acceleration driven by inhomogeneity of the turbulence
intensity, which is the most familiar and frequently involved
mechanism. The second term is due to the combined effects
of turbulence intensity inhomogeneity and the global phase
gradient. The third term is ZF acceleration by global phase
curvature. This contributes even when the turbulence inten-
sity is homogeneous; i.e., the global phase curvature itself
can still induce a finite Reynolds’ force and drive a ZF from
zero. This new ZF drive mechanism is the most significant
discovery of this Letter.
Focusing on this new mechanism, we consider ZF

evolution when we assume the turbulence intensity to be
homogeneous. The space-time structure of the turbulence
intensity and its relation to global phase patterning are
addressed later. ZF evolution driven by the global phase
curvature follows as

∂
∂t hVi ¼ 2kyI

∂2

∂x2 S̄ − γdhVi: ð4Þ

To understand the mechanism of the formation of the
global phase curvature, one needs to describe global phase
evolution. A general way to obtain the global phase
equation is by the eikonal equation

∂
∂t S ¼ −ω − k · ~v; ð5Þ

where ω ¼ ωk þ 2ω̂De þ kyhVi is the total linear fre-
quency, including its eigenfrequency (ωk), magnetic drift
frequency (2ω̂De), and the Doppler shift by the ZF. k · ~v is
the stochastic Doppler shift by the underlying turbulence.
With k ¼ ∇~s, k · ~v can be rewritten as k · ~v ¼ ∇ · Γs,

FIG. 1. Red: phase lattice; dashed black: continuous limit of the
phase lattice.

PRL 117, 125002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

16 SEPTEMBER 2016

125002-2

eigenfrequency magnetic drift coherent Doppler shift

with φm ! Φm e
iS(m,x,t )

strong coupling 
 approximation ⇓

where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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III. From linear coupled phase lattice to global phase continuum
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Global phase evolution equation

where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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Global phase gradient evolution equation

where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.

PRL 117, 125002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

16 SEPTEMBER 2016

125002-3

Shock layer large global phase curvature ZF layer



10

Width of  ZF  layer

Balance of steepening                        and broadening 

where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
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#
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þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
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2kyVD − kyVDΔ2
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þ 2kxVDΔ
∂
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ϕm:
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Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2
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where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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PDF of ZF layers is determined by the PDF of global phase gradient shocks

∂
∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −
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Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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power law tail by the 
 intermittency of shocks

(A. chekhov&V. Yakhot1995)

➠

∂
∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
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∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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IV. Feedback of ZF shear on global phase evolution

ZF feedback effect is most prominent at the ‘shoulders’ of phase shocks, where ZF shearing is strong. 

Then, global phase gradient evolution is governed by 

∂
∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields
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After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
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Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
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!
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∂
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"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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V. Towards to an expanded Predator-Prey system

13

∂
∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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where hVi is the poloidally averaged zonal flow velocity,
hvxvyi is the Reynolds’ stress (x–radial direction,
y-poloidal direction) and γd is the ZF friction coefficient.
v ¼ −∇ϕ × ẑ is the E × B drift velocity with ϕ the
velocity stream function and proportional to the electro-
static potential. For simplicity, we take the toroidal mode
number n as fixed. After Fourier transformation in the
poloidal direction, each poloidal mode can be written as
ϕm ¼ jϕmjeiSmþimθ with Sm ¼ Smðx; tÞ the eikonal phase of
mode m. In a toroidally confined plasmas, the amplitude of
each poloidal harmonic mode peaks at or near its associated
rational surface and is coupled with its neighbors via the
toroidicity of the magnetic field. Thus, a quasiperiodic
“chain” (i.e., quasilattice) is formed, with each m corre-
sponding to the radial position of a particular resonant
surface (Fig. 1). A collective global oscillation can emerge
due to couplings of the local harmonics [16]. To explore the
global phase dynamics in this lattice, the global phase
function (S̄) is obtained by taking the continuum limit of
the phase lattice (Fig. 1), so one has Smðx; tÞ ¼ S̄þ ~s. ~s is
the local phase, associated with each drift wave and
∂x ~s ¼ kx is the local radial wave number of the drift wave.
Using the eikonal representation, ϕm can be written as
ϕm ¼ jϕmjeiS̄þi~sþimθ. The Reynolds’ stress at the resonance
surface xm then follows as

hvxvyi ¼ 2
X

m0

k0yk0xIðm0Þ þ 2
X

m0

k0yIðm0Þ ∂
∂x S̄; ð2Þ

where Iðm0Þ≡ jϕm0 j2=2 is the intensity of the turbulence.
ky is the poloidal wave number and is set by fast, small
scales. In the continuum limit, ky can be understood as a
continuous function of the radial position. ∂xS̄ can then be
moved out of the summation, since ∂xS̄≃ ∂xS̄jx¼xm . For the
first term to contribute, inhomogeneity of the turbulence
intensity spectrum is required. In amplitude modulational
stability, it is the seed ZF shear that modulates the
turbulence intensity, inducing long range coherence of
the turbulence, and hence, inhomogeneity of the
Reynolds’ stress. Note that since, after a reflection
m → −m, ky and S̄ flip sign simultaneously, the second

term in Eq. (2) is nonzero. So, we see that the global phase
gradient can induce a finite cross correlation between vx
and vy and hence, a finite Reynolds’ force if the global
phase curvature is nonzero. Note that this is the case even if
the turbulence is homogeneous. In other words, global
phase curvature induces a frequency modulation mecha-
nism, which is fundamentally different from the familiar
amplitude modulation. One should note that Eq. (2) gives a
general result for how the global phase pattern influences
turbulent momentum transport. Using the spiky distribution
and quasitranslation invariance (i.e., kx ≃ k0x) approxima-
tions at rational surfaces xm, we need only consider
contributions from the locally resonant mode m, i.e.,P

m0 …≃P
m0 δmm0…. Thus, Eq. (1) takes the form

∂
∂t hVi≃ 2kykx

∂
∂x I þ 2ky

∂
∂x I

∂
∂x S̄þ 2kyI

∂2

∂x2 S̄ − γdhVi:

ð3Þ

Note: the summation of the first three terms on the rhs is the
total Reynolds’ force and can be written in a conservative
form, ∂xð2kykxI þ 2kyI∂xS̄Þ. The first term is the ZF
acceleration driven by inhomogeneity of the turbulence
intensity, which is the most familiar and frequently involved
mechanism. The second term is due to the combined effects
of turbulence intensity inhomogeneity and the global phase
gradient. The third term is ZF acceleration by global phase
curvature. This contributes even when the turbulence inten-
sity is homogeneous; i.e., the global phase curvature itself
can still induce a finite Reynolds’ force and drive a ZF from
zero. This new ZF drive mechanism is the most significant
discovery of this Letter.
Focusing on this new mechanism, we consider ZF

evolution when we assume the turbulence intensity to be
homogeneous. The space-time structure of the turbulence
intensity and its relation to global phase patterning are
addressed later. ZF evolution driven by the global phase
curvature follows as

∂
∂t hVi ¼ 2kyI

∂2

∂x2 S̄ − γdhVi: ð4Þ

To understand the mechanism of the formation of the
global phase curvature, one needs to describe global phase
evolution. A general way to obtain the global phase
equation is by the eikonal equation

∂
∂t S ¼ −ω − k · ~v; ð5Þ

where ω ¼ ωk þ 2ω̂De þ kyhVi is the total linear fre-
quency, including its eigenfrequency (ωk), magnetic drift
frequency (2ω̂De), and the Doppler shift by the ZF. k · ~v is
the stochastic Doppler shift by the underlying turbulence.
With k ¼ ∇~s, k · ~v can be rewritten as k · ~v ¼ ∇ · Γs,

FIG. 1. Red: phase lattice; dashed black: continuous limit of the
phase lattice.
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Summary

14

Global phase curvature can drive a ZF in the absence of turbulence intensity inhomogeneity.

Width of phase-curvature driven ZF scales as                               and its PDF LZF !
R
a
ρs

∂
∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

!
Ds

∂2

∂X2
− γd

" ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

!
DTI

∂
∂x I

"
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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Including global phase evolution, an expanded PP system is reached: ZF, turbulence 
intensity&phase. 


