
Modelling Enhanced Confinement in Drift-Wave Turbulence

R. J. Hajjar, P. H. Diamond, A. Ashourvan and G. R. Tynan

The results of modeling studies of an enhanced confinement in the drift wave turbulent

plasma of the CSDX linear device are presented. The mechanism of enhanced confinement is

investigated here using a reduced 1D, time-dependent model, which illustrates the exchange

of enstrophy between two disparate scale structures: the mesoscale flow and profile, and the

turbulence intensity fields. Mean density, mean vorticity and turbulent potential enstrophy

are the variables for this model. Total potential enstrophy is conserved in this model. Vorticity

mixing occurs on a scale length related to an effective Rhines’ scale of turbulence, and shrinks

as both density and vorticity gradients steepen. Numerical results obtained from solution

of the model agree well with the experimental data from CSDX showing: i) a steepening of

the mean density profile, indicating a radial transport barrier formation ii) the development

of a radially sheared azimuthal flow velocity that coincides with the density steepening

and initiates a turbulence quench and iii) negative Reynolds work values, indicating that

fluctuations drive the shear flow. These observations as the magnitude of the magnetic field

B increases, are recovered using purely diffusive expressions for the vorticity and density

fluxes. A new dimensionless turbulence parameter RDT -defined as the ratio of the integrated

potential enstrophy transfer from turbulence to the flow, to the integrated potential enstrophy

production due to relaxation of the density gradient-is introduced as a turbulence collapse

indicator that detects when the enhanced confinement state is triggered.
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I. INTRODUCTION

Turbulent phenomena and their evolving properties in fluids are topics of both classical and

current significance. Of particular interest are the spectral features and transport properties of

turbulence in magnetized plasmas. Density and temperature gradients, typically present near

the edges of large scale magnetically confined devices, generate fluctuations that give rise to fully

developed drift wave (DW) instabilities. Such instabilities carry fluxes via cross-field transport and

limit the energy confinement time τE [1, 2]. Suppression of these instabilities and reduction of the

cross-field transport rates are therefore essential requirements for achieving enhanced confinement,

in ITER and future tokamaks.

One way the plasma itself mitigates cross-field transport rates is via fluctuation driven zonal

flows (ZF). In laboratory plasmas, zonal flows are strongly sheared E×B layers. Generated via

Reynolds stresses and particle transport, zonal flows arise when low-frequency drift modes interact

by modulational instability or via an inverse cascade, to form a large scale anisotropic structure.

The direct relation between microscale drift waves and macroscale zonal flows has been already

well established both theoretically [3] and experimentally [4, 5], so much so that the system is now

referred to as ”drift wave-zonal flow turbulence” (see ref.[6] for a detailed review).

Interaction between separate components of the DW-ZF turbulence is found to affect the

turbulent transport dynamics. Experimental studies in both linear and toroidal devices show that

the state of turbulence changes with on the magnetic field (CSDX)[7, 8], the filling gas pressure

(LMDU)[9] and the radial electric field (KIWI)[10]. Shearing of the DW structures leads to an

energy transfer between low frequency fluctuations and vortices with finite azimuthal mode numbers,

including m ∼0 zonal flows. This coupling initiates a process of depletion of the fluctuations energy,

which may continue to the point of the collapse of the turbulence intensity. When sufficient heat

source, torque and fueling are available, a thermally insulation layer, supported by a strongly

sheared E×B flow is formed. A transport barrier is thus created and an enhanced confinement

regime occurs [11–13]. The concept of shear enhanced turbulence decorrelation was proposed

nearly three decades ago [14, 15]. Since then, several variations on the theme of predator-prey

model describing the interplay between turbulent fluctuations and E×B sheared flows have been

suggested to explain the plasma evolution towards an enhanced confinement state in fusion devices

like TJ-II [16], NSTX [17] and EAST [18]. Moreover, net inward fluxes would often accompany this

transition, as it was observed in various toroidal [19, 20] and small scale linear devices [21–23].

In CSDX, early observations showed a controlled transition from nonlinearly coupled eigenmodes



3

to fully developed broadband turbulence in the plasma, as the magnitude of B is increased [24].

Recent studies revealed the existence of an enhanced regime at B = 1200G, associated with a

steepening of the mean density profile, the development of a strong velocity shearing and turbulent

kinetic energy coupling to the flow. An inward particle flux as well as a change in the global and

local turbulence features were also observed [25, 26].

FIG. 1: Experimental plasma profiles at different magnetic field values. Reprinted with permission
from Cui et al., Physics of Plasmas, 22, 050704 (2015). Copyright 2015 AIP Publishing. [25]

We present a reduced 1D transport model that describes the space-time evolution of turbulence

and mean fields in the turbulent plasma conditions of CSDX. The model is formulated in terms of

potential vorticity dynamics, and conserves total potential enstrophy [27]. All evolution is expressed

in terms of the particle and vorticity fluxes. Flux nonlinearity enters via a gradient dependent

mixing length, and the vorticity flux includes both a diffusive and a residual component. The

model recovers profile evolution in CSDX with increasing B, without the need to include an explicit

inward particle pinch in the expression for the particle flux. This evolution corresponds to: i)

steepening of the mean density profile as a signature of a enhanced confinement ii) the development

of a radially sheared azimuthal flow velocity that triggers the transition to an improved energy

confinement state and iii) negative Reynolds work values indicating that energy is transfered to

flow as the system self-organizes. We mention here that the Reynolds work sign convention used in

ref.[25, 26] is opposite to the one adopted here; a positive Reynolds work in ref.[25, 26] indicates a

turbulence decay and a zonal flow drive. The model can also be used to study the effects of other
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factors on the dynamics of this global transition. These factors include: presence of a thin layer of

neutrals around the plasma, variations of the plasma ion fueling intensity S and of the macroscopic

turbulent mixing length l0 to be defined in a subsequent section. The model is used to investigate

the relevant case of a plasma with a high collisional Prandtl number: Pr = νc/Dc.

The remainder of this paper is organized as follows: Section (II) presents the model, with

a discussion of the corresponding physics and assumptions. This requires an explanation of

the expression for the mixing length lmix, and a review of the physics behind the Rhines’ scale.

Expressions for the density, vorticity and potential enstrophy fluxes and coefficients are also

presented in this section, along with the three spatio-temporal equations of the model. Section (III)

reports on the numerical results obtained when varying the magnitude of the magnetic field. A

diffusive vorticity flux: Π = −χ∇u, where the vorticity u = ∇2Φ, is first used in section (III). A

residual stress Πres is then included in the vorticity flux expression: Π = Πres − χ∇u to assess its

potential role. A set of local and global validation metrics are then presented in Section(IV) in order

to verify that the model truly describes the plasma evolution as it occurs in CSDX. Section (V)

explores the energy exchange between fluctuations and the mean flow and studies time variations

of two parameters; RT already introduced in a previous work [28] and a new parameter RDT ,

derived from this model. Both parameters provide quantitative and qualitative measurements of

this exchange, and serve as turbulence collapse indicators. Conclusions are drawn in section (VI).

II. STRUCTURE OF THE 3-FIELD REDUCED MODEL.

The proposed model investigates space and time variations of the following three fields: the mean

density 〈n〉, the mean vorticity 〈u〉 = 〈∇2Φ〉 and the turbulent potential enstrophy ε = 〈 (ñ−ũ)
2

2 〉. It

is derived from the collisional Hasegawa-Wakatani equations [29, 30]:

(∂t −∇Φ× ẑ.∇)∇2Φ = −c1∇2
‖(Φ− n) + c2∇4Φ (1a)

(∂t −∇Φ× ẑ.∇)(n+ lnn0) = −c1∇2
‖(Φ− n) (1b)

Here c1 = Te/e
2n0ηωci and c2 = µ/ρ2sωci. µ and η are the ion viscosity and plasma resistivity, n0

is the average plasma density, and n and Φ are the normalized fluctuating density and potential.

CSDX plasma being collisional, a modified Hasegawa-Wakatani model can be used to describe

turbulent transport in this device. In addition, LIF measurements in CSDX show that the axial

flow is well within the subsonic limit [31]. Thus, the radial gradient of the parallel velocity reported
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as contributing to an inward particle flux in ref.([32]), does not contribute to such a flux here, as

a parallel shear flow instability simply cannot be triggered [33]. This fact is taken into account

while formulating the model. Our reduced model relies on two related points: conservation of the

total potential enstrophy PE (mean and turbulent) up to dissipation and external forcing, and

inhomogeneous potential vorticity (PV) mixing via vorticity diffusion. This mixing occurs on a

scale lmix that is an interpolation between an excitation scale l0 and the Rhines’ scale of turbulence

lRh. Dynamic dependence of lmix on lRh results from the interaction between the mean fields and

the turbulence structures, and allows the model to capture the internal energy exchange during

this interaction. The Rhines’ scale is inversely proportional to the potential vorticity gradient

∇q = ∇n−∇u, hence lmix has also an inverse dependence on ∇q and shrinks as ∇u and ∇n steepen.

The model uses purely diffusive expressions for the turbulent field fluxes without an explicit pinch

velocity contribution to the particle flux. In fact, local expressions for the fluxes of n, u and ε as

derived using the quasi-linear theory are [34]: Γn = −Dn∇n, Γε = −Dε∇ε and Π = Πres−χ∇u. A

discussion of the diffusion coefficients and the residual vorticity stress is deferred to a later section.

A full derivation of the model is available in ref.[27]. We mention here only the relevant equations:

∂tu = −∂xΠ + µc∇2u (2a)

∂tn = −∂xΓn +Dc∇2n (2b)

∂tε = −∂xΓε + P − ε3/2 − (Γn −Π)(∂xn− ∂xu) (2c)

for mean density n and mean vorticity fields u, as well as for fluctuating potential enstrophy

ε = (ñ/n0 − ρ2s∇2eΦ̃/Te)
2/2. Here, the fields are expanded into a mean and a fluctuating part:

n = 〈n〉+ δn, vE = 〈v〉ŷ + δv, u = 〈u〉+ δu = ∂x〈v〉+ δu. Fluxes of turbulent vorticity, density

and potential enstrophy fluxes are: Π = 〈δvxδu〉, Γn = 〈δvxδn〉 and Γε = 〈δvxδq2〉 respectively.

Turbulent enstrophy is related to the fluctuating potential vorticity δq = δn− δu via: ε = 〈δq2〉/2.

µc and Dc are plasma collisional viscosity and diffusivity, n and Φ are normalized to n0 and Te/e,

space and times scales are normalized to ρs =
√
miTe/eB and 1/ωci = mic/eB.

The first terms of the RHS of eqs.(2a-2c) represent a turbulent diffusive flux or spreading of the

corresponding field. In eq.(2c), P represents the enstrophy production due to an external stirring,

and replaces explicit linear instability which is not treated in this model. Note that in this model

formulation, the forcing serves only to initialize a background turbulence level. It does not represent

the turbulence drive in the steady state. Drive is due to ∇n relaxation, i.e., Γn∇n term in eq.(2c).

The turbulence and transport results are insensitive to the initializing forcing, and we write it as:



6

P =
√
ε(u20 − ε). This form of P reflects generation of enstrophy via external stirring. Other forms

of P ∝ ε are equally valid and generate similar results. Enstrophy dissipation, proportional to ε3/2,

is a direct outcome of the forward enstrophy cascade associated with nonlinear dissipation of ε

at smaller scales. The last term of eq.(2c) is a direct coupling between the vorticity and density

fluctuations, and is interpreted as an internal production of potential enstrophy. As PV mixing

occurs, mean PE values are converted into turbulent ones and vice versa, while total PE is conserved.

Eqs.(2a-2c) constitute a closed system that can be solved numerically once expressions for the field

fluxes are known. Since the model is diffusive, expressions for the diffusion coefficients and the

corresponding mixing length are thus needed.

Although CSDX is a cylindrical plasma, the previous equations are written in a 1D form. This

results from taking the axial and azimuthal average of the density, vorticity and enstrophy fields in

order to obtain the corresponding mean quantities: 〈n(r)〉, 〈u(r)〉 = 〈∇2Φ〉 and 〈ε(r)〉.

A. The mixing length

Central to the formulation of a Fickian flux is the use of a mixing length lmix. In this model

lmix is an interpolation between the external excitation dimension l0 and the Rhines’ scale of

turbulence lRh [35]. The dimension l0 is known from experiment, and thus an investigation of

lmix requires a study of the physics behind the Rhines’ scale. In 3D turbulence, vortex stretching

leads to enstrophy production that drives the fluid energy to smaller scales until it is removed

from the system by viscous dissipation. However, in quasi 2D turbulence, vortex stretching is by

definition inhibited and other nonlinear processes, such as vortex merging, play the prominent

role. In the 2D case, energy undergoes an inverse energy cascade towards larger scales, which

explains the emergence of large scale jets from small scale turbulent structures. As eddies become

bigger, their size increases and their overturning slows, which makes their dynamics much more

wave-like. The Rhines’ scale lRh can be interpreted as a transition length scale between a turbulence

dominated regime and wave-like dynamics [35], and is obtained by balancing the turbulence

characteristic rate, i.e., the eddy turnover rate, with the wave frequency. In a DW system, an

estimate of the eddy turnover rate is: 1/τc ≈ δv/lRh ≈
√
ε, while the drift wave frequency is:

ω ≈ −kyvDe/(1 + k2⊥ρ
2
s) ≈ lRh∇q where vDe is the electron diamagnetic drift velocity. Balancing

these two scales then gives: lRh ≈
√
ε/∇q =

√
ε/∇(n− u).

In our model, l0 and lRh are the two significant length scales of the system. When l0 � lRh, the

vorticity gradient is weak, and the natural estimate of the mixing length is simply the external
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dimension: lmix ∼ l0. This prescription however is not accurate in the case of a strong vorticity

gradient, where ∇q can no longer be neglected. In this case, when the Rhines’ scale is much smaller

than the stirring dimension (lRh � l0), coupling between different scales is stimulated. A reasonable

estimate of the mixing length is then obtained by balancing the mean kinetic energy dissipation

rate and the mean PV gradient frequency [36]. The Rhines’ scale is then the governing spatial

structure for turbulence mixing in these cases of steep PV gradients, generating lmix ∼ lRh. In

between these two limiting cases, one should include the effect of finite drift-Rossby frequency in

lmix. This is achieved by writing lmix as an interpolation between l0 and lRh:

l2mix =
l20

1 + (l0/lRh)2
=

l20
1 + l20(∂x(n− u))2/ε

(3)

B. Expressions for the turbulent fluxes

Expressions for the turbulent density and vorticity fluxes were previously derived using quasi-

linear theory [34]. In the near adiabatic regime in which parallel diffusion timescale is the smallest

characteristic time scale of the system, and in the absence of any shear, the drift wave frequency

is ω? = ωrm = vdkm/(1 + k2⊥) where k2⊥ = −∇2
⊥Φ/Φ. Expressions for the fluxes and the diffusion

coefficients are:

Γn = −Dn∂x〈n〉 (4a)

Π = (χ−Dn)∂x〈n〉 − χ∂2x〈v〉 = Πres − χ∂x〈u〉 (4b)

Dn =
∑
m

k2⊥
1 + k2⊥

k2m
αn
〈δφ2m〉 (4c)

χ =
∑
m

|γm|
|V0 − ωm/km|2

〈δφ2m〉 (4d)

Here the dimensionless electron drift velocity is vd(x) = −d lnn0(x)/dx = χ∇n and the plasma flow

velocity is V0 = 〈v〉. The mode number is m = (m,n,l) with m, n and l being the azimuthal, axial

and radial mode numbers respectively. ωm = ωrm + i|γm| is the mode eigenfrequency, km and k‖

are the azimuthal and parallel wave numbers and αn = ηk2‖ is the parallel diffusion rate.

The residual stress Πres in eq.(4b) originates from a decomposition of the Reynolds stress into a

diffusive and non-diffusive components, and appears when the off-diagonal terms of the poloidal

Reynolds stress does not vanish. This results as a consequence of a symmetry breaking mechanism

in 〈krkθ〉 where 〈. . . 〉 is a spectral average [37, 38]. Physically, Πres converts parts of the diving
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particle flux to an azimuthal flow. Πres is responsible of generation of plasma flows through the

density gradient, even in the absence of any magnetic shear [39]. Using quasi-linear theory, the

residual stress Πres = Γn/n− χvd [34]. In the adiabatic regime, the first term in the expression of

Πres is negligible with respect to the second one, simply because it is proportional to 1/αn and

αn � 1. One can thus label it as the non-adiabatic term. When no flow is present, or when the

flow velocity V0 is constant, the vorticity flux reduces to Πres. Writing Γε = −Dε∂xε and plugging

in the model equations, we obtain the final form for the three field equations:

∂tn = ∂x[Dn∂xn] +Dc∂
2
xn (5a)

∂tu = ∂x[χ∂xu] + µc∂
2
xu− ∂x[Πres] (5b)

∂tε = ∂x[Dε∂xε] + Πres(∂xn− ∂xu)− (χ∂xu−Dn∂xn)(∂xn− ∂xu)− ε3/2 +
√
ε(u20 − ε) (5c)

Eq.(5a-5c) are rearranged and integrated to give:

∫ L

0
∂t(ε+

(n− u)2

2
)dx =

∫ L

0
(P − ε3/2 − ∂xΓε − (Γn −Π)(∂xn− ∂xu) + (n− u)(∂tn− ∂tu))dx

=

∫ L

0
(P − ε3/2)dx

(6)

after neglecting the terms proportional to Dc and µc. This shows that the system conserves total

PE up to forcing and dissipation, as a result of enstrophy exchange between mean fields and

fluctuations. The internal turbulent PE production term is canceled by the corresponding loss term

in the evolution equation for the mean PE as a part of this enstrophy exchange. In view of the total

PE conservation elucidated above, we go back to eq.(3) to emphasize how crucial the expression

for lmix is in closing the feedback loop between the PV gradient and the corresponding diffusion

coefficient: as ∇q = ∇n−∇u steepens, the mean potential enstrophy (n−u)2
2 increases, causing a

drop in turbulent potential enstrophy ε as a result of total PE conservation. When ε decreases,

the mixing length and thus the corresponding PV diffusion coefficient shrink, leading to a further

increase in the PV gradient. Hence a closed feedback loop is generated.
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C. Viscosity and diffusion coefficients

In the near adiabatic regime, the timescale ordering is: ηκ2‖ � ω � V ′0 . Using |k2m〈δφ2m〉| =

|〈δv2m〉| ≈ l2mixε, the particle diffusion coefficient Dn is:

Dn = εl2mix/α (7)

where the resistive parallel diffusion rate α = (1 + k2⊥)αn/k
2
⊥. From dimensional analysis, α is

proportional to
√
ε and the particle diffusion coefficient is: Dn = l2mix

√
ε.

As for the vorticity diffusion coefficient, χ is not dominated by a large resistive parallel diffusion rate.

Unlike the expression for Dn, the denominator of eq.(4d) represents the competition between the

flow shear V ′0 and the wave frequency ω. In the absence of shear, instabilities are density gradient

driven collisional DWs, that are damped by viscous dissipation. Their growth rate is then that of

a drift wave: |γDW | = (ω2
m/αn)(k2⊥/(1 + k2⊥)) = ω2

m/α, reduced by the dissipation rate |γµ|. The

vorticity diffusion coefficient is then:

χ =
∑
m

(|γDW | − |γµ|)|k2m〈δφ2m〉|
ω2
m

=
∑
m

ω2
m
α |k

2
m〈δφ2m〉|
ω2
m

∼ εl2mix
α

When a flow shear V ′0 is present, the vorticity diffusion coefficient χ is reduced, as the net turbulence

correlation time decreases. When incorporating the shear effect into the turbulence correlation

time, 1/α becomes: 1/α ' 1/
√

(k⊥δv)2 + (V ′0)2 ' 1/
√
ε+ q2, reflecting enstrophy generation and

presence of flow shear respectively. The vorticity diffusion coefficient χ then becomes:

χ = εl2mix/
√
ε+ q2 = l2mixε/

√
α2 + cuu2 (8)

Here a coefficient cu reflecting the strength of the shear flow has been added to the expression of χ.

We will show later on that the numerical solutions for this model are insensitive to the parameter

cu. In a stationary regime,
√
ε > q and the vorticity coefficient χ =

√
εl2mix found previously [40]

is recovered. In a strong shear regime where q >
√
ε, the vorticity coefficient is χ = εl2mix/|q|.

Finally, we use the following expression for Dε: Dε = l2mixε/α. We mention here that the model

includes three different time scales: the wave frequency and growth rate inverse time scales ω−1m

and |γ|−1 appearing in the spectral sums of the diffusion coefficients expressions, the correlation or

eddy turnover time ε−1/2 appearing in the enstrophy equation, and a diffusive time scale which

characterizes the evolution of the mean field quantities as a result of turbulent fluxes evolution.
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While the first two are fast time scales, the last one is a slow (diffusive) one.

III. MODEL PREDICTIONS OF PLASMA PROFILES

In order to compare the model predictions to the experimental results obtained from CSDX,

we present in this section the density and vorticity profiles numerically predicted by the model

for different B values. Two forms of vorticity fluxes are considered. First, a diffusive vorticity

form: Π = −∂xu. Then, a residual stress Πres is added to the vorticity flux. The two cases

are then compared to evaluate any potential role of Πres. Before proceeding, we lay out the

experimental parameters of CSDX cylindrical magnetized helicon plasma: the plasma column has

a total length L = 2.8m and a radius a = 10cm. Argon plasma with the following characteristics

is produced: ne = 1013cm−3, Te = 4eV and Ti = 0.3 − 0.7eV . The magnitude of the magnetic

field B ranges between 800G and 1300G, giving ω−1ci ≈ 30µs and ρs = Cs/ωci ≈ 1cm where

Cs =
√
Te/mi is the plasma sound speed. Argon neutrals are radially injected at a constant

flow rate of 25 sccm, and the corresponding neutral gas pressure Pgas = 3.2mTorr is equivalent

to a neutral density nn = 1014cm−3 [25, 26]. Plasma neutral ionization rate at Te = 5eV is

S = nenn〈σionve〉 = 1017cm−3s−1, where 〈σionve〉 = 10−10cm3/s is the ionization rate coefficient at

5eV. These values will be used in our calculations, in order to benchmark our model predictions to

the experimental results.

A. Diffusive Vorticity Flux: Π = −χ∂xu

1. Model Equations

For a shear strength parameter cu = 0 and α =
√
ε, the diffusion coefficients are equal:

Dn = χ = Dε = l2mixε
1/2 and Πres = 0. The vorticity flux is then: Π = −χ∂xu. Eqs.(5a-5c) are

rescaled using: x ≡ Lx, ε ≡ u20ε, n ≡ Lu0n, u ≡ Lu0u, t ≡ L2t/u0, µc ≡ u0µc and Dc ≡ u0Dc:

∂tn = ∂x[
l20ε

3/2∂xn

ε+ l20(∂x(n− u))2
+Dc∂xn] + S (9a)

∂tu = ∂x[
l20ε

3/2∂xu

ε+ l20(∂x(n− u))2
+ µc∂xu] (9b)

∂tε = ∂x[
l20ε

3/2∂xε

ε+ l20(∂x(n− u))2
∂ε

∂x
] + L2[

l20ε
3/2(∂x(n− u))2

ε+ l20(∂x(n− u))2
− 2ε3/2 +

√
ε] (9c)
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Here L is the total plasma column length and S (normalized to n0 = 1013cm−3) is the external

fueling source for ion density. The latter represents the combination of continuous neutral injection

and the ionization energy provided by the external source of heat, i.e. CSDX external antenna.

Parameters of eqs.(9a-9c) are rescaled to their dimensional form to express the B dependence:

t ≡ t/ωci and u ≡ ∇2(TeΦ/e)/ρ
2
s. In addition, length ≡ length ×ρs. As a matter of fact, we report

the following scale for turbulence in CSDX. Here we use normalized density fluctuations ñ/n0 to

calculate k̄r:

B(G) 800 900 1000 1200 1300

ρs(cm) 1.40 1.24 1.12 0.93 0.86

L−1n (cm−1) 0.53 0.55 0.6 0.62 0.5

k̄r(cm
−1) 0.33 0.33 0.37 0.32 0.34

1/[2.3ρ0.6s L0.3
n ] 0.29 0.32 0.34 0.39 0.37

Thus:

l0 = k̄−1r = 2.3ρ0.6s L0.3
n ∼ ρs

as Ln and ρs are of the same order before the transition occurs. Similarly, the Rhines’ scale lRh ∼ ρs,

as it involves a radial derivative proportional in turn to ρs. We mention here that these results are

clearly affected by the low values of ρ∗ = ρs/a in CSDX. Further studies at lower ρ∗ are clearly

needed. The potential enstrophy ε = (n− ρ2s∇2
⊥Φ)2/2 = (n− ρ2sk2⊥Φ)2/2 = (n− (ρs/lmix)2Φ)2/2

does not depend explicitly on B, as both n and ρsk⊥ = ρs/lmix are explicitly B-independent. With

both the perpendicular ion diffusivity Dc and viscosity µc proportional to 1/B2, we obtain the

following B-dependent equations:

ωci∂tn = ∂x[
ε3/2l20∂xn

ε+ l20(∂x(n− u/ρ2s))2
+Dc∂xn] + S (10a)

ωci∂tu = ∂x[
ε3/2l20∂xu

ε+ l20(∂x(n− u/ρ2s))2
+ µc∂xu] (10b)

ωci∂tε = ∂x[
ε3/2l20∂xε

ε+ l20(∂x(n− u/ρ2s))2
] + L2[

l20ε
3/2(∂x(n− u/ρ2s))2

ε+ l20(∂x(n− u/ρ2s))2
− 2ε3/2 +

√
ε] (10c)

2. Numerical Techniques and Model Calculation.

A finite difference method with a fixed space step size and adaptive time step sizes is used. The

boundary conditions used here are: n|x=1 = u|x=1 = ∂xn|x=0 = ∂xε|x=0 = ∂xε|x=1 = ∂xu|x=0 = 0.
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Note that Neumann boundary conditions are imposed on ε at both ends of the domain to prevent

energy inflow/outflow from or to the system. As a trial case, we use the following initial profiles:

n(x, 0) = (1 − x) exp[−ax2 + b], u(x, 0) = cx2 + dx3 and ε(x, 0) = (n(x, 0) − u(x, 0))2/2 with

a = −5, b = 0.125, c = 1 and d = −1. The initial density profile corresponds to a fitting of CSDX

experimental data at B = 800G. Initial vorticity and enstrophy profiles are arbitrary. Collisional

Prandtl number Pr = µc/Dc = 650 � 1 and a normalized mode scale length l0 = 1/5 are used.

We write the ion density source S(x) as a shifted Gaussian: S(x) = S(1 − x) exp[−(x − x0)2/e],

where x0 = 0.7, e = 0.05 and S is the source amplitude. This form of density source is justified by

the fact that radially injected neutrals become ionized at a normalized radial position x0 = 0.7,

as revealed by the decreasing (increasing) radial profile measurements of neutrals (ions). These

radial variations are insensitive to any change in the axial location of the probe along the magnetic

field axis. As for the amplitude S, the ionization rate corresponding to the conditions of CSDX

experiments implies a normalized value of S = 104.

In addition to calculating the plasma profiles at different B values to relate to CSDX experiments,

we perform a scan of the external ion density fueling source and calculate the profiles at different S

values. The latter corresponds to a change in the heating power of CSDX. Unless stated otherwise,

we will use the following code colors throughout the paper: Bblue < Bred < Bgreen < Bblack. Fig.2

shows radial variations of the density profiles for an increasing magnetic field B and two ion source

amplitudes S = 10 and S = 104. The latter corresponds to a CSDX experiment. Similar to

experimental results, a steepening trend in the mean density profiles is observed in both cases, as

B increases. This steepening is clearly noticeable in the range 0.2 < x < 0.5 for the S = 104 case.
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FIG. 2: Density profiles for S = 10 and S = 104 for increasing B.

A closer look at the S = 104 density profiles shows that a density peak initially observed at the

injection location x0 = 0.7, appears to shift inward as B increases. Moreover, the peaking of density
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profiles close to the center as B increases suggests the existence of an inward flux. This begs then the

following questions: what is this apparent inward particle flux due to? Does it develop as a response

to an increasing B? Is it inherent to the dynamics? To answer these questions, we investigate

variations of the radial particle flux as a function of an increasing B. Fig.3 shows reduction in the

0.2 0.4 0.6 0.8 1.0r

-0.4

-0.3

-0.2

-0.1

0.1

0.2

Γi, S=10
4

Ion Source

FIG. 3: Fluxes for S = 104 for increasing B.

particle transport, i.e., a reduction in Γn, as B is increased, for an ion density source S = 104. This

occurs as a result of the decrease of the diffusion coefficient Dn = l2mixε
1/2 with B (see fig.4). The

calculated profiles in fig.3 also imply an inward Γn for 0 < x < 0.5. Experimentally, the apparent

inward particle flux was reported to increase in response to an increasing B. This feature however,

does not appear in the model. We emphasize here though that for a helicon plasma source, the

RF input power into the source varies with B. This leads to a variation in the amplitude of the

ion density source S. Typically, one would manually adjust this power in order to keep the ion

density source constant. However, this step was not implemented in CSDX experiments. One might

therefore indirectly relate a change in B to a corresponding change in the particle flux profiles

via variations of the density source S. This option is not considered here, as S magnitude is kept

constant throughout the simulations.

Examining fig.5a, the particle flux corresponding to S = 10 is always outward (positive). This

suggests that the experimental apparent inward flux is rather the result of the increasing amplitude

of the off-axis density source S, and not a direct consequence of an increasing magnetic field

B. We test this conjecture by holding B constant and increasing S. We find that Γn starts to

go negative in the device core for increasing S values, at constant B, as shown in fig.5b. Here

Sblue = 10, Sred = 30, Sgreen = 50 and Sblack = 104. Moreover, at sufficiently long times, the

calculated particle flux saturates, and Γn profiles are positive and show no indication of inward flux

(fig.6). We conclude then that the experimentally reported apparent inward flux appears to be a
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FIG. 4: Diffusion coefficient for increasing B.
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FIG. 5: Particle flux at S = 10 for increasing B and particle flux at constant B and increasing
S : Sblue < Sred < Sgreen < Sblack.

consequence of a change in the source amplitude and its position. Thus, we recover the apparent

inward flux semi-qualitatively, using a diffusive model for Γn = −∂xn (no particle pinch Vpinch,

i.e., no off-diagonal term in Γn). It is essential to note here that experiments corresponding to

different heating powers have been performed in CSDX. Data collected from these experiments

show a dependence of both the direction and the amplitude of the particle flux Γn on the input

heating power. Further investigation of this data is of crucial importance to fully understand the

nature of this apparent inward flux.

In order to determine if the model captures the DW-ZF interactions in CSDX, we examine variations

of the shear flow and of the Reynolds work with B. Fig.7a shows the existence of an azimuthal

velocity shear layer in the radial direction, that gradually becomes stronger as B increases. This

shear does not depend on the ion source intensity S. The Reynolds force −∂x〈ṼxṼy〉 applied by

turbulence on the flow increases in absolute value with B (fig.7b). Variation rates of the Reynolds

work PRe done by the turbulence on the flow, i.e., the net shear flow production rates, also increase

in absolute value (fig.7c). This indicates an enhanced turbulence suppression as B increases. We

note that the same values are obtained either by direct numerical computations or by multiplication



15

0.2 0.4 0.6 0.8 1.0r
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Saturated Γi, S=10
4

Ion Source

FIG. 6: Purely outward particle flux at sufficiently long time
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FIG. 7: Velocity shear, Reynolds Force and Reynolds work for increasing B at S = 104.

of the Reynolds force by the absolute values of the azimuthal velocity. In summary, steepening of

the density profiles, amplification of the azimuthal velocity shear and negative Reynolds work values

are all indications of turbulence reduction that intensifies, as B increases. As B rises, Reynolds

force increases and reinforces the plasma flow. At the same time, the corresponding cross-field

ion turbulence scale length ρs decreases, allowing for more energy transfer from the microscopic

scales to the mesoscopic ones. These observations were reported experimentally in ref.[41–43], when

applying cross-bispectral analysis to density and potential fluctuations data retrieved from CSDX.
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B. Vorticity Flux with Residual Stress: Π = Πres − χ∂xu

Next we study the system dynamics when a residual Πres = (χ − Dn)∂xn is included in the

vorticity flux expression. The 3-fields equations become:

∂tn = ∂x[Dn∂xn] +Dc∂
2
xn+ S(x) (11a)

∂tu = ∂x[(Dn − χ)∂xn] + ∂x[χ∂xu] + µc∂
2
xu (11b)

∂tε = ∂x[Dε∂xε] + Πres(∂xn− ∂xu)− (χ∂xu−Dn∂xn)(∂xn− ∂xu)− ε3/2 +
√
ε(u20 − ε) (11c)

Here we use the following diffusion coefficients: Dn = l2mixε/α, Dε = l2mixε
1/2 and χ =

l2mixε/
√
α2 + cuu2. Using the same scaling factors of the last section in addition to: α ≡ u0α and

cu ≡ cu/L2, we obtain the following B-dependent equations:

ωci∂tn = ∂x

[ l20ε
2∂xn

ε+ l20(∂x(n− u/ρ2s))2
1

α
+Dc∂xn

]
+ S (12a)

ωci∂tu = ρ2s∂x

[ l20ε
2

ε+ l20(∂x(n− u/ρ2s))2
[
(

1

α
− 1√

α2 + cu(u/ρ2s)
2
)∂xn+ (

1√
α2 + cu(u/ρ2s)

2
+ µc)∂xu

]]
(12b)

ωci∂tε = ∂x

[ l20ε
3/2∂xε

ε+ l20(∂x(n− u/ρ2s))2
]

+ L2
[ l20ε

2ρs
ε+ l20(∂x(n− u/ρ2s))2)

(− 1

α
+

1√
α2 + cu(u/ρ2s)

2
)

×(∂n −
∂xu

ρ2s
)− l20ε

2

ε+ l20(∂x(n− u/ρ2s))2
(−∂x

α
+

1√
α2 + cu(u/ρ2s)

2

∂xu

ρ2s
)(∂xn−

∂xu

ρ2s
)− 2ε3/2 +

√
ε
]

(12c)

We show here numerical results that correspond to both Dirichlet and Neumann vorticity boundary

condition at x = 1. Starting with a Dirichlet condition u|x=1 = 0, for an arbitrary case α = 3 and

cu = 6 trial case, numerical results are similar to those obtained when no residual stress is included

in the expression of Π. The steepening of the density profiles, the sheared azimuthal velocity layer

and the negative Reynolds work values in the three left figures of fig.8 are all consistent with a

global transition that occurs in the plasma as B increases. Variation of the shearing coefficient cu,

which reflects a change in the strength of the flow shear, does not seem to affect qualitatively the

numerical results (right three figures of fig.8); the results are simply insensitive to a change in cu.

Therefore we conclude that, while Πres is needed to account for intrinsic rotation in tokamaks and
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axial flow generation in linear devices [39], a state of enhanced confinement can be recovered using

a simple diffusive form of the vorticity flux, without the need to include a residual stress in the

expression for Π.
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FIG. 8: Profiles with Πres and Dirichlet boundary conditions for cu = 6 and cu = 600.

The scenario of a plasma column surrounded by a layer of fixed neutrals next to the walls

corresponds to a Neumann vorticity boundary condition: ∂u
∂x |x=1 = 0. Viscous effects are negligible

in this case. We mention here though that the usual experimental case corresponds to a Dirichlet

boundary condition. Steepening of the density profiles, as well as negative Reynolds work values are

recovered as a sign of turbulence suppression, as B increases. The velocity shear, although present

and prominent at the density steepening location, is B independent (top three figures of fig.9).
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Higher magnetic field values are required for this B-dependence to appear. The Reynolds work

becomes then positive (bottom three figures of fig.9). The latter suggests turbulence production by

the flow at high B values, i.e., an instability that might be triggered by the vorticity gradient at

high B instead of being suppressed by the velocity shear.
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FIG. 9: Profiles with Πres and Neumann boundary conditions for increasing B.

A change in the mode scale length from l0 = ρs/5 to l0 = 10−3ρs leads to the same previously

mentioned trends of turbulence suppression as indicated by density profile steepening, negative

Reynolds work values and a B dependent sheared azimuthal velocity (see fig.10).

More interesting is the relevant case of a higher Prandtl number Pr = µc/Dc = 65000. In this

case, momentum diffusivity dominates the behavior of the plasma characterized by a low diffusion

coefficient Dc. Fig.11 shows time evolution of the plasma profiles at consecutive times t1 and t2.
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FIG. 10: Profiles for l0 = 10−3ρs and increasing B.

The plasma density builds up at the injection location and the inward flux develops as a result

of density localized concentration, regardless of the magnitude of B. Evidence of a turbulence

suppression such as negative Reynolds work rates and sheared azimuthal velocity are also recovered.

IV. VALIDATION METRICS FOR MODEL COMPARISON WITH EXPERIMENT.

Going beyond the simple qualitative comparisons between numerical and experimental profiles,

we propose here a set of quantitative metrics which aim to test whether the adopted model equations

are indeed capable of explaining the experimental observations. Quoting Oberkampf and Trucano

(2002), ”an important issue concerns how comparisons of computational results and experimental

data could be quantified” (p.216) [44]. A set of validation metrics is therefore needed to check the

consistency of the model with the experimental data [45]. We start first by checking the relative

variation of the inverse density gradient scale length 1/Ln = |∇ lnn| and recover a value close the
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FIG. 11: Profiles for Pr = 65000 and increasing B. Solid and dashed plots correspond to data at t1
and t2 respectively.

experimental one obtained from profiles of fig.(2) in ref.[26]:

∆(1/Ln)

Lni

=
1/Lnf

− 1/Lni

1/Lni

=


0.70 numerically

0.55 experimemtally

Here 1/Lni (1/Lnf
) is the inverse gradient scale length of the initial (final) density profile, i.e.,

before (after) the plasma transition occurs. Similarly, we calculate the corresponding relative

variation of the inverse gradient scale length of the velocity profiles and find:

∆(1/Lv)

Lvi
=

1/Lvf − 1/Lvi
1/Lvi

=


0.73 numerically

0.57 experimentally

While the previous validation metrics constitute local assessment quantities, we also propose two

global validation metric. Fig.12 is a plot of the radially integrated Reynolds work, PRe−tot =
∫ 1
0 PRedr

which denotes the total work done by turbulence on the flow over the plasma cross section as a

function of the density gradient. 1/Ln and PRe−tot are proportional to each other; as B increases,

density profiles steepen, the ion gradient scale length Ln shrinks and the total Reynolds work rate
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increases, indicating a transfer of energy from fluctuations to flow.
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FIG. 12: PRe−tot as function of 1/Ln for increasing B.

Further validation of turbulence suppression is obtained by examining the particle loss rate

1/τturb−loss, due to turbulent radial transport. This rate is expected to drop as B increases.

Integration of the particle flux along r gives values of the loss rates: 1/τturb−loss ∝
∫ r
0 rΓndr. Data

reported in table (I) show a declining trend as B increases. This suggests a change in the global

particle balance, i.e., a change in the nature of the turbulence in the system.

1/τloss(×10−2) S = 10 S = 50 S = 104

Bblue 1.4 3 1.1

Bred 1.2 2.6 0.5

Bblack 0.9 1.8 0.2

TABLE I: Particle loss rate 1/τ for increasing B.

V. WHAT IS THE CRITERION FOR TURBULENCE SUPPRESSION?

A conceptual question in modeling drift wave-zonal flow turbulence is the prediction of when

transport barriers are triggered. A variety of proposals are on record. Most are equivalent to a

comparison of linear growth rate to E ×B shearing rate (i.e., |γL| vs. |γE×B|). The relevance of

this type of criterion to fully developed turbulence is, at best, unclear. A somewhat non-trivial

criterion [28], is RT > 1 where:

RT =
〈ṽxṽy〉′vE×B
|γeff |〈ṽ2⊥〉

(13)

is the local ratio of the Reynolds power density, to the effective increase in turbulent kinetic energy.

Here |γeff |(∇n,∇T, VZF ) is the turbulence effective growth rate. The idea here is that when

RT > RTcrit (usually RTcrit ∼ 1), the energy transfer to the shear flow exceeds the effective increase
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in turbulent kinetic energy, suggesting a collapse of the kθ 6= 0 portion of the turbulence spectrum,

i.e., the part which causes transport. For the model under study here, the instantaneous potential

enstrophy growth rate is |γeff | = (1/ε).(∂ε/∂t) and 〈ṽ2⊥〉 = εl2mix = l20ε
2/(ε+ (l0∇(n−u))2). Fig.13

shows variations of RT with B for this system. Here, RT values are calculated at the density

steepening location and at the turbulent energy saturation time. The proportionality between

B and RT is recovered as anticipated, since an increase in B triggers the formation of transport

barriers.
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FIG. 13: RT time variations at x = 0.1, 0.6 and 0.8 (Blue, Green, Brown) for S = 40.

While the RT > RTcrit criterion is attractive for its extreme simplicity, it suffers from the facts

that: i) |γeff | is ill-defined, and difficult to calculate, ii) contributions from energy other than

the kinetic are ignored. Thus we propose here an alternate criterion, RDT ≥ RDTcrit , where the

global parameter RDT = τrelax/τtransfer. Here 1/τrelax = −
∫
dxΓn∇n/n0, where Γn = 〈ṽxñ/n0〉

is the normalized particle flux, 1/τrelax is the rate of relaxation of the free energy source, which

is ∇n in this model. Of course, ∇n relaxes by exciting drift wave turbulence, so 1/τrelax is

effectively the turbulent enstrophy production rate and would have a connection to the energy

input rate, |γeff |, used in the RT criterion. Logically then, that should be compared to the rate

of transfer of enstrophy to the mean flow vorticity profile. This may be thought of a turbulent

enstrophy destruction rate, and is closely related to the Reynolds work which appears in RT . We

have then: 1/τtransfer = −
∫
dx〈ṽxũ〉∇u where u = ρ2s∇2

⊥(eΦ/Te). Integrating by parts gives:

1/τtransfer =
∫
dx∂x〈ṽxũ〉u so:

RDT =

∫
∂x〈ṽxũ〉udx

−
∫

Γn∇n/n0dx
(14)

RDT is manifestly dimensionless and the integrals are calculated along the radius. Noting the

Taylor identity and the fact that u ∼ ∇⊥(∇⊥Φ) ∼ ∇⊥Vy, the correspondence of the numerator

of RDT to that of RT is evident. Finally, given that the potential vorticity is conserved on fluid
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particle trajectories, it is not difficult to see the correspondence between fluctuating entropy

(∼ −
∫
dv(δf)2/〈f〉) and fluctuating enstrophy. Thus, RDT may be thought of as the ratio of

fluctuation entropy destruction via coupling to the mean flow, to fluctuating entropy production

via relaxation of ∇n. Both numerator and denominator reflect flux-gradient interaction and both

emerge naturally from the formulation of the model, i.e. from expanding the production term

Pprod = (Γn−Π).(∇n−∇u) = Γn∇n+ Π∇u−Π∇n−Γn∇u in eq.2c. Neglecting the last two cross

terms in Pprod, the numerator and denominator of RDT simply represent the product of Π and ∇u,

and Γn and ∇n respectively. Thus RDT exceeding unity may be thought of as the simplification

of the more general criterion that
∫
Pprod passes thru zero, i.e.,

∫
Pprod > 0→

∫
Pprod < 0, as the

indicator of turbulence collapses. Fig.14 shows variations of RDT with B at the same time and

location as for RT . The close relation between RDT and B can also be interpreted in terms of

enstrophy exchange of fluctuations to flow, as B increases. However, the RDT > RDTcrit criterion

has a broader and more solid theoretical foundation then RT > RTcrit , and easily may be generalized

(to more complex models) by expanding the consideration of potential enstrophy balance. When

either RDT or RT exceeds unity, the turbulence levels will drop and a barrier is likely to be formed.

We do not have a proof of either though - particularly given the ambiguity in just exactly what a

barrier is.
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FIG. 14: RDT variations for S = 10 and increasing B .

VI. DISCUSSION AND CONCLUSIONS.

Features of a CSDX improved confinement are reproduced here using a 1D time-dependent

reduced model. The model recovers the profile evolution in CSDX with an increasing B, and

includes both a slow and a fast time scale: the former corresponding to the time evolution of the

mean fields, and the later corresponding to turbulence production and fast dissipation. Potential

enstrophy is conserved up to dissipation and initial forcing. Inhomogeneous PV mixing is a central
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feature here, and occurs on a mixing length that is inversely proportional to the PV gradient. The

use of a mixing length that shrinks as ∇n and ∇u steepen, closes the positive feedback loop on

PV. The model novelty relies in the fact that it reduces the profiles evolution to only two fluxes: a

vorticity and a density flux.

Numerical solutions agree with the experimental findings, and show: a steepening of the density

profile, a reinforced E × B sheared layer, an increased Reynolds work and a reduction in the

turbulence and particle transport, as B increases. Numerical solutions also show that the steepening

of ∇n is recovered without the use of an off-diagonal term nVpinch in the expression of the particle

flux Γn. The experimentally apparent inward flux is simply of diffusive nature at high B. Moreover,

the model predicts qualitatively similar results, with or without the inclusion a residual stress Πres

in the vorticity flux expression Π. We conclude then the following: both density and vorticity

fluxes have purely diffusive forms: Γn = −∂xn and Π = −∂xu, where u is the vorticity. The inward

pinch Vpinch and residual stress Πres necessary to drive axial flows in linear devices are not required

to recover the experimental results. As a matter of fact, the validation metrics presented above

show a consistent level of agreement between computation and experiment, using purely diffusive

expressions for Γn and Π.

The only experimental feature not recovered is the apparent inward particle flux. The apparent

inward flux, experimentally believed to be related to increasing B, is a direct consequence of the

amplitude and location of the ion source. Additional investigation of the influence the fueling

intensity might have on the particle flux, is crucial to determine the nature of this inward flux.

The energy parameter RDT , defined in eq.(14), emerges as a better global turbulence collapse

indicator to be used in the future. It rests on a broader and more solid theoretical foundation

than RT , and can be obtained both in computations and experiments. In addition, RDT includes

the basic physics behind RT , but transcends it. Finally, modeling of the parallel flow dynamics is

planned for future work. This will be pursued by adding an equation for v‖ to the model.
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