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How turbulence fronts induce plasma spin-up
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A calculation which describes the spin-up of toroidal plasmas by the radial propagation of turbulence fronts
with broken parallel symmetry is presented. The associated flux of parallel momentum is calculated by using
a two-scale direct-interaction approximation in the weak turbulence limit. We show that fluctuation momentum
spreads faster than mean flow momentum. Specifically, the turbulent flux of wave momentum is stronger than
the momentum pinch. The scattering of fluctuation momentum can induce edge-core coupling of toroidal flows,
as observed in experiments.
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The generation of flows by turbulence is widely observed in
many systems, including the Sun [1], the planetary atmosphere
[2], and toroidal plasmas [3]. While the understanding of
the local acceleration mechanisms has been advanced [4],
it is now becoming increasingly clear that the nonlocal
(global) momentum budget is a key for understanding the
overall dynamics [5,6]. For example, the jet sharpening on
the planetary atmosphere [2,7] involves not only the local
acceleration of flows in the stirring region (the midlatitude
on the Earth), but also the response of flows in the equator
and the pole regions. In the case of toroidal plasmas [5,6],
the change of flows in the main plasmas (i.e., plasmas in the
core) mimics that of flows in the peripheral plasmas (i.e., in
the edge). In these experiments, flows in the edge plasma
reverse its direction upon changing the magnetic geometry,
and core flows also systematically respond to the change in
edge flows. The experiment implies that edge flows act as a
dynamic boundary for core flows, which can be viewed as a
case of “the tail wagging the dog” in toroidal plasmas. The
entire process can induce the edge-core coupling of toroidal
flows.

The purpose of this Rapid Communication is to eluci-
date the mechanism underpinning the edge-core coupling
of toroidal flows in magnetically confined plasmas (Fig. 1).
Conventionally, the coupling may be attributed to the inward
pinch of edge flows [8,9]. In contrast, here we show that edge
and core flows are coupled via the propagation of fluctuation
momentum from the edge region into the core region, via a
nonlocal process such as turbulence spreading, avalanches,
etc. [10–12]. Typically, tokamak plasmas become more tur-
bulent towards the edge with increasing turbulence amplitude
[13]. This allows edge turbulence to entrain the core region
and to spread parallel fluctuation momentum from the edge
to the core plasmas. This effect is captured by nonlinear,
triplet flux 〈ñṽr ṽ‖〉, whose contribution is observed in basic
experiments [14,15]. The nonlinear flux requires a closure
calculation. Recent works [16,17] report the calculations of
the nonlinear flux in the strong turbulence regime. However,

*kosuga@riam.kyushu-u.ac.jp

the turbulence amplitude is typically at the level of the mixing
length estimate, as reported from experiments [18,19] and
simulations [20]. Indeed, in many cases of interest, the data
overwhelmingly support that the fluctuation amplitude is in the
order of or less than the mixing length value. Thus, the Kubo
number of turbulence is in the order of unity or less, so that the
wave turbulence approach is a more adequate description [21].
In the presence of moderate amplitude drift waves, three-wave
resonance sets the necessary phase for spreading [22].

In this Rapid Communication, we present the results for
a nonlinear flux in the weak turbulence limit and discuss its
role in introducing edge-core coupling of toroidal flows in
tokamak plasmas. It is shown that the dominant contribution
in the nonlinear flux arises from the three-wave resonance with
two small scale waves and one large scale wave (i.e., disparate
scale interaction). More importantly, we find that the radial
propagation speed of the fluctuation momentum is faster than
the inward pinch velocity of mean flow [8,9]. We also find that
the resultant torque to drive flows in the core is comparable
to that induced by the local (quasilinear) residual stress. Thus,
the spreading of fluctuation momentum from the edge to the
core plasmas is identified as a relevant mechanism to couple
edge-core plasmas by momentum transport. This effect is a
key for understanding why “the tail wags the plasma,” i.e., why
jogging edge flows by changing magnetic geometry leaves a
footprint in the core flow. A perturbative experiment [23–28]
is proposed as a further critical test.

To address the issues raised above, here we use an extended
version of the Hasegawa-Mima model [29] for drift wave
turbulence, with coupling to parallel flows,

d

dt

(
1 − ρ2

s ∇2
⊥
)eφ

Te

+ v∗∂y

eφ

Te

+ ∇‖v‖ = 0, (1a)

d

dt
v‖ = −c2

s ∇‖
eφ

Te

. (1b)

Here, d/dt = ∂t + (c/B)ẑ × ∇φ is the total derivative along
the E × B convection. cs is the ion acoustic speed, v∗ is
the diamagnetic drift speed, ρs is the ion sound Larmor
radius, ∇2

⊥φ is vorticity, and v‖ is the parallel ion velocity.
‖ refers to the direction of the magnetic field. ⊥ corresponds
to (r,θ ), which is written as (x,y) locally. Hereafter, we use
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FIG. 1. A schematic picture of the edge-core coupling of toroidal
flows. In the conventional view, the change in the mean flow can
influence the change in core flows through an inward pinch. Here, in
contrast, we argue that the spreading of fluctuation momentum into
the core plasmas is a dominant process.

the normalized quantities x/ρs → x, ωcit → t , ne/n0 → n,
eφ/Te → φ, v‖/cs → v‖.

Within the model, we consider the evolution of fluctuation
momentum density 〈q̃ṽ‖〉, where q = (1 − ∇2

⊥)φ. The relation
of this term to the parallel fluctuation momentum can be
understood by writing it in terms of Fourier components,

〈q̃ṽ‖〉 =
∑

k

(1 + k2
⊥)|φ|2k

k‖
ωk

=
∑

k

Ek
k‖
ωk

. (2)

Here, Ek ≡ (1 + k2
⊥)|φ|2k is the energy density of drift waves.

By noting that the wave action density is given by Nk =
(1 + k2

⊥)|φ|2k/ωk, we see that Eq. (2) describes the momentum
density of waves P‖k = k‖Nk [21,30]. In order for the wave
momentum to have a finite value, symmetry breaking in the
parallel direction is required [4]. In toroidal plasmas, symmetry
can be broken by several mechanisms, such as the intensity
gradient, up-down asymmetry [31], the radial electric field,
toroidal flow shear [32], etc. Note that toroidal flow shear is
important in the edge plasmas, since scrape-off-layer (SOL)
flows with a Mach number of order unity are likely to cause a
strong radial variation [5].

The wave momentum can be transported spatially. One
way to drive wave momentum transport is by the ra-
dial propagation of waves [33]. In this case, the radi-
ally propagating wave packet carries the momentum. The
wave momentum flux is given by vg,xk‖Nk, with vg,x =
−2kxkyv∗/(1 + k2

⊥)
2

the radial group velocity of drift waves.
The wave momentum flux appears as a part of the residual
stress. Note that the sign of kxky is determined from the
outgoing wave boundary condition [34]. The impact of
this property on driving intrinsic torque is discussed in
Ref. [35].

In addition to linear propagation, the fluctuation mo-
mentum can be nonlinearly scattered and spread in space.
This effect is captured by the triplet correlation 〈ṽx q̃ṽ‖〉.
A closure calculation is necessary to calculate this term.
Here, the closure is done by employing the two-scale direct-
interaction approximation [16,22]. In this approach, the non-
linear flux is approximated by the contribution from the beat

term,

〈ṽx q̃ṽ‖〉 ∼=
∑

k1+k2+k3=0

(
ṽ

(2)
x,k1

q̃k2 ṽ‖,k3 + ṽx,k1 q̃
(2)
k2

ṽ‖,k3

+ ṽx,k1 q̃k2 ṽ
(2)
‖,k3

)
, (3)

where the quantity with the superscript (2) is given by the beat
interaction from the two other Fourier components. The beat
response [16,21,22] is given by

φ
(2)
k1+k2

(t) ∼=
∫ t

−∞
dt ′e(−iωk1+k2 −|γ NL

k1+k2
|)(t−t ′)

N
φ(2)
k1+k2

(t ′). (4)

Here, ωk = ω∗e/(1 + k2
⊥) is the frequency of the mode and

γNL is the nonlinear damping rate. N
φ(2)
k1+k2

is the nonlinear
term driven by the beating of modes k1 and k2. Explicitly,
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(
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(5)

The two-scale effect is retained by setting kx → kx − i∂x ,
where kx denotes the wave number for microscale fluctuation
and ∂x acts on the scale of the envelope. v

(2)
k1+k2

(t) is obtained

similarly and to the lowest order is given by v
(2)
k1+k2

(t) ∼=
{(k1‖ + k2‖)/ωk1+k2}φ(2)

k1+k2
(t). Substituting the beat response

into the triplet term, and using the two-time correlation
〈φk(t)φ∗

k(t ′)〉 = |φ|2ke−iωk(t−t ′)−|γ NL
k |(t−t ′), we finally obtain the

nonlinear flux as

〈ṽx q̃ṽ‖〉 =
∑

k1

(
Vk1P‖k1 − Dk1∂xP‖k1

)
. (6)

Thus, after the closure calculation, the nonlinear flux is sum-
marized into a compact form, with scale-dependent convection
and diffusion. The convection velocity and the diffusion are
amplitude dependent, and are given by

Vk1 = ∂x

∑
k2

θk1,k2

∣∣φ̂k2

∣∣2
F1(k1,k2), (7a)

Dk1 =
∑

k2

θk1,k2

∣∣φ̂k2

∣∣2
F2(k1,k2). (7b)

Here, ∂x acts on the envelope scale and θk1,k2 is the triad
interaction time,

θk1,k2 =
∣∣γ NL

k1+k2
+ γ NL

k1
+ γ NL

k2

∣∣
�ω2

MM + (
γ NL

k1+k2
+ γ NL

k1
+ γ NL

k2

)2 , (8)

where �ωMM = ωk1+k2 − ωk1 − ωk2 is the mismatch fre-
quency. Note that θk1,k2

∼= πδ(�ωMM) in the wave turbulence
limit, which is of interest here. The coupling coefficients F1
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and F2 are given by

F1(k1,k2) = k1y

(
1 + k2

2⊥
)

4[1 + (k1 + k2)2
⊥]

(
1 + k2

1⊥
)2

(−2k1xk2x − 2k1yk2y − k2
2⊥

){
k1y

(
k2

1⊥ − k2
2⊥ − 2k2

2x

) + 2k1xk2xk2y

}
, (9a)

F2(k1,k2) = k1y

(
1 + k2

2⊥
)

4[1 + (k1 + k2)2
⊥]

(
1 + k2

1⊥
)2

(
2k1xk2x + 2k1yk2y + k2

2⊥
){

k2y

(
k2

2⊥ − k2
1⊥ − 2k2

1x

) + 2k1xk2xk1y

}
. (9b)

The convective term Vk1 depends on the triad interaction
time, the coupling coefficient, and the intensity profile. Note
that in the presence of drift waves, the triad interaction time
is approximately θk1,k2

∼= πδ(�ωMM). Thus the frequency
matching condition is important to produce a nonzero spatial
flux. In particular, since the drift waves are dispersive, the
matching condition constrains a class of triads that contributes
to the nonlinear flux. In order to see this, we have plotted the
coupling coefficient F1 in Fig. 2. Here, F1(k1,k2) measures
the strength of the coupling from the mode k2 to induce the
spatial flux of momentum density of the mode k1. The flux
is determined by summing over k2, along the three-wave
resonant manifold indicated by the red line. Among all possible
triads, those that contribute to the flux effectively are also
indicated and are given by the coupling among two microscale
fluctuations and one fluctuation with a short leg. This class
of coupling is called the disparate scale interaction. Finally,
a key result here is that for this dominant triad, the coupling
coefficient is negative, and is order of unity. The direction of
the flux is determined from the combination of this coupling
coefficient and the sign of the intensity gradient. For example,
if the normalized intensity of the fluctuation increases towards
the edge, the convective velocity is inward. This is plausible,
since we would expect that the nonlinear flux originates from
the region with stronger fluctuation.
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FIG. 2. A contour plot for the coupling coefficient F1, for
k1x = 0.8 and k1y = 0.9. The dotted (red) curve is the resonant
manifold, defined by ωk1+k2 − ωk1 − ωk2 = 0. The summation must
be evaluated along the curve. A triad that gives a dominant
contribution is also indicated.

We can repeat a similar analysis for the diffusivity Dk ∝ F2.
In this case, we find that the dominant coupling is due to the
disparate scale interaction. The coupling coefficient is of order
unity, and the sign is positive. In the sign convention used here,
the flux is directed down the gradient, which is the same as the
convective piece.

We can summarize the evolution of fluctuation parallel
momentum as

∂t 〈q̃ṽ‖〉 + 〈q̃∇‖ñ〉 + ∂x〈ṽx q̃ṽ‖〉 = −〈ṽx ṽ‖〉〈n〉′. (10)

Here, 〈q̃ṽ‖〉 is the fluctuation momentum density (in the
parallel direction). The second term on the left-hand side
is due to the radial propagation of waves, as 〈∇2

⊥φ̃∇‖φ̃〉 ∝
∂x

∑
k vgr,xk‖Ek/ωk. The third term is due to turbulence

spreading, which is the quantity of interest. After the closure
calculation, the nonlinear flux is written in terms of convection
diffusion. We note that a similar relation is derived for
the fluctuation energy [10,22] and the radial propagation of
turbulence is numerically demonstrated. Given the similarity
in the mathematical structure, the propagation of fluctuation
momentum is very likely.

The major feature of the nonlinear flux is elaborated in the
following. Summarizing the above analysis, the nonlinear flux
is approximately given by

〈q̃ṽ‖ṽr〉 ∼ −v∗
L2

n

ρsLI

|φ̂|2Pk‖. (11)

We have restored the dimensional quantities. LI is the intensity
scale length. Here, several caveats follow. First, while in
principle the contribution from other waves can accumulate,
we retained the contribution from the dominant component, for
simplicity. Second, the intensity gradient LI is that of a normal-
ized fluctuation level. A distinction between the normalized
level and absolute level may be important in steep gradient
regions. Third, the appearance of Ln is superficial, since the
fluctuation amplitude is also a function of Ln. For example, if
we invoke the mixing length level estimate, the overall result is

〈q̃ṽ‖ṽr〉 ∼ −v∗
�2

c

ρsLI

Pk‖. (12)

The dependence on the correlation length �c is plausible,
as long-range perturbation (i.e., large �c) leads to larger
flux. With these caveats in mind, we discuss the important
feature of the nonlinear flux. Here, the sign convention is
such that when the fluctuation intensity increases outward, the
nonlinear flux is inward. Thus, in typical confined plasmas,
the fluctuation momentum can be convected inward from the
edge to the core. The typical propagation speed is given by

|VNL| ∼ v∗
L2

n

ρsLI

|φ̂|2 ∼ v∗
Ls

Ln

ρs

LI

. (13)
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FIG. 3. Jogging the edge flows results in a core flow change by
spreading the edge fluctuation momentum into the core.

Here, the amplitude is evaluated from the mixing length
estimate φ̂ ∼ �c/Ln with �c = √

Ls/Lnρs . The propagation
velocity is then typically around the diamagnetic speed. Note
that the propagation velocity is faster than the inward pinch
velocity of mean momentum, Vpinch ∼ D/R ∼ v∗(ρs/R),
where the gyro-Bohm diffusivity D ∼ ρsv∗ is assumed. For
typical parameters, the ratio is

|VNL|
|Vpinch| ∼ RLs

LILn

� 1. (14)

Thus fluctuation momentum is scattered into the core before
the mean momentum is pinched in. This effect can be
important for the fast response of the core to the edge
perturbation, the edge-core coupling of toroidal flows, etc.,
as discussed in detail later. Finally, we note that the resultant
nonlinear stress can be compared to the quasilinear stress as∣∣�triplet

r‖
∣∣∣∣�QL

r‖
∣∣ ∼ |VNL|

|vgr| ∼ 1

ρ2
s kθkr

Ls

Ln

ρs

LI

. (15)

For the nonlinear term to be comparable to the quasilinear
term, the intensity gradient scale length needs to be shorter
than LI ∼ (Ls/Ln)�c, where kr ∼ �−1

c was assumed.
The nonlinear flux can induce the edge-core coupling

of toroidal flows (Fig. 3). Here, for simplicity, we assume
that fluctuation energy can propagate from the edge to the
core, although a more detailed analysis will be required to
characterize the radial extent. As an example, we consider the
correlation between core toroidal flows and edge magnetic
geometry [5,6]. When the magnetic drift is toward the x

point of the magnetic separatrix, namely, for a favorable
configuration, SOL flows are in the codirection and the edge
toroidal flow shear is positive [5,36]. In this case, the positive
toroidal flow at the edge breaks the parallel symmetry [32]
to yield fluctuation momentum in the codirection 〈Pk‖ 〉 ∝
〈k‖/kθ 〉 ∝ 〈vφ〉′|a > 0. This fluctuation momentum can be
scattered into the core via the spreading process, and can
result in a coincrement in the core flow. This is consistent

with the observation [6], which indicates that the core toroidal
flows are less in the counterdirection (sometimes in the
codirection) in the favorable configuration. When we change
the magnetic geometry from the favorable to the unfavorable
configuration, SOL flows and edge toroidal flow shear change
their sign, and consequently the fluctuation momentum is in
the counterdirection 〈Pk‖ 〉 ∝ 〈k‖/kθ 〉 ∝ 〈vφ〉′|a < 0. This can
be scattered into the core to accelerate toroidal core flows in
a more counterdirection. Thus, the spreading of fluctuation
momentum in the edge can be a key for understanding the
observed edge-core coupling of toroidal flows.

Another important consequence that the nonlinear flux can
induce is the dynamic response of the core flows against the
edge perturbation [23–28]. As discussed above, the nonlinear
flux allows the fluctuation momentum to propagate faster
than the mean momentum. This process can result in a fast
response of the core flows against the edge perturbation,
with the response time shorter than the confinement time.
The typical response time is estimated as τres ∼ a/|VNL| ∼
(LI/

√
LsLn)τE � τE . The fast response can be tested by

perturbative experiments, using pellet injection, etc., with a
fast time resolution charge exchange for toroidal flows in the
core. Repetitive perturbation and conditional averaging may
be useful as well. Finally, we note that repetitive perturbation
will be required to induce steady change in the core flow.

In summary, we find that turbulence can scatter fluctuation
momentum in the edge plasmas into the core plasmas to
induce the edge-core coupling of toroidal flows (Fig. 1). The
process was formulated by calculating the nonlinear flux of
fluctuation momentum. The closure calculation via a two-
scale direct-interaction approximation (TSDIA) in the weak
turbulence limit gives the nonlinear flux [Eq. (6)], which scales

as ∼ − v∗[L2
n/(ρsLI )]|φ̂|2P‖k. The flux is down the intensity

gradient. Since the fluctuation intensity increases toward the
edge in typical fusion plasmas, the nonlinear flux describes
inward propagation of fluctuation momentum from the edge.
The effective propagation velocity of fluctuation momentum
is faster than the inward pinch velocity. Hence, we identify the
inward flux of fluctuation momentum as a dominant process to
couple edge and core plasmas in toroidal momentum transport.
This process can be a key for understanding why jogging
edge flows results in the change of the core toroidal flows, as
reported in experiments (Fig. 3).
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