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Abstract.

In fusion plasmas, several mechanisms such as heating, wave-particle interaction

etc can drive deviations of distribution function from Maxwelian to form phase space

structures. This article discusses the impact of phase space structures in drift wave

turbulence on dynamics and transport modeling. The two cases of (i) coherent holes

and (ii) incoherent granulations (clusters of correlated resonant particles with finite

life time) are treated. Their dynamical impact on driving subcritical instability is

analyzed by explicitly calculating the nonlinear growth rate. The role of zonal flows is

also addressed. It is explained how phase space structures can be related to transient

events and non-diffusive transport, issues in current confinement research.
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1. Introduction

Transport modeling is important for understanding the confinement of fusion plasmas.

Conventionally, transport flux is modelled using quasilinear theory[1, 2], which

represents transport flux in terms of mean fields and transport coefficients. The result

typically gives flux in the form of diffusion with diffusivity given by the mixing length

formula, D ∼ γ/k2⊥. The conventional approach works rather well, and it is claimed

that its prediction agrees with experiments[3, 4]. However, there are several phenomena

that cannot be addressed by the simple mean field model. Examples include, but not

limited to, fast transient event, non-local transport, confinement scaling, etc[5, 6, 7].

In particular, validation study reports underprediction of transport levels by local

simulation[8]. These together suggest that quasilinear transport modeling is rather

simplified, and that transport modeling beyond quasilinear theory is important to

improve the predictability of confinement property of future devices.

There are several attempts to construct transport modeling beyond quasilinear

transport models. An example is the study of so-called non-local transport[6, 7, 9, 10, 11,

12]. Here, the effects such as turbulence spreading[13, 14, 15], avalanches[16, 17], etc are

addressed. In addition, transport by strongly resonant turbulence is another important

issue. Many of the instabilities in fusion plasmas, such as drift waves, collisionless

trapped electron modes (CTEM), collisionless trapped ion modes (CTIM), etc are

characterized by 1D resonance between particles and modes. As a result, turbulence can

have a Kubo number larger than the order of unity[18, 19, 20]. Here the Kubo number

is defined as K ∼ ṽτc/∆c, where ṽ is the typical strength of turbulent velocity field, τc is

the correlation time of turbulence (seen by resonant particles), and ∆c is the correlation

length of turbulence. When K & 1, particle trajectory is deformed from unperturbed
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orbit, so that quasilinear theory is not applicable. Moreover, when turbulence is

characterized by K & 1 in collisionless plasmas, formation of phase space structures,

such as BGK vortex[21], holes[22, 23, 24], clumps[25], granulations[26, 27, 28, 29], etc,

can form. See Ref. [30] for illustration of different type of phase space structures, such as

coherent holes and incoherent granulation eddys. Indeed, these phase space structures

are very efficient in tapping free energy, since they can drive anomalous transport even

when waves cannot. So it is an important issue to clarify how phase space structures

impact dynamics of turbulence and transport processes[31, 32, 33, 34, 30].

The formation of phase space structures in collisionless plasmas are well known. For

example, in unmagnetized plasmas, it is argued that granulations, a cluster of resonant

particles correlated via resonance, can form[31, 32, 33]. Once formed, they can exert

dynamical friction and drive anomalous resistivity in plasmas. This was confirmed by

numerical studies[35, 30]. The simplified models were applied for the chirping of EP

modes[25] in fusion plasmas. More recently, Refs.[36, 37] report the impact of phase

space structures in driving subcritical instability[38] and abrupt excitation of EGAM.

Phase space structures can also form in magnetized plasmas, or in the family of drift

wave turbulence[39, 27, 28]. Once formed, they release free energy stored in the gradient.

As demonstrated for trapped ion turbulence[28, 29, 34], trapped ion granulations can

give rise to anomalous loss of ion heat and particles. Transport caused by trapped

ion granulations cannot be described by quasilinear theory. Rather, transport flux is

formulated as Lenard-Balescu flux with dynamical friction, exerted by electrons in the

case of trapped ion granulations. Recent studies show that trapped ion granulations

couple to flows, such as zonal flows[29] and toroidal flows[40]. The coupling of phase

space structures and flows is not only for trapped ion turbulence; coherent drift hole[23]

also couples to flows[24]. However, in drift wave turbulence, incoherent granulations
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are likely to be present. The coupling of drift wave granulations and zonal flows can

be useful to experimentally identify drift wave granulations in basic experiments with

cylindrical geometry, as discussed later in the paper. Here, the coupling to flows and

intermittent excitation of eddys[41] can be used as a trigger to conditionally average the

data from Laser-Induced-Fluorescence (LIF) data for the parallel dynamics.

In this paper, we describe the basic feature of phase space structures in drift wave

turbulence and its relation to current issues in confinement physics. Here we present

a result based on additional analysis, which includes the derivation of the growth rate

of granulations in drift wave turbulence from the two point analysis. In particular,

we emphasize the dynamical impact of the presence of phase space structures, to drive

subcritical instabilities and zonal flows. The connection to current issues in confinement

studies are also addressed.

The remaining of the paper is organized as follows. In section 2, we explain models

and discuss the applicability and limitations of quasilinear models in the system. In

section 3, coherent drift holes (ion hole, more specifically) are introduced and their

role of driving subcritical instability is discussed. In section 4, we turn to the case

of stochastic granulations and analyze their dynamics by using the 2 point analysis.

Here we describe the basic features of ion granulations, including their basic scales and

sharp correlation within the resonance broadening scales. Analogy to discreteness effect

in thermal equilibrium plasmas is explained. We also discuss how granulations can

extract free energy subcritically and interact with zonal flows. Implication on transport

modeling is discussed in section 5. Section 6 is summary and discussion. Here we

discuss relevant tests by numerical and physical experiments on the ideas presented in

the paper.
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2. Model and a case study: from linear and quasilinear analysis to phase

space structures

In this paper, we consider a cylindrical plasma, with magnetic field in z direction. The

direction of inhomogeneity (density gradient) is in the x direction. The correspondence

between z ↔ ‖ and (x, y) ↔ (r, θ) is understood throughout. For simplicity, we treat

ions by the drift kinetic equation

∂tfi + v‖∇‖fi +
c

B
ẑ ×∇φ · ∇fi +

e

mi

E‖
∂fi
∂v‖

= 0. (1)

Electrons are assumed to be close to Boltzmann response

ne
n0

= (1− iδe)
eφ

Te
(2)

where δe is the phase shift. Ions and electrons satisfy a quasilineutrality condition via

the gyro-kinetic Poisson equation

ne
n0

=

∫
dv‖fi + ρ2s∇2

⊥
eφ

Te
. (3)

Linear analysis gives the dispersion relation of waves (drift wave). Calculating the

linear response of Eq.(1) to potential perturbation and integrating over the velocity

space, we have ñi,e/n0 = χi,e(eφ̃/Te), where the susceptibilities χi,e(k, ω) are given by

χi(k, ω) =
ω∗e
ω
− i π
|k‖|

[
ω∗e +

Te
Ti
ω

]
〈fi〉|ω/k‖ , (4)

χi(k, ω) = 1− iδe. (5)

The quasi-neutrality condition is given by

χ(k, ω)
eφ

Te
= 0 (6)

where

χ(k, ω) = 1 + k2⊥ρ
2
s −

ω∗e
ω

+ iImχe − iImχi. (7)
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Here we note that the susceptibility plays the role of the dispersion function D(k, ω)

in the conventional mode analysis. The linear dispersion relation is obtained from

Reχ(k, ω) = 0, which gives

ωk =
ω∗e

1 + k2⊥ρ
2
s

. (8)

Thus we have electron drift waves. The growth rate is given by

γ = − Imχ(k, ω)

∂χ(k, ω)/∂ω|ωk

=
ω2
k

ω∗e

(
δe −

π

|k‖|

[
ω∗e +

Te
Ti
ωk

]
〈fi〉|ω/k‖

)
. (9)

Drift waves are destabilized due to the phase shift and stabilized by the ion Landau

damping.

Using the model, we can discuss the applicability and limitation of quasilinear

approach for transport analysis. Calculating the response δf to potential perturbation

from the kinetic equation, we have

δfkω =
i

ω − k‖v‖ + ik2⊥D⊥

(
−ṽE×B,kω∂x〈f〉+ ik‖φkω

e

mi

∂v‖〈f〉
)
. (10)

Here we have retained E×B nonlinearity in the response function, which is renormalized

into the diffusivity term[33]. While the diffusivity can be a function of velocity

through the response function, the diffusivity has the dimension of [length2/time], which

corresponds to the diffusivity in the real space. Substituting this into the flux, we have

〈ṽxδf〉 = −D⊥∂x〈fi〉. (11)

Here we have neglected the term ∝ k‖kθ for simplicity. The diffusivity is

D⊥ =
∑
kω

|ṽE×B|2kωRe
i

ω − k‖v‖ + ik2⊥D⊥
. (12)

We can solve for D⊥ for a model spectrum

|ṽE×B|2kω =
|ṽE×B|20δ(ω − ωk)

(1 + (k‖ − k‖0)2/∆k2‖)(1 + (k⊥ − k⊥0)2/∆k2⊥)
. (13)

By performing the k integral via contour integration, we obtain

k2⊥D⊥
τ−1ac

=
1

2

(√
1 +

4k2⊥|ṽE×B|20
τ−2ac

− 1

)
(14)
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where

τ−1ac = ∆k‖

∣∣∣∣ ∂ω∂k‖ − ω

k‖

∣∣∣∣+ | ∂ω
∂k⊥

·∆k⊥| (15)

is the auto-correlation time of the spectrum seen by resonant particles. The result is

plotted in Fig.1. In this figure, the diffusivity has distinct feature depending on the

strength of the perturbation amplitude. First, when the fluctuation amplitude is small

so that 2k⊥vE×B/τ
−1
ac < 1, we have D⊥ ∼ τacv

2
E×B

to the first non-trivial order. The

diffusivity scales with the fluctuation amplitude to the second power. This is so-called

weak turbulence regime. In this case, the dispersal rate of wave packet is larger than

the circulation rate of particles, τ−1ac > 2k⊥vE×B. Then the wave packet changes its

pattern before trajectory of resonant particles deforms. Unperturbed orbit is a good

approximation and the quasilinear theory is applicable. This regime also corresponds

to the Kubo number K < 1. In order to obtain quantitative estimate for transport

coefficient, the mixing length estimate, vE×B ∼ v∗ ∼ 1/(k⊥τac), is often employed.

Note that this corresponds to the case of K ∼ 1. Thus, conventionally, quantitative

estimates of transport are obtained from quasilinear theory by pushing the result to the

applicability boundary.

On the other hand, when the amplitude is large so that 2k⊥vE×B/τ
−1
ac > 1, we have

D⊥ ∼ vE×B/k⊥. This is so-called strong turbulence regime. We also note that the similar

scaling is directly obtained from Eq.(12) for strongly resonant particles ω − k‖v‖ → 0.

In this regime, the E × B circulation rate exceeds the packet dispersal rate. Particle

trajectory is strongly deformed (the Kubo number K > 1), and quasilinear analysis

with the linear response is not applicable. Moreover, resonant particles form E × B

eddys in this regime. This process leads to the formation of phase space structures,

such as holes or granulations, fluctuations other than normal modes or waves, which

impact dynamics and transport. Now we turn to the analysis of these components.
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Figure 1. The spatial diffusion coefficient, calculated for a model spectrum, as a

function of fluctuation amplitude. For weak amplitude, the diffusivity scales with

the v2E×B . This is so-called weak turbulence regime. On the other hand, for larger

amplitude, diffusivity scales as ∝ vE×B . This is so-called strong turbulence regime.

In this regime, resonant particle trajectory is deformed and the formation of phase

space structures (granulations) is likely. The mixing length estimate corresponds to

the boundary between the two regions.

3. Holes in drift wave turbulence

When drift wave turbulence is strongly resonant and characterized by a large Kubo

number, phase space structures can form. Here, to elucidate the role of these phase space

structures in turbulence dynamics, we consider the simplest example of a coherent drift

hole, a localized hole structure in phase space density. More specifically, we consider
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an ion hole. Mathematically, a hole is obtained as a stationary solution of the Vlasov-

Poisson systems, with the condition that the entropy of the system is maximized[22, 23].

Their scale is typically given by the turbulence correlation scale for the spatial direction

and by the resonance broadening scale in the velocity direction. A schematic picture of

a hole localized at (x0, v‖0) is given in Fig.2.

Importantly, once formed, holes can tap free energy and drive subcritical instability.

Simply put, this is due to the conservation of the total phase space density. As depicted

in Fig.2, we consider a hole at (x0, v‖0) and displace it in phase space. Since phase space

density is conserved along trajectory, df/dt = 0, the relative depth of the structure

grows. Here the projection in x direction is shown. The growth rate of this process can

be calculated by following the procedure in [23] as:

γH ∼ τ−1c ImχeImχi (16)

Here dependence of the susceptibility on the wave number and the frequency has been

dropped to simplify the notation. The growth process has several distinctive features.

First, the hole growth is nonlinear and the growth rate is amplitude dependent γH ∝ τ−1c .

Thus, nonlinear, explosive growth can result. Secondly, dissipation both in ions and

electrons act as a trigger for the instability. This is in contrast to the linear growth

of drift waves (Eq.(9)) γL ∝ −Imχe + Imχi. Here the sign convention is Imχe < 0

and Imχi < 0. In the linear growth, only electron dissipation acts as a trigger while

ion dissipation (ion Landau damping) introduces stabilization effect. The hole growth is

triggered when ImχeImχi > 0. A similar feature is obtained for 1D plasmas[42, 38]. The

condition is likely satisfied in the presence of free energy in the distribution function.

Thus the hole can grow even when linear waves cannot, and drive subcritical instability.

Finally, in contrast with hole growth in a 1D plasma, the growth is a synergy of the

relaxation in gradients both in v‖ and x direction. We elaborate the growth process and
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Figure 2. Growth of a single structure. A (hole) structure, initially located at

(x0, v‖0), is displaced in phase space and grows, as indicated by the black arrow in

the upper picture. The projection into x direction is also plotted (the bottom figure,

with the displacement represented by the black arrow). In the displacement, the total

phase space density is conserved, since df/dt. In the presence of the background

gradients, this leads to the growth of the initial structure.

its significance by considering each case separately.

We start with the description of the displacement in v‖ direction (Fig.3). Here,

we consider a linearly stable location in x, so that the set of macroscopic parameters

gives γ(∇n,∇T, ...) < 0. At this location, we suppose that a process such as heating

leads to a quasilinear flattening in v‖ direction and initiates a seed structure. Note that

this is quite analogous to the formation of clump-hole pair in Berk-Breizman model[25]

or subcritical growth due to the localized structure in 1D Vlasov plasmas[38]. Once

created, the structure can be displaced in the v‖ direction. This process can happen
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Figure 3. A case of the growth due to the displacement in the v‖ direction. This is

analogous to the growth in 1D Vlasov plasmas. In order to get displaced, ion structure

needs to exchange momentum with electrons. This is allowed in the presence of the

electron dissipation δe.

when ion holes exchange momentum with electrons irreversibly. This can happen with

dissipative coupling to electrons. The resultant growth rate is given[22] by

γH ∼ −τ−1c δec
2
s

∂fi
∂v‖

∣∣∣∣
0

. (17)

An important feature of this process is that the growth can happen even before the

global parameters change to push γL > 0. Then the growth of the ion structure can

result without waiting the change of global profiles. Thus the nonlinear, subcritical

growth can be a key to understand fast, transient phenomena.

Next, we consider the growth due to the displacement in the spatial direction

(Fig.4). During the displacement, quasi-neutrality must be satisfied. For ion structures,

this is possible when they can spatially scatter electrons. The finite dissipation δe

allows ion structures to scatter electrons irreversibly and access to free energy in spatial

direction. This leads to the growth of structure, with the growth rate given[23] by

γH ∼ −τ−1c δekyρscs
∂fi
∂x

∣∣∣∣
0

. (18)

Importantly, transport associated with these processes are non-diffusive. This point is
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Figure 4. A case of the growth due to the displace,ent in x direction. While accessing

to free energy, ion structures must satisfy quasi-neutrality. Then ion structures can

access free energy by scattering electrons irreversibly. This is possible in the presence

of the finite phase shift in electron δe.

further discussed in the context of the impact on transport modeling (in the section 5).

4. Granulations in drift wave turbulence

The above section dealt with coherent holes with effectively infinite life time. In contrast,

incoherent granulations, clusters of resonant particles with finite life time, can form in

drift wave turbulence. In this section, we formulate their dynamics and discuss basic

properties(i.e. scales, correlation, etc), impact on subcritical growth and transport, and

a mechanism to drive zonal flows.

4.1. 2 point evolution of phase space density correlation

The dynamics of granulations can be analyzed by calculating the correlation of 2 different

points in phase space[33]. As illustrated in Fig. 5, two initially correlated particles

tend to move together. Eventually they lose correlation due both to the difference in

streaming speed along the magnetic field and to relative E ×B scattering by turbulent
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field. The dynamics is formulated by calculating the evolution of two point phase space

density correlation, or phasestrophy [33]:

∂t〈δf(1)δf(2)〉+ T (1, 2) = P(1, 2). (19)

Here 〈...〉 is the average over the center of mass spatial coordinate, x+ = (x1 + x2)/2.

Relative coordinates are defined as v‖− ≡ v‖1 − v‖2 and x− = x1 − x2. Here

T (1, 2) = v‖−∇‖−〈δf(1)δf(2)〉

+∇1 · 〈vE×B(1)δf(1)δf(2)〉+∇2 · 〈vE×B(2)δf(1)δf(2)〉 (20)

is the triplet term and describes the lifetime of the correlation.

P(1, 2) = −〈δf(2)vE×B,x(1)〉∂〈f〉
∂x
− q

mi

〈δf(2)Ẽ‖(1)〉∂〈f(1)〉
∂v‖

+(1↔ 2)(21)

is related to the release of free energy and acts as a source. (1 ↔ 2) denotes the term

with the arguments exchanged. We note that the production term takes a typical form

of the production of fluctuation energy, namely the product of the fluxes and the driving

gradients.

To obtain a more specific form of T (1, 2), a closure calculation is necessary.

Following the analysis in literature[33, 20], the triplet term is approximated as

T (1, 2) ∼= v‖−∇‖−〈δf(1)δf(2)〉 − ∇− ·D− · ∇−〈δf(1)δf(2)〉. (22)

Here D− ∼= (k0 · x−)2D⊥, D⊥ is the diffusivity tensor, and k0 is the spectrally averaged

wave number. For simplicity, we further assume the diffusion tensor is isotropic, namely

D⊥ = D⊥(x̂x̂+ ŷŷ) where D⊥ is a scalar diffusivity in the perpendicular direction. Then

the triplet term is given by

T (1, 2) ∼= v‖−∇‖−〈δf(1)δf(2)〉 −
(

∂

∂x−
D⊥(k20xx

2
− + k20yy

2
− + k20zz

2
−)

∂

∂x−

+
∂

∂y−
D⊥(k20xx

2
− + k20yy

2
− + k20zz

2
−)

∂

∂y−

)
〈δf(1)δf(2)〉. (23)
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Figure 5. A cartoon of granulations. In drift wave turbulence, resonant particles

stream along the field line and are scattered by turbulent fields. Initially separated two

resonant particles tend to move together. They lose correlation due to the difference

in the streaming speed and due to the relative scattering.

Effective lifetime can be estimated by calculating the evolution of moment of F (1, 2),

whose dynamics is given by

∂tF (1, 2) + v‖−∇‖−F (1, 2)−
(

∂

∂x−
D⊥(k20xx

2
− + k20yy

2
− + k20zz

2
−)

∂

∂x−

+
∂

∂y−
D⊥(k20xx

2
− + k20yy

2
− + k20zz

2
−)

∂

∂y−

)
F (1, 2) = 0. (24)

The moment is defined by 〈〈...〉〉 ≡
∫
dx−dv‖−(...)F/

∫
dx−dv‖−F . Relevant moments

are

∂t〈〈x2−〉〉 − 6k20xD⊥〈〈x2−〉〉 − 2k20yD⊥〈〈y2−〉〉 − 2k20zD⊥〈〈z2−〉〉 = 0, (25)

∂t〈〈y2−〉〉 − 2k20xD⊥〈〈x2−〉〉 − 6k20yD⊥〈〈y2−〉〉 − 2k20zD⊥〈〈z2−〉〉 = 0, (26)

∂t〈〈z2−〉〉 − 〈〈v‖−z−〉〉 = 0, (27)

∂t〈〈v‖−z−〉〉〉 − 〈〈v2‖−〉〉 = 0, (28)

∂t〈〈v2‖−〉〉 = 0. (29)

The set of equations is solved with the initial separation (x−, v‖−). When turbulence is
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isotropic kx0 ∼ ky0 ∼ k⊥0, time asymptotic solution is

k2⊥0〈〈r2−〉〉 →
(
k2⊥0x

2
− + k2⊥0y

2
− +

k2z0
2

(z2− + z−v‖−τc + v2‖−τ
2
c )

)
et/τc (30)

where τ−1c ≡ 8k2⊥0D⊥ is the correlation time. Thus the initially separated 2 points

exponentially diverge due to turbulent mixing. When the relative separation becomes

comparable to the original correlation length of the turbulent field k−1⊥0, they lose

correlation. This gives an effective life time of the correlation as

τcl = τc ln

(
k2⊥0x

2
− + k2⊥0y

2
− +

k2z0
2

(z2− + z−v‖−τc + v2‖−τ
2
c )

)−1
. (31)

The expression is only valid for the argument of the logarithm smaller than 1. We also

note that the typical scale in v‖ direction is given by ∆v‖ ∼ 1/(k‖0τc). This is the

resonance broadening scale. Thus, particles within the resonance broadening scales are

correlated together.

4.2. Sharp correlation in phase space

An important feature of granulations is that they have a strong correlation in phase

space. At the steady state, the phasestrophy is given by:

〈δf(1)δf(2)〉 ∼= τcl(x−, y−, z−, v‖−)P(v+). (32)

The correlation diverges logarithmically for x− → 0, v‖− → 0. To elaborate this point

further, we have plotted the behavior in Fig.6 for x− = 0. Note that P is finite as

1 → 2, so its value is normalized to 1 in this figure. The blue curve indicates the total

correlation. As the relative separation becomes smaller than the resonance broadening

scale, the correlation tends to diverge logarithmically. This cannot be captured by

the quasilinear result, as indicated by the red curve. This singular behavior is an

indication of the formation of granulations, and necessitates to have δf = δf c + δ̃f .

Here δf c is the coherent response to the potential fluctuation φ, which is included
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in quasilinear theory. δ̃f is the incoherent part of the fluctuation. It is this δ̃f that is

responsible for the diverging behavior of the correlation. Note that the sharp correlation

is analogous to that induced by the particle discreteness in plasmas close to thermal

equilibrium. Here the effect of the discreteness is extended to the case of turbulent

plasmas. Finally, we note that this feature has been tested numerically for simplified 1D

Vlasov plasmas.[43, 35] Given the development of computational power and numerical

schemes, it may be interesting to revisit this type of study, especially in the context of

fusion turbulence, by using modern gyrokinetic simulations. Here, solving gyrokinetic

equation gives fluctuation data of distribution function, which can be then used to

calculated the correlation. Analysis for reduce trapped ion turbulence (described by the

bounce kinetic equation) has been initiated and will be reported in future.

Granulations can be viewed as phase space eddys. In principle, granulations in drift

wave turbulence is in 4D phase space, (x, v−). We can slice it into typical 2D planes,

as shown in Fig. 7. In the direction parallel to the magnetic field, the dynamics is

similar to that of 1D Vlasov plasmas. Phase space eddys in (z, v‖) plane are analogous

to those in 1D Vlasov plasmas. In addition, we also have the direction perpendicular to

the magnetic field. In this direction, we can view granulations as E × B eddys, albeit

it arises from resonant particles.

4.3. Dynamics: subcritical growth

Once formed, granulations impact dynamics of collisionless plasmas. Here, as an

example, we discuss subcritical instability by granulations.

The growth of incoherent fluctuation can be extracted from the phasestrophy

evolution. By setting δf = δf c + δ̃f , we have 〈δ̃f(1)δ̃f(2)〉 = 〈δf(1)δf(2)〉 −
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Figure 6. Phase space density correlation, plotted with x− = 0 and ∆v‖ as a variable.

The correlation tends to diverges within the broadening scale, 1/(k‖0τc). This behavior

cannot be reproduced by the quasilinear theory (red curve). The diverging behavior

is due to discreteness effect δ̃f , which is induced by granulations

〈δf c(1)δf c(2)〉 − 〈δf c(1)δ̃f(2)〉 − 〈δ̃f(1)δf c(2)〉. Since[44]

∂t〈δf c(1)δf c(2)〉+ τ−1c 〈δf c(1)δf c(2)〉+ = D, (33)

∂t〈δf c(1)δ̃f(2)〉+ τ−1c 〈δf c(1)δ̃f(2)〉+ = F , (34)

where D = −2〈ṽxδf c〉∂x〈f〉 − 2(e/mi)〈Ẽ‖δf c〉∂v‖〈f〉 and F = −〈ṽxδ̃f〉∂x〈f〉 −

2(e/mi)〈Ẽ‖δ̃f〉∂v‖〈f〉 is the production by the diffusive flux and the dynamical friction

respectively, we have

〈δ̃f(1)δ̃f(2)〉 =

(
τcl

γgτcl + 1
− τc
γgτc + 1

)
P . (35)
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Figure 7. Phase space contour of 〈δf(1)δf(2)〉 in (x−, y−) and (v‖−, z−). In (a), the

correlation is evaluated for the slice of z− = 0 and v‖− = 0. In this plane, granulations

appear as E × B eddys, with the typical scale corresponds to the perpendicular

correlation length of turbulence. In (b), the correlation is evaluated for the slice of

x− = y− = 0. The correlation is strong for z− < k−1‖0 and v‖− < 1/(k‖0τc). In this

plane, granulations are analogous to that of 1D Vlasov plasmas.

Since we are interested in the contribution from small scales, we typically have τcl & τc.

With this ordering, we have

〈δ̃f(1)δ̃f(2)〉 ∼=
(1− τc/τcl)
(1 + γgτc)2

τcP . (36)

By taking the velocity integral and solving for the growth rate γg, we finally have

γg = τ−1c (R− 1). (37)

Here R is related to drive and is given by

R ≡

√∫
dv‖−(1− τc/τcl)τc

∫
dv‖+P(v‖+)

〈(δ̃n/n0)2〉
. (38)

In order to make further progress, we need a specific form for the production term.

Substituting the coherent response δf c and using the Poisson equation χ(eφ/Te) =∫
dv‖δ̃f , we have

P(v‖+) ∼= 2
∑
kω

|k‖|
π

ImχiImχe
|χ|2

∫
dv1〈δ̃f(1)δ̃f(v‖+)〉kω. (39)
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Substituting this for the factor R and performing the velocity integral, we finally have

R ∼

√
C0

ImχiImχe
|χ|2

. (40)

Here C0 = (2
√

2/π)
∫ 1/
√
e

0
dx(1 − 1/ ln(x−2)) ∼= 0.294. Note that the growth of

granulations have several feature in common with that of coherent drift holes; amplitude

dependent, electron and ion dissipation as a trigger, etc. Thus, the growth of

granulations is also tied to the growth of phase space structures, as depicted in Fig.2.

The difference is that the growth rate γg ∼ Rτ−1c − τ−1c is subtracted by τ−1c . This

factor reflects the fact that granulations have finite life time and typically decorrelate

after one circulation time, as fluid eddys. Then the growth rate of granulations is

reduced compared to that of holes. This indicates that the growth of granulations may

be harder to reproduce than that of coherent holes. Indeed, a recent numerical study

for ion acoustic turbulence[30] reports that while initially launched holes subcritically

drive fluctuation, a large level of fluctuation amplitude is required in the absence of

initial holes to recover subcritical growth. Thus care must be taken when one tries to

numerically recover the subcritical growth driven by phase space structures in drift wave

turbulence.

5. Coupling to zonal flows

Here we demonstrate that phase space structures can couple to zonal flows. The case

of coherent drift hole is treated in Ref.[24]. Here we demonstrate this for incoherent

granulations. Simply put, while moving through plasmas, granulations can scatter

polarization charge and accelerate flows. This in turn acts as a drag on granulations

to conserve momentum. The coupled dynamics can be formulated by investigating

the spatial structure of wake produced by granulations via Cerenkov emission. The
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wake has a spatial structure, with a small scale oscillation and a slow envelope

variation. The variation can be characterized by the wave number kx and the envelope

variation ∂x. The difference in the two scales sets the necessary phase for vorticity flux

〈ṽx∇2
⊥φ〉 ∝ kykx∂x|φ|2. Note that the latter quantity is Reynolds forcing. The coupled

dynamical equation can be obtained by integrating the two point equation over velocity

and by retaining the flow coupling through the polarization charge scattering in the

production term. This gives

∂tI = τ−1c

(∫
dv‖−τcl(v‖−)

∫
dv‖+Pi,e

I
− 1

)
I

+ τ−1c

∫
dv‖−τcl(v‖−)

∫
dv‖+Pi,pol. (41)

Here I = 〈(δn/n0)
2〉 is the turbulence intensity. The first term in the right hand side

is related to subcritical growth discussed above. The term Pi,e is due to ion-electron

drag. This term is effectively the factor R for granulation growth. The second term is

coupling to flows. Explicitly, this term is given by

τ−1c

∫
dv‖−τcl(v‖−)

∫
dv‖+Pi,pol

= 2
∑
kω

(
ω∗e +

Te
Ti
ω

) 〈fi〉|ω/k‖
τc|k‖0|

ρ2skx∂x

∣∣∣∣eφkω

Te

∣∣∣∣2 (42)

∼ ∆vres〈fi〉|resv∗i
∂x〈ṽxṽy〉
v2thi

. (43)

Thus, collecting all the results, we have the coupled dynamical equation for granulations

and flows:

∂tI = γNLI + ∆vres〈fi〉|resv∗i
∂x〈ṽxṽy〉
v2thi

, (44)

∂t〈vy〉 = −∂x〈ṽxṽy〉 − ν〈vy〉. (45)

An important implication is that granulations can carry momentum in poloidal direction.

The momentum of granulation is described by v2thiI/(v∗i∆vres〈fi〉res). Note that in the

case of drift waves, this quantity corresponds to kyNk where Nk is action density. As a
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result, granulations can exchange momentum with flows to accelerate them. The force

exerted by granulations in steady state can be estimated from the dynamical equation,

as

−∂x〈ṽxṽy〉 ∼ −c2sk⊥0δec2sI ∼ −
∣∣∣∣ c2sIρs/δe

∣∣∣∣ . (46)

Here the force is in the ion diamagnetic direction. This is plausible, since we have

considered ion granulations, which rotate in v∗i direction. Ion granulations exchange the

momentum to excite flows, which then accelerate flows in v∗i. We note that Reynolds

force exerted by electron hole is in the electron diamagnetic direction.

The acceleration of zonal flows by phase space structures is an example of flow drive

by fluctuation other than drift waves. Oft-invoked mechanisms of zonal flow acceleration

is that by drift waves, formulated using wave kinetic approach[45]. However, in turbulent

plasmas, fluctuation is supported not only by waves. A wider class of fluctuation,

so-called non-mode, such as quasi-modes, eddys, blobs, etc, can be also excited in

turbulent plasmas. Indeed, these non-modal fluctuation can accelerate zonal flows.

Several experiments report the excitation of zonal flows by blobs[46, 47], eddys, etc.

More recently, basic experiments reveal the drive of zonal flows by intermittently excited

eddys via advanced data analysis[41]. Helicon plasmas were used in this experiments,

thus the eddys are fluid E × B eddys. In contrast, in collisionless plasmas, such as

ECH plasmas or Q-machines, granulations can be excited and accelerate zonal flows.

A similar analysis to that in ref[41] can be repeated to characterize the acceleration by

E ×B eddys in the perpendicular direction. In addition, we can go one step further to

analyze Laser-Induced-Fluorescence (LIF) data for (z, v‖) dynamics. Coupling to zonal

flows can be a key to experimentally identify phase space structures (ExB eddys, along

with (z, v‖) eddys).
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6. Implication on transport modeling

In this section, we discuss the role of phase space structure in the context of transport

modeling (Table 1). We start by briefly summarizing the conventional approach for

transport analysis using the quasilinear theory. In this approach, the flux 〈ṽrδf〉 is

calculated by substituting the coherent response δf c = Rφ̃, where R is the response

function. Typically this yields the quasilinear diffusive flux, 〈ṽrδf〉 = −D(|φ̃|2)〈f〉′.

We note that in the presence of multiple gradients, the flux can contain non-diffusive

components, such as the convective part of particle flux or the residual stress in parallel

momentum flux. At this points, transport coefficients are amplitude dependent. The

amplitude grows due to linear instability and saturates due to nonlinear interaction. A

steady state is achieved when the linear growth balances against the nonlinear damping.

In this state, transport coefficients are typically given by the mixing length estimate,

D ∼ γ/k2⊥, where the growth rate and the wave number are typically estimated from

those of the most unstable mode. We note that fluctuation can couple to zonal flows,

in which case the level of transport is reduced.

In contrast, in the presence of phase space structures, the nature of transport is

different. The difference arises both from the form of the flux and from the fluctuation

evolution. First, the flux contains a non-diffusive component. Note that some non-

diffusive components can be modeled within the quasilinear framework; however, the

origin of the non-diffusive component by phase space structure is physically different. In

the case of phase space structure, this arises due to dynamical friction. Let us consider

ion granulations as an example (Fig.4). Ion granulations can be viewed as a correlated

macro-particle, which can spatially scatter electrons. This induces ion granulation drag
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Conventional Strongly Resonant Turbulence

Macro/Flux Quasi-linear flux −D〈f〉′ Lenard-Balescu

→ mixing length estimate −D〈f〉′ + F 〈f〉

D ∼ γL
k2⊥

Dynamical friction

Novel path for non-diffusive flux

Micro/ Mode, waves ε(ω,k) = 0 Non-mode, structures in

Fluctuation linear growth v.s. NL damp. phase space (holes/grans.)

Saturation with mixing Nonlinear, subcritical growth

length level → Bursty, explosive growth

ZF Yes, Predator-Prey Yes, Predator-Prey

coupling Amp. dressed by ZF Acceleration by

phase space structures

Table 1. Comparison between transport models.

on electrons, with the spatial flux given by:

〈ṽxδfi〉 =
∑
kω

kyρscsδe
|χ(k, ω)|2

∫
dv2〈δ̃f iδ̃f i(v2)〉kω. (47)

Note that the flux is that of ions, while it explicitly depends on the electron phase

shift. This is required for ions to couple with electrons. The origin of this flux is quite

analogous to Fokker-Planck drag in Lenard-Balescu flux, which arises as a result of

inter-species drag. In this case, ion granulations can release free energy by coupling

to electrons. As a result, the flux becomes J = −D∂x〈f〉 → −D∂x〈f〉 + F 〈f〉 where

F is the Fokker-Planck drag. Thus once formed, granulations can drive non-diffusive

transport in plasmas. Indeed, by accounting for phase space structures, we can have

a novel path for non-diffusive transport phenomena. For example, granulations can
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give rise to intrinsic torque to drive toroidal flows, as demonstrated for trapped ion

turbulence[40].

The fluctuation evolution is distinctive in the presence of phase space structures.

The evolution is now nonlinear, and the growth rate is amplitude dependent as

demonstrated above. By writing the growth rate as γ0I
2, where γ0 is an amplitude

independent growth rate, the fluctuation evolution is

∂tI = γ0I
2. (48)

This can be integrated to give

I =
1

I−10 − γ0t
(49)

where I0 is the initial amplitude at t = 0. Thus, a finite time singularity results. An

important question is then how it saturates and what is the typical amplitude level set

by these phase space structures. We note that if we invoke the mixing length estimate

for its amplitude[28], the flux, Reynolds stress, etc by granulations are in the order of

those by linearly unstable drift waves. Thus the contribution from granulations cannot

be dismissed a priori. However, quantitative evaluation of the absolute amplitude in

the presence of phase space structures remains elusive, and we need more investigation.

In particular, we need quantitative evaluation of the amplitudes of both unstable waves

and granulations, which allows comparison between flux by unstable waves and that by

granulations. This is left for future investigation.

7. Summary and Discussion

In this paper, we discussed basic features of phase space structures in drift wave

turbulence, such as drift holes and granulations. We have also explained their dynamical

impact to drive subcritical instability, zonal flows, and non-diffusive transport, etc.
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Relevant results are summarized (Table 2) in the following:

(i) Phase space structures in drift wave turbulence, drift holes and/or granulations,

have typical scales ∆x ∼ ∆y ∼ 1/k⊥0, ∆z ∼ 1/k‖0, ∆v‖ ∼ 1/(k‖0τc). Here

k−1⊥0 ∼ a few ρs, k‖0 ∼ Lz (Lz is the typical length of plasma column), and ∆v‖

is the resonance broadening scale. They can be viewed as phase space eddys in

(x, v‖) with these characteristic scales, as shown in Fig.7. Within these scales, two

point correlation of phase space density fluctuation may diverge (Fig.6). Physically,

this is due to the discreteness effect induced in turbulent plasmas.

(ii) Coherent drift holes drive subcritical instabilities. Physically, the growth is tied to

the growth of phase space structures (Fig.2). The growth can result as a synergy

of the release of free energy both in the velocity gradient and the spatial gradient.

Nonlinear, explosive growth can result (Eq.(49)).

(iii) The growth rate of granulations is derived. The growth rate is smaller than that

of a single structure, as manifested by the factor R− 1. This reflects the fact that

granulations have finite life time and they tend to decorrelate after 1 circulation

time. This feature implies that the subcritical growth may not occur with the

granulations and that the growth of a single hole may be easier to reproduce in

numerical experiments.

(iv) Granulations can drive zonal flows. The coupled dynamics is formulated in Eqs.(44)

and (45). Granulations carry poloidal momentum and exchange it to drive zonal

flows. The resultant Reynolds force at steady state is given by Eq.(46). Taken

together with the case of coherent drift holes, phase space structures in drift wave

turbulence can drive zonal flows. This process is an example of zonal flow excitation

by non-modal fluctuation, such as blobs, eddys. Here, phase space structures can
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Prediction Relevant feature

∆x ∼ ∆y . k−10⊥ Need resolve turbulence scale,

Scale ∆v‖ . 1/(τck0‖) resonance broadening.

Sharp correlation within the scales.

Subcritical Hole: γH ∼ τ−1c ImχiImχe Hole growth easier to reproduce.

growth Gran.: γg ∼= τ−1c (R− 1) May introduce fast response,

non-diffusive transport.

Hole: Yes (Ref.[24]) Excitation of ZF by phase space

Coupling to Gran.: Yes (Eq.(44)) structure (non-mode).

zonal flow Resultant forcing Eddys, ZF growth, LIF

−∂x〈ṽxṽy〉 ∼ sgn(v∗)

∣∣∣∣ c2sIρs/δe

∣∣∣∣ in collisionless plasmas?

Table 2. Summary of relevant feature and implication.

also drive zonal flows. This coupling can be a key to identify granulations in

experiments.

(v) Some of these features suggest that phase space structures can be important to

approach current issues in confinement. For example, the subcritical instability

driven by holes can describe a fast response of fluctuations. As depicted in Fig.3,

holes can drive fluctuation at linearly stable location, before global profiles change.

Moreover, granulations drive non-diffusive transport, as discussed in Fig.4, Eq.(47)

and Table 1. These features make phase space structures as an attractive candidate

behind transient response and non-local transport problems.

Given these theoretical results, a relevant next step in the study of holes and

granulations for fusion turbulence may be verification and validation tests by numerical
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and physical experiments. From numerical perspective, we note that a careful treatment

of noise is necessary. As we demonstrated in [30], PIC noise can lead to an artificial

growth of fluctuation. Thus, a careful treatment of noise is essential, e.g. by using

continuum codes. These seem possible for current gyrokinetic simulation. There are

some hints for the formation of granulations and appearance of their effects; a former

study[18] reports that Kubo number is larger than unity for CTEM turbulence and non-

diffusive transport results. However, in this study, it was argued that this is due to the

convective pinch in CTEM turbulence. We argue that further analysis can be performed,

such as calculating the phase space density correlation or analyzing the sensitivity of the

transport flux to ion dissipation, etc. For this direction, we are currently investigating

the effect of granulations in trapped ion turbulence, using a reduced version of the full f

gyrokinetic code based on bounce kinetic equation. A detailed feature will be reported

in future.

Validation in physical experiments seems challenging. There are some attempts to

measure phase space density vortex, by measuring the pulse in potential perturbation

or by measuring the dependence of frequency on the fluctuation amplitude, ω ∼ ωb =√
eφ/m. However, identification of localized structures (eddys, holes, vortex, etc,) in

phase space requires further experiments, which require measurement of fluctuating

distribution function by LIF etc. A possible approach is to seek for the coupling to

zonal flows and use the coupling as a trigger to conditionally average LIF data. Indeed,

acceleration of zonal flows by fluid E × B eddys in collisional helicon plasmas was

measured in recent study. We may repeat similar experiments and data analysis for ECH

plasmas/Q machines. Here, in addition to measuring E×B eddys in the perpendicular

direction and how they accelerate flows, we can analyze LIF data for (z, v‖) dynamics.

One example where phase space structures can play an important role in fusion
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plasmas would be the problem of transport in the edge-core coupling region (so-called

’short fall’ problem[8]). In these region, local simulation or quasilinear transport models

underpredict the level of transport as compared to experiments. A missing element here

could be so-called non-local transport effect, including fast transient pulse (such as

avalanches etc). For this, holes/granulations can nucleate resonant particles and drive

ballistic transport (radially) by dynamical friction. Of course, additional quantitative

analysis is required to support this, which we will pursue in future.

In conclusion, granulations and holes (phase space structures) are important to

understand turbulence dynamics and transport in collisionless plasma. Phase space

structures can be a key to understand unresolved confinement property, such as fast

transient event, transport scaling, etc. Given the state of affairs, the topic merits

further investigation. Relevant future direction includes investigation of the relative

importance of granulations and unstable waves, and in particular, tests by modern

gyrokinetic simulation and basic experiments. These will be addressed in future.
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