L-H Transition Threshold Physics at Low Collisionality

M.A. Malkov¹, P.H. Diamond¹, P.-C. Hsu, J. Rice², K. Miki³ and G.R. Tynan¹

¹CMTFO and CASS, UCSD, USA; *e-mail*: mmalkov@ucsd.edu ²PCFS, MIT, USA; ³JAEA, Rokkasho, Japan

Supported by US DoE, Award Number DE-FG02-04ER54738

An L \rightarrow H power threshold scaling including the minimum in $P_{th}(n)$ is discussed, elucidating the impact of inter-species energy transfer on threshold physics. Using a new four-field LH transition model, we study transitions in collisionless, electron heated regimes where the electron-ion coupling is allowed to be completely *anomalous*, mediated by the fluctuation of $\langle \mathbf{E} \cdot \mathbf{J} \rangle$ work on electrons and ions. New transition scenarios, characterized by the sensitivity of transition evolution to pre-existing L-mode profiles are also considered, using the new model.

<u>Motivation</u>: Physics of $L \rightarrow H$ Threshold

Present

- Origin of $P_{th}(n)$ minimum?
- collisional electron-ion coupling (Ryter) especially electron heating
 - P_{th} set only by edge local physics? $a^2/\chi \tau_{equil} \gtrless 1$? coupling \iff global dependence?
 - connection to LOC-SOC transition

Looking Ahead

- Collisionless, electron heated plasmas ?
 - coupling anomalous $\langle {\bf E} \cdot {\bf J}_{e,i} \rangle$ transfer via fluctuations
 - shear flow regulation no collisional drag ?
- How does $\nabla P_i|_{edge}$ rise?

- H-mode operation [3, 4, 5, 6] is the regime of choice for good confinement.
- Issues:
 - optimum access to, and efficient sustainability, of H-mode [7, 8]
 - ${\scriptstyle \circ }$ L ${\rightarrow }H$ transition power threshold, understanding its minimum
 - related problem of hysteresis
- ITER-specific transitions:
 - understand threshold in low collisionality, electron heated regimes
 - (deep) relation to P_{th min}
- low-collisionality transitions requires model extension beyond collisional e – i coupling
- discussed in this paper:
 - LightarrowH power threshold scaling and the origin of $P_{\mathrm{th}}\left(n
 ight)$ -min
 - transitions in collisionless, electron heated regimes
 - new transition scenarios, characterized by sensitivity to pre-existing L-mode profiles

- $k-\epsilon$ for evolution of intensity, shear flow field, $n, \; T_i, \langle V_{artheta}
 angle$
- shear flow damped by drag
- Separated Species:

 $\partial T_e / \partial t + \text{transport} = Q_e - \text{collisional transfer} - \text{collisionless coupling}$ $\partial T_i / \partial t + \text{transport} = Q_i + \text{collisional transfer} + \text{collisionless coupling}$ - collisionless shear flow damping+ collisionless heating (due shear flow)

$$\gamma_{SF} = \gamma_{\textit{visc}} \left(\frac{\partial \sqrt{E_0}}{\partial r}\right)^2 + \gamma_{\textit{Hvisc}} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2}\right)^2$$

• $\sqrt{E_0}$ stands for ZF velocity: two contributions come from viscose and hyperviscose ZF damping and corresponding ion heating

Results with Collisional Transfer

 critical parameter: Heating mix

$$egin{array}{rcl} H_{i/i+e} &= \ Q_i/\left(Q_i+Q_e
ight) &\equiv \ H_{mix} \end{array}$$

- Relating H_{mix} and n by monotonic H_{mix} (n) recovers P_{thr} (n) min ↗
- *P_{thr}* (*n*) minimum
 recovered *only* when *both n* and *H_{mix}* evolved →
- 3D curve P_{thr} (n, H_{mix}), projected on (n, P_{thr})plane (top plot)u has a minimum

Collisionless, Electron Heated Regimes- Predictions

- Coupling anomalous $\langle {\sf J}_{i,e}\cdot{\sf E}
 angle$, not $\propto {\it T}_e-{\it T}_i$
- Flow damping: turbulent hyper-viscosity (c.f. P.C. Hsu, et al. PoP 2015)
- Transition mechanism: anomalous $e \rightarrow i$ thermal equilibration front (e-cooling front, left Figure)

- Transition occurs when P_i -front (*i*-heating front, right Figure) approaches edge \Rightarrow triggers increase in ion ∇P_i
- New Scenario!, Prediction.

Motivated by:

- complexity of transitions studied within the previous 6-field model [9, 10]
- strong requirements for capturing sharp fronts

Features:

- 4-field model ($T_{e,i}$, DW, ZF) allows to explore new transition scenarios
- adaptive mesh refinement, high-fidelity collocation scheme

Aimed at:

- understanding low-collisionality transition
- spontaneous transition in the absence of turbulence driven shear flow
- sensitivity of the transition to the pre-existing L-mode *density profile*
- optimizing access to H-mode
- mapping basins of attraction for different transitions

Key Physical Elements of 4-field model.

Spontaneous LH transition with suppressed shear flow

 A new analytical and numerical 4-field model for describing L → H transitions in weakly collisional ITER-related regimes

- transitions in collisionless, electron heated regimes where the electron-ion coupling is allowed to be completely *anomalous*, due to the fluctuation of (E · J) work on electrons and ions
- New transition scenarios, characterized by the sensitivity of transition evolution to pre-existing L-mode profiles are considered (Figure, upper-left corner).

Model New Capabilities and Equations

- the shear flow damping is turbulent, and not just due to collisional drag
- nonlinear flow damping leads to additional turbulent viscous heating of the ions

Equations evolve $T_{e,i}$, DW intensity, I, and ZF velocity W:

$$\frac{\partial T_e}{\partial t} = \frac{\partial}{\partial x} \left(\frac{I}{1 + \alpha_t R} + \chi^e_{neo} \right) T'_e - \frac{1}{\tau} (T_e - T_i) + S'_e + \gamma_{e0} I (\kappa_n + \sigma T'_e/T_e)$$

$$\frac{\partial T_i}{\partial t} = \frac{\partial}{\partial x} \left(\frac{I}{1 + \alpha_t R} + \chi^i_{neo} \right) T'_i + \frac{1}{\tau} (T_e - T_i) + S'_i - \gamma_{e0} I (\kappa_n + \sigma T'_e/T_e) + \gamma_v I W'^2$$

$$\frac{\partial I}{\partial t} = (\gamma_L - \Delta \omega I - \alpha_0 W^2/2 - \alpha_v R) I + \chi_N (I'^2 + I \cdot I'')$$

$$\frac{\partial W}{\partial t} = \frac{\alpha_0 I W}{1 + \zeta_0 R} - \gamma_c W + \gamma_v (I' W' + I W'')$$

Definitions and notations

• <u>initial study</u>: suppression factor R obtained for strong thermal e - i coupling ($T_e \approx T_i$) anomalous and collisional (will relax in the next phase)

$$R = \left[\kappa_n \left(\kappa_n T + T'\right)\right]^2, \text{ with } T \equiv T_i + T_e.$$

notation/units: T' = ∇T, T/MC_s², κ_n = L_n⁻¹, length in min. rad., a
 heat sources for electrons and ions (at x ≃ a_{e,i})

$$S_{e,i}' = \frac{2S_{0e,i}'}{\sqrt{\pi}D_{e,i}\left[\operatorname{erf}\left(\left(1 - a_{e,i}\right)/D_{e,i}\right) + \operatorname{erf}\left(a_{e,i}/D_{e,i}\right)\right]} \exp\left[-\left(\frac{x - a_{e,i}}{D_{e,i}}\right)^2\right]$$

• ITG and CTEM contributions to growth of DW:

$$\gamma_L = \sqrt{T_e} \left[\gamma_{L0} \Re \sqrt{-T_i'/T_i - T_{i0}'} - \gamma_{e0} \left(\kappa_n + \sigma T_e'/T_e \right) \right]$$

shear flow velocity in suppression factor

$$V_E = (c/eBn) p', \quad p = n (T_e + T_i), \quad \langle V_E \rangle' \approx - (c/eB) \kappa_n (\kappa_n T + \kappa_n)$$

Stationary Analytic Solutions

- limit of small au
 ightarrow 0 , $T_e = T_i + \mathcal{O}\left(au
 ight) pprox T/2$
- turbulent components sit at their thresholds: $\gamma_{
 m v}=\chi_{
 m \it N}=0$
- steady state solution for $T_{e,i}(x)$, I and W, obtained from Eqs. on p.10 by setting $\partial_t = 0$ (saturated instabilities for I and W)

$$\left(\frac{\zeta_0 - \alpha_t}{1 + \alpha_t R} R + \chi\right) T' + \frac{\alpha_0}{2\gamma_c} \left(\chi_i - \chi_e\right) \Delta T' - S = const$$

where $\Delta T = T_i - T_e$, $\partial S / \partial x = -\alpha_0 \left(S'_e + S'_i \right) / \gamma_c$ and $\chi = 1 + \left(\chi^i_{neo} + \chi^e_{neo} \right) \alpha_0 / 2\gamma_c$

• Assuming
$$|\Delta T| \ll T$$

$$\left[\chi - \frac{\alpha \left(\kappa_n T + T'\right)^2}{1 + \omega \left(\kappa_n T + T'\right)^2}\right] T' = S(x)$$
(1)

here $\alpha = (\alpha_t - \zeta_0) \kappa_n^2$ and $\omega = \alpha_t \kappa_n^2$, S(0) = 0.

Flux-driven transitions

- sources S'_{e,i}(x) are localized near the origin (x = 0, core plasma)
 S = const, for all x > 0, flux-driven transitions
- solutions $T = T_e + T_i = T(x)$ depends on five parameters
 - χ , α , ω , κ_n and S.
 - after rescaling: $\kappa_n x \to x$, $S/\kappa_n \to S$, $\kappa_n^2 \alpha \to \alpha, \kappa_n^2 \omega \to \omega$, obtain simplified bifurcation problem

$$\left[\chi - \frac{\alpha \left(T + T'\right)^2}{1 + \omega \left(T + T'\right)^2}\right]T' = S = const$$
⁽²⁾

solve for T as a function of T' and three parameters, a, b, c

$$T = c\sqrt{\frac{T'-a}{b-T'}} - T'$$
(3)

$$a = S/\chi, \ b = S/(\chi - \alpha/\omega), \ c = (\omega - \alpha/\chi)^{-1/2}$$

• resolving above eq. for $T(x) \Longrightarrow$ solution multiplicity, bifurcation in (a, b, c) parameter space

Phase coexistence and bifurcation diagram

• solution is easily obtained in terms of x(T')

$$x(T') = x_0 - \ln|T'| + \frac{c}{b}\sqrt{\frac{T'-a}{b-T'}} + \frac{c(b-a)}{2b\sqrt{ab}} \left[\tan^{-1}\frac{T'-\sqrt{ab}}{\sqrt{(b-T')(T'-a)}} - \tan^{-1}\frac{T'+\sqrt{ab}}{\sqrt{(b-T')(T'-a)}} \right]$$

• using new variables

$$\xi = (T' + T)/c, \quad \delta = (a + T)/c, \quad \beta = (b + T)/c$$
(4)

the phase coexistence domain (green zone, left panel) is bound by two inequalities

$$\frac{2}{27} \max\left[0, \beta\left(\frac{9}{2} - \beta^2\right) - \left(\beta^2 - 3\right)^{3/2}\right] \le \delta \le \frac{2}{27} \left[\beta\left(\frac{9}{2} - \beta^2\right) + \left(\beta^2 - 3\right)^{3/2}\right],$$
$$\beta \ge \sqrt{3}$$

Phase coexistence and bifurcation

- if (β, δ) are outside of the phase-coexistence domain (green) only one solution out of the three possible is real
- for $\beta > \sqrt{3}$ it corresponds to an H-mode solution (right panel, lower dashed curve
- for β ≤ √3 it corresponds to an L-mode solution (lowest real T' value out of the three solutions with the other two roots becoming complex)

Example of Spontaneous Transition

- simulation starts from a parabolic temperature profile in L-mode (top two panels, same surface viewed at different angles)
- *T* relaxes to a linear profile but DW is generated at the edge (where
 ∇*T* was initially the strongest) and propagates inward
- *T*-profile flattens in the region of active DW but ZF also grows at the edge
- both DW and ZF fronts continue to propagate inward but the DW has also a rear, cancelling front
- it leaves an H-mode state behind with a residual ZF and zero DW

No-Flow Spontaneous Transition

- preexisting temperature and density profiles allow for spontaneous LH transition
- EDW suppressed over a broad edge region
- established H-mode is resilient to a heat pulse^K√

Pulse-Triggered ITB (Work in progress, preliminary results)

- run starts from an L-mode which quickly relaxes to a linear temperature profile
- strong temperature gradient builds up in this region, ITB^K

- new analytical and numerical 4-field model for describing $L \rightarrow H$ transitions in weakly collisional ITER-related regimes is developed
- new type of transition scenario, which is more sensitive to the pre-existing L-mode structure than to the power variation near the threshold is identified
- dynamical realization of such transitions became possible after an accurate analytic determination of the phase coexistence domain and transition criteria in a multi-dimensional parameter space of the system
- stationary solutions of the model, obtained analytically for that purpose, are also crucial for the code verification
- work studying dynamical evolution of $L \rightarrow H$ transitions numerically is ongoing

References

- 🔋 F. Ryter *et al.*, Nucl. Fusion **53**, 113003 (2013).
- J. E. Rice *et al.*, Physics of Plasmas **19**, 056106 (2012).
- F. Wagner et al., Physical Review Letters 49, 1408 (1982).
- 🔋 K. H. Burrell *et al.*, Physics of Plasmas **12**, 056121 (2005).
- 📄 L. Schmitz *et al.*, Phys. Rev. Lett. **108**, 155002 (2012).
- G. R. Tynan *et al.*, Plasma Physics and Controlled Fusion **58**, 044003 (2016).
- J. W. Hughes *et al.*, APS Meeting Abstracts (2015).
- Y. Ma *et al.*, Nuclear Fusion **52**, 023010 (2012).
- M. A. Malkov et al., Physics of Plasmas 22, 032506 (2015).
 - K. Miki et al., Phys. Plasmas 19, 092306 (2012).