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Abstract

An L→H power threshold scaling including the minimum in Pth (n) is
discussed, elucidating the impact of inter-species energy transfer on
threshold physics. Using a new four-�eld LH transition model, we study
transitions in collisionless, electron heated regimes where the electron-ion
coupling is allowed to be completely anomalous, mediated by the
�uctuation of 〈E · J〉 work on electrons and ions. New transition scenarios,
characterized by the sensitivity of transition evolution to pre-existing
L-mode pro�les are also considered, using the new model.
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	Motivation: Physics of L→H Threshold

Present

Origin of Pth (n) minimum?

collisional electron-ion coupling (Ryter)
especially electron heating

Pth set only by edge local physics?
a2/χτequil ≷ 1? coupling ⇐⇒global
dependence?
connection to LOC-SOC transition

Looking Ahead

Collisionless, electron heated plasmas ?

coupling anomalous 〈E · Je,i 〉 transfer via
�uctuations
shear �ow regulation � no collisional drag ?

How does ∇Pi |edge rise?

Ryter [1]

Rice[2]



Introduction

H-mode operation [3, 4, 5, 6] is the regime of choice for good
con�nement.

Issues:

optimum access to, and e�cient sustainability, of H-mode [7, 8]
L→H transition power threshold, understanding its minimum
related problem of hysteresis

ITER-speci�c transitions:

understand threshold in low collisionality, electron heated regimes
(deep) relation to Pth min

low-collisionality transitions requires model extension beyond
collisional e − i coupling

discussed in this paper:

L→H power threshold scaling and the origin of Pth (n) -min
transitions in collisionless, electron heated regimes
new transition scenarios, characterized by sensitivity to pre-existing
L-mode pro�les
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Previous Model

k − ε for evolution of intensity, shear �ow �eld, n, Ti ,〈Vϑ〉
shear �ow damped by drag

Separated Species:

∂Te/∂t + transport = Qe − collisional transfer − collisionless coupling

∂Ti/∂t + transport = Qi + collisional transfer + collisionless coupling

− collisionless shear �ow damping

+ collisionless heating (due shear �ow)

γSF = γvisc

(
∂
√
E0

∂r

)2

+ γHvisc

(
∂2
√
E0

∂r2

)2

√
E0 stands for ZF velocity: two contributions come from viscose and

hyperviscose ZF damping and corresponding ion heating
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�� ��Results with Collisional Transfer

critical parameter:
Heating mix

Hi/i+e =

Qi/ (Qi + Qe) ≡ Hmix

Relating Hmix and n by
monotonic Hmix (n)
recovers Pthr (n) min↗

Pthr (n) minimum
recovered only when both

n and Hmix evolved →
3D curve Pthr (n,Hmix),
projected on (n,Pthr )-
plane (top plot)u has a
minimum
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Collisionless, Electron Heated Regimes� Predictions

Coupling anomalous 〈Ji ,e · E〉, not ∝ Te − Ti

Flow damping: turbulent hyper-viscosity (c.f. P.C. Hsu, et al. PoP
2015)

Transition mechanism: anomalous e → i thermal equilibration front

(e−cooling front, left Figure)
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New Scenario!, Prediction.
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New Model

Motivated by:

complexity of transitions studied within the previous 6-�eld model
[9, 10]
strong requirements for capturing sharp fronts

Features:

4-�eld model (Te,i , DW, ZF) allows to explore new transition scenarios
adaptive mesh re�nement, high-�delity collocation scheme

Aimed at:

understanding low-collisionality transition
spontaneous transition in the absence of turbulence driven shear �ow

sensitivity of the transition to the pre-existing L-mode density pro�le

optimizing access to H-mode
mapping basins of attraction for di�erent transitions



Key Physical Elements of 4-�eld model.
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suppressed shear �ow

A new analytical and
numerical 4-�eld model
for describing L→ H
transitions in weakly
collisional ITER-related
regimes

transitions in collisionless,
electron heated regimes where
the electron-ion coupling is
allowed to be completely
anomalous, due to the
�uctuation of 〈E · J〉 work on
electrons and ions

New transition scenarios,
characterized by the sensitivity
of transition evolution to
pre-existing L-mode pro�les are
considered (Figure, upper-left
corner).



Model New Capabilities and Equations

the shear �ow damping is turbulent, and not just due to collisional
drag
nonlinear �ow damping leads to additional turbulent viscous heating of
the ions

Equations evolve Te,i , DW intensity, I , and ZF velocity W :

∂Te

∂t
=

∂

∂x

(
I

1 + αtR
+ χe

neo

)
T ′e −

1

τ
(Te − Ti ) + S ′e + γe0I (κn + σT ′e/Te)

∂Ti

∂t
=

∂

∂x

(
I

1 + αtR
+ χi

neo

)
T ′i +

1

τ
(Te − Ti )+S ′i−γe0I (κn + σT ′e/Te)+γv IW

′2

∂I

∂t
=
(
γL −∆ωI − α0W 2/2− αvR

)
I + χN

(
I ′2 + I · I ′′

)
∂W

∂t
=

α0IW

1 + ζ0R
− γcW + γv (I ′W ′ + IW ′′)
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De�nitions and notations

initial study: suppression factor R obtained for strong thermal e − i
coupling (Te ≈ Ti ) anomalous and collisional (will relax in the next
phase)

R =
[
κn
(
κnT + T ′

)]2
, with T ≡ Ti + Te .

notation/units: T ′ = ∇T , T/MC 2

s , κn = L−1n , length in min. rad., a

heat sources for electrons and ions (at x ' ae,i )

S ′e,i =
2S ′0e,i√

πDe,i [erf ((1− ae,i ) /De,i ) + erf (ae,i/De,i )]
exp

[
−
(
x − ae,i
De,i

)2
]

ITG and CTEM contributions to growth of DW:

γL =
√
Te

[
γL0<

√
−T ′i /Ti − T ′i0 − γe0

(
κn + σT ′e/Te

)]
shear �ow velocity in suppression factor

VE = (c/eBn) p′, p = n (Te + Ti ) , 〈VE 〉′ ≈ − (c/eB)κn (κnT + κn)



Stationary Analytic Solutions

limit of small τ → 0 , Te = Ti +O (τ) ≈ T/2

turbulent components sit at their thresholds: γv = χN = 0

steady state solution for Te,i (x) , I and W , obtained from Eqs. on
p.10 by setting ∂t = 0 (saturated instabilities for I and W )(

ζ0 − αt

1 + αtR
R + χ

)
T ′ +

α0
2γc

(χi − χe) ∆T ′ − S = const

where ∆T = Ti − Te , ∂S/∂x = −α0 (S ′e + S ′i ) /γc and
χ = 1 +

(
χi
neo + χe

neo

)
α0/2γc

Assuming |∆T | � T[
χ− α (κnT + T ′)2

1 + ω (κnT + T ′)2

]
T ′ = S (x) (1)

here α = (αt − ζ0)κ2n and ω = αtκ
2
n, S (0) = 0.
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Flux-driven transitions

sources S ′e,i (x) are localized near the origin (x = 0, core plasma)

S = const, for all x > 0, �ux-driven transitions

solutions T = Te + Ti = T (x) depends on �ve parameters
χ, α, ω, κn and S .
after rescaling: κnx → x , S/κn → S , κ2nα→ α,κ2nω → ω, obtain
simpli�ed bifurcation problem[

χ− α (T + T ′)
2

1 + ω (T + T ′)2

]
T ′ = S = const (2)

solve for T as a function of T ′ and three parameters, a, b, c

T = c

√
T ′ − a

b − T ′
− T ′ (3)

a = S/χ, b = S/ (χ− α/ω) , c = (ω − α/χ)−1/2

resolving above eq. for T (x) =⇒ solution multiplicity, bifurcation in
(a, b, c) parameter space



Phase coexistence and bifurcation diagram

solution is easily obtained in terms of x (T ′)

x (T ′) = x0 − ln |T ′|+ c

b

√
T ′ − a

b − T ′

+
c (b − a)

2b
√
ab

[
tan−1

T ′ −
√
ab√

(b − T ′) (T ′ − a)
− tan−1

T ′ +
√
ab√

(b − T ′) (T ′ − a)

]

using new variables

ξ =
(
T ′ + T

)
/c , δ = (a + T ) /c , β = (b + T ) /c (4)

the phase coexistence domain (green zone, left panel) is bound by two
inequalities

2

27
max

[
0, β

(
9

2
− β2

)
−

(
β2 − 3

)3/2] ≤ δ ≤ 2

27

[
β

(
9

2
− β2

)
+

(
β2 − 3

)3/2]
,

β ≥
√
3
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Phase coexistence and bifurcation

if (β, δ) are outside of the phase-coexistence domain (green) only one
solution out of the three possible is real

for β >
√
3 it corresponds to an H-mode solution (right panel, lower

dashed curve

for β ≤
√
3 it corresponds to an L-mode solution (lowest real T ′ value

out of the three solutions with the other two roots becoming complex)



Example of Spontaneous Transition
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Spontaneous Transition: Description

simulation starts from a parabolic temperature pro�le in L-mode (top
two panels, same surface viewed at di�erent angles)

T relaxes to a linear pro�le but DW is generated at the edge (where
∇T was initially the strongest) and propagates inward

T -pro�le �attens in the region of active DW but ZF also grows at the
edge

both DW and ZF fronts continue to propagate inward but the DW has
also a rear, cancelling front

it leaves an H-mode state behind with a residual ZF and zero DW
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No-Flow Spontaneous Transition
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Pulse-Triggered ITB (Work in progress, preliminary results)
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Conclusions

new analytical and numerical 4-�eld model for describing L→ H
transitions in weakly collisional ITER-related regimes is developed

new type of transition scenario, which is more sensitive to the
pre-existing L-mode structure than to the power variation near the
threshold is identi�ed

dynamical realization of such transitions became possible after an
accurate analytic determination of the phase coexistence domain and
transition criteria in a multi-dimensional parameter space of the system

stationary solutions of the model, obtained analytically for that
purpose, are also crucial for the code veri�cation

work studying dynamical evolution of L→ H transitions numerically is
ongoing
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