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A minimal self-consistent model of the multiscale interaction of a tearing mode with drift wave
turbulence is presented. A tearing instability in a cylindrical plasma interacting with electrostatic
drift waves is considered, for reasons of simplicity. Wave kinetics and adiabatic theory are used to
treat the feedback of tearing mode flows on the drift waves via shearing and radial advection. The
stresses exerted by the self-consistently evolved drift wave population density on the tearing mode
are calculated by mean field methods. The principal effect of the drift waves is to pump the resonant
low-m mode via a negative viscosity, consistent with the classical notion of an inverse cascade in
quasi-two-dimensional turbulence. This process can occur alone or in synergy with current gradient
drive of the low-m mode. Speculations of the relation of this multiscale process to the more general
issue of the fate of energy transferred to large scales by an inverse cascade are presented. The
existence of nonlinearly driven vortices pinned to low-q surfaces as a class of highly anisotropic
dissipative structures which terminate the inverse cascade is proposed. The evolution of a finite size
magnetic island is discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2177585�
I. INTRODUCTION

Magnetohydrodynamic �MHD� stability continues to be
a critical consideration in the design of magnetic confine-
ment devices, especially tokamaks. It has long been known
that MHD instabilities can and do limit discharge perfor-
mance. For example, the low-� current gradient driven dis-
ruption is usually explained in terms of the interaction be-
tween magnetic islands developing from tearing instabilities.
The � limit and the associated high-� disruption are usually
associated with pressure gradient driven ballooning or kink
modes. In recent years, appreciation of the importance of
neoclassical tearing modes �NTMs� has risen considerably.
NTMs are driven by the bootstrap current �i.e., produced by
the pressure gradient and toroidicity�, and result from the
interaction of seed currents with parallel and cross-field
transport and the resulting feedback loop between the island,
the local currents, and the pressure gradient. In simple terms,
island induced flattening of the pressure gradient drives fur-
ther island growth. The details of NTM theory are numerous
and a review is far beyond the scope of this paper. The in-
terested reader is referred to Refs. 1–6. However, it is in-
structive to note that polarization currents and cross-field tur-
bulent transport are both thought to be critical to NTM
evolution. Since the cross-field transport is driven by ambi-
ent microturbulence, and the turbulent advection of vorticity
which drives the nonlinear polarization drift also is respon-
sible for generating zonal flows, the statement that NTM evo-
lution is strongly coupled to the ambient turbulence dynam-
ics appears irrefutable. Therefore, a successful theory of
NTM evolution must treat the low-m island and the high-m,
n, and kr turbulence consistently, and on an equal footing.

The reversed field pinch �RFP� is also a confinement
device where the interaction of turbulence with large scale

MHD is important. Recently, a spontaneous transition to a
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quasisingle helicity �QSH� state of good confinement was
predicted on the basis of numerical simulations and subse-
quently observed in experiment. The QSH state is predicted
to appear for Hartmann numbers below a critical value, i.e.,
for H=1/����Hcrit,

7,8 where H has been normalized to the
Alfvén time and the minor radius of the plasma. However,
based on collisional estimates, the Hartmann numbers within
existing RFPs are far too large to meet this criteria. Thus, the
actual dissipation, especially the viscosity, must have a tur-
bulent origin.

The problems of NTM evolution in tokamaks and evo-
lution of the QSH state in a RFP are both multiscale prob-
lems, in that they require treatment over a broad range of
disparate space and time scales. Interestingly, another such
problem is drift wave-zonal flow interaction, in which high-
k drift waves drive an n=0, m=0 zonal flow and, in turn, are
regulated by its shear. Either an analytical or computational
approach to such multiscale problems requires what is, in
effect, a dynamic subgrid scale model, which allows feed-
back of the resolved scales on the unresolved �small� scales.
In the case of the NTM, or tearing modes in RFPs, the feed-
back will be due to:

�1� large scale flow shears, which strain high-k modes;
�2� large scale mixing �i.e., radial� flows, which modify the

turbulence profile; and
�3� modification of the density, temperature, etc., profiles by

the large scale mode, which in turn, alters the excitation
of turbulence.

Note that reasons �2� and �3� have no counterpart in the zonal
flow problem, since flows there are azimuthally symmetric.
However, it is again interesting to mention that the “inverse
cascade” which drives zonal flow formation is a good ex-

ample of a process which lies outside the standard ansatz of
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enhanced turbulent dissipation, which forms the underpin-
ning of most subgrid models. Indeed, since inverse energy
transfer is generic to drift wave turbulence, it is readily ap-
parent that a multiscale model requires more physics content
then enhanced dissipation, alone.

It is an understatement to say that the multiscale problem
is hideously complicated. Thus, we have sought to further
the cause of simplicity by defining the absolutely minimal
working model, namely that of low-m resistive �current gra-
dient driven� tearing evolution in the presence of electro-
static drift wave turbulence in a cylinder �i.e., we will neglect
toroidal effects�. The tearing mode dynamics are described
by reduced MHD �RMHD� and the small scale, large-m
mode dynamics are described by an electrostatic fluid model,
such as the Hasegawa-Mima, Hasegawa-Wakatani, or fluid
ion temperature gradient �ITG� equations. This minimal
model avoids the geometrical complexity of toroidal effects,
facilitates analytical progress and physical insight, and per-
mits easy visualization. Moreover, even further simplification
is made possible by exploiting the disparity in space-time
scales between the tearing mode and the background drift
waves. In particular, for a tearing mode with wave vector q
�here q= �qx , q� , and qz�, where qx is comparable to the in-
verse layer width and q� and qz are standard notations�, and
for drift waves with wave vector k, it is the case that
�q��k, q��k�, and qx�kx. It is thus apparent that the tear-
ing mode adiabatically modulates the background drift wave
population, and the interaction may be treated using a wave
kinetic equation �WKE� for the evolution of an adiabatic
invariant of the drift wave population. Thus, the minimal
model ultimately reduces to:

�1� RMHD for the tearing mode, including the effects of
stresses and fluxes driven by the drift waves and

�2� a WKE for N�k ,x , t�, the drift wave population density
proportional to the spectral density. Here N is strained
and advected by the tearing mode flows.

Note that albeit simple, the “minimal model” defines a
closed self-consistent feedback loop for the interaction of
low-m MHD and high-k drift waves. This feedback loop is
shown schematically in Fig. 1. Since the drift wave stresses

FIG. 1. Minimal multiscale model.
and transport fluxes �directly related to N� evolve in response
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to straining and mixing by the tearing mode, our minimal
model does indeed qualify as a “dynamic subgrid-scale
model.”

To orient the reader, we think it worthwhile at the outset
to survey the physics of multiscale interaction in the minimal
model. As noted previously, a critical element of the multi-
scale problem is the effect of stresses and transport of small
scales on large scales. These effects are nearly always the
result of quadratic nonlinear interaction, so that schemati-
cally:

�

�t
Lq � linear terms + �

k
Ck,qAk+qB−k,

where A and B are amplitudes of small scale modes and Ck,q

is a coupling coefficient. Here, Lq is the amplitude of the
large scale mode. As �q � � �k�, it is natural then to express
this interaction in terms of the population density of the
small scales. Thus, the equation for Lq may be reexpressed
as:

�

�t
Lq � linear terms + �

k
Ck,qf�− k�	Nq�k,t� ,

where 	Nq��Ak�2 and Bk= f�k�Ak. The output of this proce-
dure is a set of “mean field” equations for the low-m pertur-
bation in the presence of the high k, �k background. Indeed,
the high→ low coupling enters via the modulation of the
high-k background population by the low-m perturbation.
This modulation induces a stress or “pondermotive force”
�related to that familiar from Langmuir turbulence� on the
low-k mode.

A largely unexplored element of the multiscale problem
is the feedback of large scales on small. This closing of the
loop allows the feedback of large→small, which makes the
model self-consistent. Use of a wave kinetic equation for N,
i.e.,

�

�t
Nk +

�

�k
��k + k · V� ·

�

�x
Nk −

�

�x
��k + k · V� ·

�

�k
Nk

= �kNk + C�Nk� ,

where V is the velocity of the mean field, �k is the linear
frequency of the drift waves, and C�Nk� is the collisional
operator, provides a useful framework for understanding the
various feedback loops. Since qx
qy, tearing mode flows are
primarily poloidal. Hence, the radially sheared poloidal flows
generated by the low-m mode will shear and regulate the
high-k turbulence in a manner similar to the way zonal flows
regulate drift waves �see Fig. 2�. This effect is accounted for
by the � /�x�kyVy��Nk /�kx term in the wave kinetic equation,
which results in amplification of kx. Note that strong shears
can trap background drift waves,9,10 producing a strongly
nonlinear multiscale interaction. Another interesting feed-
back loop operates via Vx�Nk /�x. This corresponds to
tearing-mode induced modification of the turbulence profile.
The Vx�Nk /�x term also accounts for turbulence
spreading,11–13 a process which is potentially important in
NTM evolution. Finally, the modifications in �P, �T, and

�n induced by the tearing mode can feedback on �k, the
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local growth or excitation rate for the high-k turbulence. It is
interesting to note that low→high feedback occurs in both k
space �via shearing� and position space �via radial mixing�.
These two processes can act synergistically, as well.

We note here that the problem of how a tearing mode
interacts with background turbulence is one with a long, al-
beit intermittent, history in magnetic fusion theory. Most of
the previous attempts have focused on a search for anoma-
lous dissipation in the Ohm’s Law, such as a turbulent elec-
tron viscosity14–16 or resistivity.17 The hope here was to find
a dissipation mechanism which was robust in the limit of
small collisional resistivity. These models all focused on
nonlinearities in Ohm’s Law, did not consider feedback on
the ambient micro turbulence, and so were not self-
consistent. Other studies have considered the effect of inco-
herent emission from high-k modes as a “trigger” for �Ref.
18� or a means of “accelerating” �Ref. 19� the linear growth
of low m. Neither of these studies treated feedback self-
consistently. However, we wish to emphasize that incoherent
emission effects are potentially important and merit further
study. Ongoing research strongly suggests that incoherent
emission from higher harmonics can substantially accelerate
the growth of low-m NTMs.

In this article, then, we present a minimal model of mul-
tiscale interaction between high-k drift waves and a low-m
tearing mode in a cylinder. The basic model is set forth and
mean field equations for the low-m dynamics are derived.
The wave-kinetic equation for the drift wave population den-
sity is presented and discussed, and the key physics of the
high-k� low-m feedback loops is elucidated. We study the
stability, scales and growth rates of both a low-m electro-
static vortex mode and a low-m tearing mode, with ���0.
The key small scale→large scale effect �for the case of elec-
trostatic turbulence� is a negative turbulent viscosity. For re-
alistic parameters, this effect dominates inertia, and thus
�along with field line bending� sets the scale of the tearing
layer. Outgoing wave boundary conditions are imposed in
order to control the rapid oscillations induced by the negative

FIG. 2. Zonal shear flows are similar to the shear flows of thin, low-m
magnetic islands.
viscosity. In contrast to most cases in MHD, a real frequency
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is also induced. We also sketch an outline of the “Ruther-
ford” calculation for the case of a finite size island. The
meaning and interpretation of the Rutherford theory in the
presence of self-consistently evolving background turbulence
are discussed. Again we emphasize that this analysis corre-
sponds to a minimal model, hence effects such as incoherent
emission, toroidal effects, finite � microturbulence, spatial
dynamics of the turbulence spectrum, i.e., turbulence spread-
ing, turbulent heat transport, self-consistent evolution of tem-
perature and density profiles with island, etc., will not be
treated.

The remainder of this article is organized as follows: In
Sec. II we discuss the general multiscale formulation of the
problem. In Sec. III we present a linear theory of the tearing
instability in the presence of a negative viscosity. Finally,
Sec.IV contains the conclusions and a discussion of broader
issues and future work.

II. FORMULATION

A. Wave kinetics for small scale drift waves

As shown in Refs. 20 and 21 for the case of drift wave-
zonal flow systems, wave kinetics is a useful formalism for
studying modulational instabilities. Zonal flows induce a
nonlinear frequency shift in the wave kinetic equation via a
Doppler shift, and modulation of the diamagnetic drift veloc-
ity. The modulation of the drift wave turbulence by the zonal
flow reacts back on the zonal flow through the polarization
nonlinearity. This can be shown to lead to a nonlocal transfer
of energy from the drift waves to the zonal flow, thus ampli-
fying the initial shear perturbation. A schematic flow chart of
the drift wave-zonal flow system is given in Fig. 3.

In this work we will be focusing on low m�0 modes,
for which the above-mentioned picture is somewhat modi-
fied. For the case of a low-m tearing mode, both the inverse
cascade and the current gradient �via the tearing mechanism�
can drive large scale flow. Also, the backreaction on the drift
wave turbulence is more complex. Aside from shearing the
drift wave turbulence as in the case of zonal flows, a low-m
tearing mode will react back on the turbulence both by modi-

FIG. 3. Schematic of drift wave-zonal flow phenomenon.
fying the pressure profile �flattening the pressure gradient
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inside the island and potentially steepening it outside�, and
perturbing the magnetic field topology, thus modifying the
effective local magnetic shear. The structure of the high-k
turbulence should be calculated in the evolving magnetic ge-
ometry which incorporates the island. A schematic flow chart
of the low-m tearing mode interaction with drift wave turbu-
lence is given in Fig. 4.

In order to derive a WKE for the small scales, it is useful
to first identify a quantity which varies adiabatically. One
might expect an adiabatic invariant such as wave action, of
the form Nk=Ek /�k. However, as was shown in Refs. 22 and
23, the actual adiabatic invariant for a drift wave system in
the presence of mean flows is Nk= �1+s

2k�
2 �2 ��k

��2. This
quantity can be recognized as the drift wave potential enstro-
phy, which is a measure of the vorticity density associated
with the drift waves. Note however, for zonal flows, with
k�=0, the wave action and potential enstrophy are identical.
We note in passing that, similar to the two-dimensional �2D�
Euler equation, the Hasegawa-Mima equation corresponds to
a law of conservation of potential vorticity along fluid trajec-
tories. Thus, it is not surprising that the “adiabatic invariant”
is the potential enstrophy. However, in contrast to the
Hasegawa-Mima equation, the 2D Euler equation possesses
no “waves.” This observation could lead one to conclude that
a description of incompressible 2D hydrodynamic turbulence
via a WKE is impossible, since their are no “wave quanta.”
However, as shown by Ref. 23, a WKE can be derived from
the 2D Euler equation, where in this limit, the adiabatic in-
variant is the enstrophy density which can be interpreted as
the “roton” number density.

Proceeding with the derivation of the WKE, it is conve-
nient to separate the fields into a large scale, mean field piece
�k

�, plus a small scale fluctuation �k
�, separated by a cutoff

scale �kc�. Applying this scale separation procedure, an equa-
tion for the microturbulence, which is similar to the
Hasegawa-Mima equation,24 but retains the mean field con-
tribution, can be written as

0 = 	 �

�t
+

c

B0
�ẑ � ���� · �
 e��

Te
+ ve

* �

�y

e��

Te

− s
2	 �

�t
+

c

B0
�ẑ � ���� · �
��

2 e��

Te
. �1�

� *

FIG. 4. Schematic of low-m mode interaction with drift wave turbulence.
Here, s=cs /�ci, cs= Te /mi, ve =cTe / �eB0Ln� is the electron
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diamagnetic drift velocity, and ẑ is in the direction of the
mean magnetic field. We are primarily interested in investi-
gating the nonlocal interaction of drift waves with large
scale, low-m modes. Hence, local interactions between drift
waves, i.e., the quadratic nonlinearities in ��, have been
dropped. Local interactions will be introduced later via the
insertion of a phenomenological collisional operator in the
Boltzmann equation for the wave quanta density. Also, note
the addition of an advective term representing the large scale
mean flow.

Exploiting the scale separation and averaging over the
fast scales, a WKE for the evolution of the drift wave poten-
tial enstrophy density in the presence of a weakly varying
background can be written �see Ref. 22 for details�

�

�t
Nk +

�

�k
��k + k · V0� ·

�

�x
Nk −

�

�x
��k + k · V0� ·

�

�k
Nk = S ,

�2�

where

�k =
ve

*ky

1 + s
2k�

2 , V0 =
c

B0
�ẑ � ���� ,

Nk = �1 + s
2k�

2 �2Ik.

Here Nk is the enstrophy density, Ik is a Wigner function
defined as Ik=�dqeiq·x��k+q

� �−k
� , and the angular brackets

represent an average over the small, rapidly varying scales.
The second term on the left-hand side in Eq. �2� corresponds
to the advection term with a Doppler shift due to the mean
flow. Here the “mean flow” is the flow associated with the
MHD mode. The third term describes the refraction of the
drift waves as a result of any spatial dependence of the real
frequency �i.e., spatial variations of the density gradient�,
and through the weak spatial variation of the mean field.
Notice that in the absence of the source term S, this amounts
to the conservation of wave quanta number Nk along ray
trajectories. The source term S can be symbolically written
as S=�kNk−��kNk

2. The first term corresponds to the linear
drive of the drift waves, which should be computed in the
presence of the tearing mode. This is necessary since the
island will modify both the local profiles and the drift wave
mode structure. The second term corresponds to the nonlin-
ear like-scale interaction. In the absence of the nonconserva-
tive source term, Eq. �2� is isomorphic to the Vlasov equa-
tion, and thus provides a particularly convenient description
of the intensity field of the drift wave turbulence.

B. Mean field equations for large scale tearing mode

In the previous section we introduced a wave kinetic
formulation which allowed us to describe the development of
the drift wave turbulence in terms of an adiabatically varying
wave population density Nk. This approach enables us to
develop a dynamic subgrid scale model for drift wave-MHD
interaction. This model is “dynamic” since there is feedback,
via shearing and modulation, by the large scale flows on the
small scale turbulence, which exerts a stress on it. We are

now interested in a description of the mean field �i.e., tearing
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mode� equations in the presence of the background micro
turbulence. We describe the MHD fields at low m via
RMHD. This description ignores a number of effects that
become important in the low collisionality, high temperature
regime. However, it constitutes the absolute minimal descrip-
tion of unstable tearing mode dynamics. Further, as has been
observed in drift wave-zonal flow systems, the background
turbulence behaves as a source of energy for the large scales,
and drives mean flows via the stress term. Thus, we seek to
understand how the inclusion of this external drive affects
the evolution of the tearing mode. For this reason, it will be
convenient to begin with as simple a description as possible.
The RMHD equations are given by

0 =
�

�t
� +

c

B0
�ẑ � ��� · �� − vA

�

�z
� − �c��

2 � , �3�

0 =
�

�t
��

2 � +
c

Bo
�ẑ � ��� · ���

2 � − vA
�

�z
��

2 �

−
c

B0
�ẑ � ��� · ���

2 � − �c��
2 ��

2 � . �4�

Here � is normalized to vA /c, and the Alfvén velocity is
defined as vA=B0 /�4�, where 0 has been set equal to one.
Since the small scales are described by an electrostatic
model, small scale magnetic perturbations are neglected.
Thus, the stream function and flux function can be written as
�=��+�� , �=��. Substituting these definitions into Eqs.
�3� and �4� and averaging, gives the large scale equations:

0 =
�

�t
�� +

c

B0
�ẑ � ���� · ��� − vA

�

�z
�� − �c��

2 ��,

�5�

0 =
�

�t
��

2 �� +
c

B0
�ẑ � ���� · ���

2 �� − vA
�

�z
��

2 ��

−
c

B0
�ẑ � ���� · ���

2 �� − �c��
2 ��

2 ��

+
c

B0
��ẑ � ���� · ���

2 �� . �6�

Note the absence of a stress term within the induction equa-
tion. This precludes the appearance of a turbulent resistivity.
As considered in Refs. 21 and 25, electrostatic fluctuations

can generate an anomalous resistivity through the �ñẼ� term.
This anomalous resistivity can be calculated by modulating
the parallel acceleration term with respect to ��, which can

be written symbolically as 	�ñẼ���kCk�	Nk /	�����.
However, in this simple model for electrostatic drift waves
�as can be seen from Eq. �2��, Nk is unaffected by perturba-
tions in �� �	Nk /	��=0�. This is a consequence of assum-
ing that drift waves and Alfvén waves decouple, which is
valid only in a low beta plasma. In the finite beta regime,
perturbations of �� would enter into the WKE by bending
the mean magnetic field lines, and then modulating the fre-
quency of the drift-Alfvén modes as discussed in Ref. 26.

Just as the negative viscosity excites low-m flows which are
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similar to zonal flows, this effect could drive a low-m mag-
netic field similar to a zonal field. Also, note that for a large
magnetic island, the effective magnetic shear at the X point
differs substantially from that of the O point. Thus, for large
magnetic perturbations, �� would modulate Nk through
modifications of the local magnetic shear leading to
	Nk /	���0, and so produce a turbulent resistivity. How-
ever, for the present “minimalist” study we will not consider
this possibility.

The simple averaging procedure employed previously,
reduces the system into a set of resolved equations for the
large scales, and a population density equation for the unre-
solved small scales. However, although the phase informa-
tion of small scale fluctuations is averaged out, the evolution
of the intensity Nk���k

��−k
�  evolves dynamically via modu-

lations by the large scale mean field. Thus, Eqs. �2�, �5�, and
�6� provide a minimal self-consistent description of the drift
wave-tearing mode system.

C. Closure of drift wave-tearing mode system

In order to close the drift wave-tearing mode system, it
is necessary to explicitly write the Reynolds stress term
within the RMHD equations in terms of the drift wave en-
strophy. After integrating by parts twice, the Reynolds stress
��ẑ����� ·���

2 �� can be written

��ẑ � ���� · ���
2 ���x,t�

= − 	 �2

�x2 −
�2

�y2
� ���

�x

���

�y
��x,t�

+
�2

�x � y
��	 ���

�x

2��x,t� − �	 ���

�y

2��x,t�� ,

�7�

where we have written the angular brackets in the form
�. . .�x , t�, to emphasize that the averages are over the fast
spatial and temporal scales, such that a slow spatial and tem-
poral dependence remains. After Fourier transforming, the
stress terms can be rewritten in terms of the drift wave en-
strophy density:

��ẑ � ���� · ���
2 ���x,t�

= − 	 �2

�x2 −
�2

�y2
 � dk
kxky

�1 + s
2k�

2 �2Nk�x,t�

+
�2

�x � y
� dk

�kx
2 − ky

2�
�1 + s

2k�
2 �2Nk�x,t� . �8�

From this expression it is clear that for isotropic turbu-
lence, both integrals vanish. Thus, a necessary condition for
a finite contribution to the mean field vorticity equation from
the background drift wave turbulence is either anisotropy of
the equilibrium drift wave spectrum, or a “seed” asymmetry,
which arises from the large scale mean fields which modu-
late the drift wave spectrum. The latter is the subject of the
present discussion, as we are concerned with tearing interac-
tion with the ambient drift wave turbulence.

Considering small deviations from the equilibrium drift
0
wave spectrum Nk �i.e., seed asymmetries�, Eq. �2� can be
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linearized for small perturbations of the form �	Nk ,���
�eiq·x−i�qt+�qt, yielding an expression for the response of the
drift waves to the tearing mode field:

	Nk =
c

B0

− 1

��q − q · vgr� + i��q + �k�

��qy

�Nk
0

�x
− i�k � q�zq ·

�Nk
0

�k
���. �9�

Here, �q and �q correspond to the real frequency and growth
rate of the MHD mode, respectively, and are assumed slow
in comparison to the ambient drift wave turbulence, �k is the
linear growth rate of the drift wave turbulence, and vgr

=��q /�k. It is useful at this point to compare the magnitudes
of the two terms in curly braces. Estimating their magnitudes
as qy �Nk

0 /�x�Nk
0�qy /LI� and �k�q�zq ·�Nk

0 /�k�qx
2N,

where LI corresponds to the length scale on which the turbu-
lence profile varies in space, we find that for qx

2�qy /LI the
first term in curly braces can be neglected. This inequality is
interactions with the background micro turbulence is a result
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virtually always satisfied, except perhaps at a transport bar-
rier. Thus, we are motivated to focus purely on the k space
dynamics induced by shearing �the second term in curly
braces�. However, we note that �Nk

0 /�x-driven contributions
to 	Nk may enter with a phase � /2 different from
�Nk

0 /�k-driven contributions. These may contribute effects
which are structurally similar to the diamagnetic terms. As
we have neglected even standard diamagnetic effects in this
article, we leave these more exotic analyses to future work.
Also, notice that the above-mentioned linearization is purely
for convenience. Though the WKE �naively� appears to be
nonlinear, it is actually bilinear �ignoring the collision opera-
tor�, so that even for strong modulation fields, the response
of Nk may be calculated by the method of characteristics.
Physically, such strong modulations can cause trapping of
drift waves in the island flows. Substituting Eq. �9� into the
polarization drift term of the vorticity equation �Eq. �8��
gives to lowest order
��ẑ � ���� · ���
2 �� = − cs

2� dk
s

2ky
2

�1 + s
2k�

2 �2

�k

��k
2 + �q · vgr�2�

kx

�Nk
0

�kx

�4��

�x4

− cs
2� dk

s
2kx

2

�1 + s
2k�

2 �2

�k

��k
2 + �q · vgr�2�

ky

�Nk
0

�ky

�4��

�y4 + cs
2� dk

s
2

�1 + s
2k�

2 �2

�k

��k
2 + �q · vgr�2�

�	kx
3�Nk

0

�kx
+ ky

3�Nk
0

�ky

 �2

�x2

�2��

�y2

= − �xx
�4��

�x4 − �yy
�4��

�y4 + �xy
�2

�x2

�2��

�y2 , �10�
Inserting these expressions into the large scale vorticity
equation yields

0 =
�

�t
��

2 �� +
c

B0
�ẑ � ���� · ���

2 �� − vA
�

�z
��

2 ��

−
c

B0
�ẑ � ���� · ���

2 �� − �xx
�4

�x4�� − �yy
�4

�y4��

+ �xy
�2

�x2

�2

�y2��. �11�

Here the collisional viscosity has been dropped, since it is, in
general, negligible compared to the turbulent viscosity. The
stress terms �i.e., the last three terms on the right-hand side
of the vorticity equation� have the form of an “anomalous”
or “turbulent” viscosity. Note that for kx�Nk

0 /�kx�0 �i.e.,
Nk

0��k�−�, which is observed in all studies and predicted by
all models of drift wave turbulence�, the value of �xx �the
dominant term for the tearing mode ordering � /�x
� /�y,
which applies on large scales�, will be negative. The pres-
ence of a negative viscosity on large scales due to nonlocal
familiar from considerations of drift wave-zonal flow sys-
tems. In simple terms, it is a consequence of the fact that in
2D �here the strong B0 enforces quasi-two dimensionality�,
fluid kinetic energy tends to inverse cascade �producing large
scale growth�, rather than forward cascade which, produces
dissipation at large scales. However, our purpose in empha-
sizing the result here is that with one exception,18 there has
been very little effort put into investigating the impact of a
turbulent source on tearing mode physics. Also, Ref. 18 did
not self-consistently treat the backreaction of large scales on
small scales.

We estimate the magnitude of the anomalous viscosity,
using a mixing length argument. Mixing length arguments
usually constitute a rough upper limit on the saturated inten-
sity of the background turbulence, which is useful for obtain-
ing a rough scaling for diffusion coefficients. In essence,
mixing length arguments correspond to balancing the nonlin-
ear advection of a quantity �say density� with the linear drive
�generally a gradient in a mean quantity� for the system.
Schematically:
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ṽ · �ñ � ṽxdn0/dx Þ ñ/n0 � l/Ln,

where l is the mixing length. Self-consistent feedback on
intensity �via predator-prey models� will be considered in the
future. For drift waves, we can approximate e�� /Te

�1/ �k�Ln�, where Ln is the perpendicular length scale over
which the density varies. The magnitude of the turbulent
viscosity can then be estimated to be ��xx � ��cs

2 /�k�1/k�
2 Ln

2

��cs
2 /�k�s

2 /Ln
2, where we have used s to estimate the mix-

ing length. Finally, estimating the linear drift wave growth
rate to be of the order of the drift wave linear frequency,
�k�ve

*ky �cs /Ln, yields an estimate of the turbulent viscos-
ity as ��xx � ��s /Ln��cis

2�DGB. Here DGB denotes the
gyro-Bohm diffusivity, which is far in excess of the ion-ion
collisional viscosity i

2 /�ii, or the neoclassical viscosity. To
estimate the relative sizes of the turbulence driven flux and
linear inertia, we compare �xx�DGB with �TxT

2, where �T and
xT are the usual tearing mode growth rate and linear layer
width, respectively. A simple calculation yields the conclu-
sion that turbulent stresses will exceed inertia for

DGB �
a2

��

���a�6/5�1/S�2/5�Ls/am�2/5. �12�

Here S=�� /�A, where ��
−1=� /a2 and �A

−1=vA /a. This expres-
sion can be rewritten as ��ci����s /a�2� �Ls /s�
��1/S�2/5�Ls /am�2/5���a�6/5. For Lundquist numbers on the
order of S�105−107 and a resistive time scale of �ci��

�1010−1012, this condition will nearly always be satisfied.
Thus, in practical terms, the turbulent stresses always exceed
inertia. Hence, the turbulent Reynolds stress is seen to be the
dominant microscopic effect on the large scales.

Note that the above-mentioned analysis has been done
for the case of homogeneous micro turbulence. In Appendix
B we extend this analysis for the case of ITG turbulence in
an RFP, where strong magnetic shear will significantly alter
the radial mode structure of the microturbulence. Similar to
the previous analysis, a strong nonlocal transfer of energy
from the small scale microturbulence to the large scale MHD
modes is found for modes with qy significantly smaller than
qx. This result is in qualitative agreement with Eq. �11� for
modes with � /�x
� /�y, which is the relevant tearing mode
ordering.

III. LINEAR THEORY OF THE TEARING
INSTABILITY IN THE PRESENCE
OF A NEGATIVE TURBULENT VISCOSITY

The negative turbulent viscosity derived previously has a
magnitude far in excess of the collisional viscosity present
within typical plasmas. Further, for the universally observed
case where kx��Nk

0 /�kx��0, the turbulent viscosity will be
negative, such that energy is fed to the large scales. In con-
sidering the effect of a negative viscosity on tearing modes
and magnetic islands, it is instructive to first consider the
form of the RMHD equations near the resonant surface. Con-
sidering perturbations of the form f�x� , t�= f�x�eiqyy+�qt, Eqs.
�11� and �3� can be linearized to give

�q
�2��

2 = iqyvA
x

J + �xx
�4��

4 , �13�

�x Ls �x
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�cJ = �q�� − iqyvA
x

Ls
��, �14�

where J is the parallel current, Ls is the shear length, x=r
−rm,n, and rm,n is the m ,n rational surface. Also, since we are
considering modes strongly localized around the resonant
surface, we have applied the ordering � /�x
� /�y. In the
limit in which the inverse growth rate of the tearing mode is
long in comparison to the skin time of the resistive layer
���	2 /�c where 	 is the width of the resistive layer�, � can
be assumed to be constant. Making use of this approximation
and substituting Eq. �14� into Eq. �13� yields:

− �xx
�4��

�x4 + �q
�2��

�x2 =
qy

2vA
2

�c

x2

Ls
2�� + i�q

qyvA

�c

x

Ls
�0. �15�

From Eq. �15� three regimes can be distinguished: First, in
the limit of weak viscosity ��xx � ��T	2, the viscous term can
be dropped and the system reduces to that treated by Ref. 27.
In the opposite limit, for which ��xx � 
�T	2, Eq. �15� reduces
to the viscosity dominated limit, which was analyzed for the
positive viscosity case by Refs. 28 and 29. Finally, an elec-
trostatic limit can also be distinguished ��0=0�. This regime
describes an electrostatic vortex driven by an inverse cascade
of energy to low but finite m, where resistive field line bend-
ing ultimately limits the vortex size.

The first regime will, of course, be largely unaffected by
the presence of a negative viscosity. The second regime cor-
responds to the familiar reconnecting mode. However, for a
viscosity induced by drift wave turbulence, the dynamics
will be significantly altered. Aside from the free energy re-
sulting from current gradient relaxation, on the large scales,
relevant for a low-m tearing mode, the background microtur-
bulence will also act to drive flows nonlinearly, introducing a
second channel for the excitation of the large scales. Also,
since the background turbulence is ultimately pressure
driven, it thus can be said that the inverse cascade couples
low-m, resonant excitations to the pressure gradient, regard-
less of curvature.

The third regime consists of a purely electrostatic vortex
mode, more akin to a zonal flow, except with a finite k�

�m�0, n�0�. The primary consequence of the finite poloi-
dal wave number is the introduction of resistive field line
bending, which will limit the width of the vortex mode. Also,
since this mode is purely electrostatic, it does not involve
any reconnection of the magnetic field. This vortex mode
merits an independent discussion however, in order to clarify
the effect of the negative viscosity on the tearing mode.
Moreover, this type of dissipative mode is a possible type of
“dissipative structure” for the inverse cascade, i.e., the ulti-
mate repository of the energy transferred to large scales.

A. Electrostatic vortex mode

To clarify the dynamics of the interaction of the inverse
cascade with low-m, large scale modes, first consider a
purely electrostatic vortex mode excited by negative viscos-
ity. In contrast to a reconnecting mode, which couples to the

17,30
exterior solution via ��, the vortex mode is a strongly
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localized mode which is �P driven via the inverse cascade
initiated by the background turbulence. Setting �0=0, Eq.
�15� reduces to

��xx�
�4��

�x4 + �q
�2��

�x2 =
qy

2vA
2

�c

x2

Ls
2��. �16�

In order to lower the order of Eq. �16�, it is convenient to
introduce the Fourier transform with respect to x defined by
���qx�=�−�

� dxe−iqxx��x�, so

0 =
qy

2vA
2

�c

1

Ls
2

d2��qx�
dqx

2 + ��xx�qx
4��qx� − �qqx

2��qx� . �17�

A closed form analytic solution to this equation is not avail-
able. However, a quadratic variational form can be straight-
forwardly written as

− �q��� =

�
−�

�

dqx	qy
2vA

2

�c

1

Ls
2	 d�

dqx

2

− ��xx�qx
4�2


�
−�

�

dqxqx
2�2

. �18�

Here, the second term in parentheses corresponds to excita-
tion due to the inverse cascade of energy which drives the
low-m cell. The first term is the resistively modified field line
bending term, which is stabilizing.

In order to construct a trial function, it is useful to con-
sider Eq. �17� in various limits. Considering first the case of
large qx, Eq. �17� can be written

0 =
qy

2vA
2

�c

1

Ls
2

d2�es�qx�
dqx

2 + ��xx�qx
4�es�qx� . �19�

This equation can easily be solved yielding solutions of the
form

�es�qx� = A�qxJ1/6	 x�
3qx

3

3

 + B�qxY1/6	 x�

3qx
3

3

 , �20�

where x�= ��c ��xx � �1/6�Ls /qyvA�1/3. In the opposite limit, for
small values of qx, Eq. �17� reduces to

0 =
qy

2vA
2

�c

1

Ls
2

d2�es�qx�
dqx

2 − �qqx
2�es. �21�

The general solution for Eq. �21� is given by

��qx� = C�qxI1/4	 xT
2qx

2

2

 + D�qxK1/4	 xT

2qx
2

2

 , �22�

where xT= ��c�q�1/4�Ls / �vAqy��1/2. When ��xx �qx
4��qqx

2,
��qx� can be expressed approximately as

��qx� � EAi�− ��qx − qc�� + FBi�− ��qx − qc�� , �23�

where �=21/3�c
1/3�q

1/2� ��xx�1/6 �Ls� qyvA
�2/3

, qc=��q / ��xx�,
and Ai, Bi are Airy functions of the first and second kind,
respectively. Since Eq. �20� resulted from balancing the sec-
ond order derivative with the qx

4� term, introduction of ��qx�
as given by Eq. �20� makes no contribution to Eq. �18�. Thus,
it is important to accurately model the behavior of the eigen-
mode for qx�qc, but not for the very small scale limit of

qx
qc. Further, since Eq. �17� does not possess any singu-
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larities, � as well as its derivatives must be continuous. More
simply put, there is no MHD exterior with which to match,
so no discontinuity in ��occurs. Thus, we are able to separate
the solutions into even and odd parity modes, given by
�� /�qx�qx=0=0 for the even parity mode, and ��qx=0�=0 for
the odd parity mode. The trial functions for the even and odd
parity mode can then be written as

�even = �qxI−1/4	 xT
2qx

2

2

, �qx� � qc

�even = �C1
eAi�− ��qx − qc��

− C2
eBi�− ��qx − qc���e−�2�qx − qc�2

, �qx� � qc

�24�

�odd = �qxI1/4	 xT
2qx

2

2

, �qx� � qc

�odd = �C1
oAi�− ��qx − qc��

− C2
oBi�− ��qx − qc���e−�2�qx − qc�2

, �qx� � qc

where the coefficients C1
e , C2

e , C1
o, and C2

o are set by match-
ing to the solution for �qx � �qc, and the exponential has been
introduced to ensure convergence of the integrals in the qua-
dratic form. A plot of the general structure of the trial func-
tions is given in Fig. 5. Note that these functions converge
much more rapidly for large qx than the asymptotic solutions
derived above. However, in both cases the contribution to the
variational form above rapidly vanishes, either by the nu-
merator identically canceling, or by each integral separately
vanishing.

Upon performing the integrals within Eq. �18�, the scal-
ing form of the growth rate for both the even and odd modes
is given by

�q �
��xx�2/3�vAqy�2/3

�c
1/3

1

Ls
2/3 � Pr2/3��

−1/3�A
−2/3, �25�

where Pr is the Prandtl number, defined here as Pr
= ��xx � /�c, and �� and �A are the resistive time and Alfvén
time, respectively. This expression can be rewritten in the
form �q���xx � /�q

2, where �q gives the width of the vortex
mode and is defined as

�q = x� = ��c��xx��1/6	 Ls

qyvA

1/3

. �26�

At this point it is necessary to check the validity of the
electrostatic approximation. Writing Eq. �14� as:

�c
�2��

�x2 = �q�� − iqyvA
x

Ls
��, �27�

it is clear that in order for the electrostatic approximation to
be valid �c /x�

2��q. This can be rewritten as ��xx � /�c= P
�1, which corresponds to DGB/�c�1. Also, note that this
criteria explains the divergence of �q with �C→0, since as
�c goes to zero, the turbulent viscosity must also vanish in
order for the Prandtl number to remain finite.

It is useful at this point to contrast the vortices generated

by inverse cascade of energy in 2D hydrodynamic turbulence
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with those generated in a strongly magnetized plasma by
drift wave turbulence. In both systems enstrophy and kinetic
energy are inviscid constants of the motion. This leads to the
existence of dual cascade ranges for energy and enstrophy.
2D hydrodynamic turbulent systems forced on a scale
smaller than the system size generate large scale vortices �of
the order of the system size, see, e.g., Ref. 31 and references
there in� due to an inverse cascade of energy. However, an
important difference between the case of drift wave turbu-
lence and “fluid in a box” is that as both systems exhibit
spectral condensation of energy on the large scales, 2D hy-
drodynamic turbulence has a tendency to form vortices on
the order of the system size �i.e., isotropic cells�. However,
for a magnetized plasma with q=q�r�, the energetics of field
line bending implies that the vortices will be strongly aniso-
tropic cells of narrow radial extent.

B. Reconnecting mode

In the analysis mentioned previously, we discussed an
electrostatic vortex mode pumped by the inverse cascade via
the negative viscosity. However, a negative viscosity will
also have a strong impact on the linear dynamics of the re-
connecting mode, i.e., the counterpart, for this study, of the
traditional tearing mode. Integrating Eq. �14� across the re-
sistive layer, and writing Eq. �15� in dimensionless units
gives

0 = sgn��xx�
�4�

��4 −
1

�

�2�

��2 + ��1 + ��� , �28�

�� = −
i�q

�c
x�� d��1 + ��� , �29�

where ��= ����0+�−���0−�� /�0, �= i ��xx � /�qx�
2, �=x /x�,

�= �qyvA /�q��x� /Ls���� /�0
��, x�= ��c ��xx � �1/6�Ls /qyvA�1/3.

In the limit �2 /����x�
2 /�xx��q � �1 �i.e., the viscous domi-

nated regime�, the inertial term �second term on the right-

FIG. 5. Plots of even and odd trial functions. The solid line indicates the
hand side� is negligible, and Eq. �28� reduces to
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0 = sgn��xx�
�4�

��4 + ��1 + ��� . �30�

In order to lower the order of the previous equations, it will
be convenient to introduce the Fourier transform defined by
��qx�=�−�

� d�e−iqx�����. Here the integration is over the so-
lutions within the singular layer. Eqs. �29� and �30� then
become28

d2��qx�
dqx

2 − sgn��xx�qx
4��qx� = 2�i

d

dqx
	�qx� , �31�

�� = −
i�q

�c
x�	2�	�qx� + i�d��qx�

dqx
�

qx=0

 . �32�

The solution of Eq. �31� is given by

��qx� = i� sgn�qx�
�hom��qx��
�hom�0�

. �33�

Substituting Eq. �33� into Eq. �32� gives the eigenvalue rela-
tion in terms of the homogeneous solution

�� = − i�
�q

�c
x�

1

�hom�0�
d�hom

dqx
�qx=0. �34�

Before discussing the effect of a negative viscosity on
the reconnecting mode, it is useful to briefly review the
positive viscosity case �kx��Nk

0 /�kx��0�. Following Ref. 28
closely, the homogeneous solution of Eq. �31� is given by

�hom�qx� = A�qxI1/6	qx
3

3

 + B�qxK1/6	qx

3

3

 , �35�

where A and B are arbitrary constants, and I and K represent
modified Bessel functions. Since the I solution diverges ex-
ponentially for large qx, we retain only the K piece. Expand-

tion for q�qc, whereas the broken line indicates the solution for q�qc.
solu
ing Eq. �35� �with A set to zero�, yields to first order
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��qx� � B��
61/6

�	5

6

 −

1

61/6

�

�	7

6

qx� . �36�

After inserting Eq. �36� into Eq. �34�, the dispersion relation
obtained is

�q =
61/3

�

�	7

6



�	5

6



�c
5/6

�xx
1/6 	qyvA

Ls

1/3

��

� 0.48

�	7

6



�	5

6



�c
5/6

�xx
1/6 	qyvA

Ls

1/3

�� � P−1/6��
−2/3�A

−1/3, �37�

which is identical to the expressions derived in Refs. 28 and
29. Note that the limit �xx→0 is unimportant, as the result of
Eq. �37� is valid only for the viscosity dominated regime.
Further, the growth rate can be seen to be �weakly� inversely
proportional to �xx. Physically this can be understood as vis-
cous damping reducing the strength of the fluid eddies driven
by the linear J�B force.

Now, we consider the more subtle case of a negative
viscosity �kx�Nk

0 /�kx�0�. It is useful to first consider the
form of Eq. �30� in real space, i.e.,

0 = −
�4�

��4 + ��1 + ��� . �38�

Note that the effect of changing the sign of the fourth order
derivative is to introduce solutions that oscillate rapidly,
which we are unable to match to the second order exterior
solution. It is useful at this point to construct an eikonal
formulation of the solution of Eq. �38�, for large �. We pro-
ceed by considering solutions of the form ����= f���ei����

−1/�, where f��� corresponds to a slowly varying ampli-
tude, and ���� corresponds to a rapidly varying phase. Eq.
�38� then becomes:

0 = −
d4

d�4	 fei� −
1

�

 + �	1 + �	 fei� −

1

�


 . �39�

Only solutions which die off slower than 1/� are relevant for
large �. This allows us to drop the fourth derivative of 1 /�.
Taking derivatives, and separating the real and imaginary
parts, gives:

0 = − f�� + 6f�����2 + 9f����� + 4f���� + 3f����2

− f����4 + �2f , �40�

0 = − 4f��� − 6f��� − 4f��� + 4f�����3 − f���

+ 6f����2��, �41�

where f� and �� denote derivatives with respect to �. De-
rivatives of the amplitude are by assumption slow in com-
parison with derivatives with respect to the phase, thus to
lowest order:

4 2
0 = − f���� + � f , �42�
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0 = 4f�����3 + 6f����2��. �43�

After canceling f in Eq. �42�, solving for �, then plugging
into Eq. �43� an expression valid for large � can be derived,
yielding:

���� = sgn���
D

���3/4 exp	i
2

3
���3/2 + i�D


+ sgn���
E

���3/4 exp	− i
2

3
���3/2 + i�E
 −

1

�
. �44�

The oscillatory terms in this expression result from balancing
the fourth order viscous term, against �2�, the linear J�B
force. It follows that the �q�� term plays no role in deter-
mining the structure of the oscillations. Thus, the general
form of this solution can be understood as a consequence of
coupling the electrostatic vortex mode to the low-m tearing
mode, which connects to the ideal MHD exterior. From this
expression we note that the oscillations die off more slowly
than the residual tearing mode term. Hence, unless some
other mechanism damps the oscillations, it is not possible to
match the oscillatory solutions to the exterior solution. In
Fourier space, this can be understood by considering the ho-
mogeneous solution of Eq. �31�, which is

�hom�qx� = A�qxJ1/6	qx
3

3

 + B�qxY1/6	qx

3

3

 . �45�

Two observations concerning this equation are possible.
First, upon Fourier transforming Eq. �45�, the solutions in
real space can be seen to undergo oscillations which are 90°
out of phase with one another �Fig. 6�. Thus, fixing the ratio
of the amplitudes A /B is equivalent to setting the phase of
the oscillations. Second, since both of these solutions con-
verge for qx→�, neither solution can be dropped. These
considerations leave us with an undetermined constant A /B
in the eigenvalue relation, which can be written as

�� = − i
�

2

1

61/6

�	5

6



�	7

6



�q

�c
x�	31/3

21/6 +
1

61/6

A

B

 . �46�

From this expression it is clear that another boundary
condition is needed in order to specify A /B in the dispersion
relation, Eq. �46�. This extra boundary condition corresponds
to setting the phase of the oscillations of the solution. Thus,
the boundary condition cannot be determined from the solu-
tion in the exterior region alone. To control the oscillations in
the solution produced by the negative viscosity, and to allow
matching to the ideal MHD exterior, it is necessary to impose
a condition on the wave energy flux. The only physically
consistent condition is that of outgoing waves. Outgoing
waves are absorbed at resonance points away from x=0. The
outgoing wave boundary condition is justified by noting that
free energy �from either tearing or negative viscosity� is re-
leased only near the resonant surface at x=0, whereas for
x→� the system is ideal MHD so the frozen-in law applies.
Hence, no energy release is possible in the exterior �x→ � �

region. Thus, there is no energy to carry by incoming waves.
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We see then, that outgoing wave boundary conditions are the
only physically plausible choice. Note that a real frequency
appears �self-consistently� as well, so wave absorption is in
fact possible. Finally, we note that previous studies of ��*�
modified tearing modes have invoked outgoing wave bound-
ary conditions for similar reasons.32 Like other familiar cases
of outgoing wave boundary conditions, the damping does not
appear explicitly in the theory, as outgoing wave boundary
conditions tacitly presume a sink for the outgoing wave.

As shown in Appendix A, this outgoing wave energy
condition implies that A /B is pure imaginary, so the disper-
sion relation takes the form

�q �
�c

x�

�� �
�c

5/6

��xx�1/6	qyvA

Ls

1/3

��, �47�

Re��q� �
�c

5/6

��xx�1/6	qyvA

Ls

1/3

��, �48�

where �� is purely real. Note that here the growth rate and
frequency have the same scaling. This is primarily a conse-
quence of neglecting the electron pressure gradient and other
“two fluid” and kinetic effects. Including the electron and ion
diamagnetic drift into the mean field equations yields a dis-
persion relation of the form ��

6 / �1+ ic1�6�−��q−�e
*�5��q

−�i
*�, where c1 is a number of order unity set by matching to

the eikonal solution. In the limit ����e
*, which is relevant

for drift tearing modes, the real frequency is given approxi-
mately by Re��q���e

*.

IV. CONCLUSIONS AND DISCUSSION

In this article, we have explored a minimal self-
consistent model of the multiscale interaction of a tearing
mode with ambient, electrostatic drift wave turbulence. The
principal results of this paper are as follows.

�1� Its self-consistent formulation in terms of Reynolds
stress effects of small scales �drift waves� upon large
scales �tearing mode�, along with the backreaction of

FIG. 6. Plots of eikonal solutions versus exact solution. The solid lines corr
solutions.
large scale straining and shearing flows on small scale

ownloaded 15 Mar 2006 to 132.239.66.163. Redistribution subject to 
turbulence. Here, the multiscale interaction is described
by nonlinear modulation of the drift wave intensity field
by the tearing mode flows.

�2� The identification of the negative turbulent viscosity as
the principal effect of electrostatic drift wave turbulence
on a simple, low-m tearing mode. Thus, the low-q reso-
nance by the turbulent inverse cascade.

�3� the identification of low-m, resonant electrostatic modes
which are nonlinearly driven by the inverse cascade �via
negative viscosity� and damped by resistivity modified
field line bending. These anisotropic “vortex modes”
have growth rate �q����xx�2/3�vAqy�2/3 /�c

1/3��1/Ls
2/3� and

radial extent �q= ��c ��xx � �1/6�Ls /qyvA�1/3, and can
couple to the tearing mode.

�4� The calculation of the growth rate of a “reconnecting
mode” �with ���0�, which couples to an ideal MHD
exterior. This is the analog of the familiar tearing mode,
but with negative viscosity providing the coupling to
background turbulence. Moreover, for typical “mixing
length level” turbulence amplitudes, inertia is negligible,
even in the linear growth phase. The reconnecting mode
has a growth rate �q���c

5/6 / ��xx�1/6���qyvA /Ls��1/3�� and
layer width �q= ��c ��xx � �1/6�Ls /qyvA�1/3. Outgoing wave
boundary conditions must be imposed to match the inner
layer to the MHD exterior.

In addition to presenting the specific results enumerated
above, we take this opportunity to briefly discuss some
broader implications of this work. The classical Rutherford
regime33 corresponds to a filamented “near equilibrium”
state, which evolves slowly and self-similarly in time. Con-
sistent with self-similarity, the magnetic island width grows
with a power of time �i.e., proportional to t�, as opposed to
exponentially in time, as in the linear phase. It is interesting
to note that in the presence of turbulence at the “typical,”
Gyro-Bohm level, the negative viscosity term dominates in-
ertia, even in the linear phase. However, it is by no means
clear that the negative viscosity is a-priori negligible in the
Rutherford phase. Further, since the Rutherford phase is one

d to the exact solutions, whereas the broken lines correspond to the eikonal
espon
of slow evolution, keeping finite flow excitation by negative
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viscosity compels us to also retain damping of the low-m
flows.

As mentioned in the previous paragraph, it is important
to take note of the conceptual distinction between the classi-
cal Rutherford state and the nonlinear evolution of the recon-
necting mode discussed here. In the classic Rutherford cal-
culation, the balance is first plus third order J�B forces
versus inertia, leading to B ·�J= �d /dt���

2 �. For island
width exceeding tearing layer width �i.e., wI�xT�,
�B ·�J��3�� �d /dt���

2 �, so this relation simplifies to B ·�J
=0. Thus, J=J��� can be inserted into Ohms Law, yielding a
differential equation for the evolution of the island width.
Here, for finite island size, the balance becomes

B · �J = −
�2

�x2	� dk�
kxky

�1 + s
2k�

2 �2	Nk�x,t�
 + ���2�� .

�49�

Here the second term on the right-hand side refers to the
modulation of the turbulent vorticity transport �i.e., Reynolds
stress� by the island and ���2�� refers to the neoclassical
flow damping,34,35 which may need to account for island-
induced toroidal symmetry breaking.

Thus, the J�B force equals the imbalance between the
flow drive induced by modulation of the Reynolds stress and
the flow damping. Both of the latter two depend upon island
size. Note that in the complete absence of an island, Eq. �49�
reduces to the marginality condition for the modulation sta-
bility of a low-m vortex or zonal flow �for m=0�. Similarly,
neglecting both turbulence modulation and flow damping re-
covers “classical Rutherford,” namely B ·�J=0. Thus, the
structure outlined in Eq. �49� recovers both of the requisite
limiting cases. It follows that the island current is the sum of
a ��-driven contribution �associated with the homogeneous
solution J���� and a contribution due to the competition be-
tween flow generation and damping. Note that both
	N�k ,x , t� and � in Eq. �49� must be computed as a function
of the island width wI, and will depend nonlinearly upon it.
Note also that, as mentioned after Eq. �49�, retaining both
�Nk

0 /�x and �Nk
0 /�k contributions to 	Nk guarantees turbu-

lence driven contributions to the current J that are both real
and imaginary. Further discussion of the finite island calcu-
lation is beyond the scope of this paper, and will be ad-
dressed in a future publication.

As discussed in Sec. III, the theory of finite size mag-
netic islands must be extended to encompass excitation of
island flows by turbulence modulation and the damping of
flows due to breaking of axisymmetry. Any imbalance be-
tween these two effects will produce a current which in turn
affects island size. Second, in reference to the finite size
island case, the reader should keep in mind that the turbu-
lence intensity profile ��N�k ,x , t�� is not static. In particular,
flattening of �xN within an island will likely steepen �xN in
adjacent regions, which results in either a “backwash” of
turbulence spreading or the possible formation of a transport
barrier, since steep �xN in turn implies enhanced flow and
flow shear drive via Reynolds stress.36,37 Clearly, some sort
of bifurcation condition delimits the boundary between these

two very different “basin’s of attraction” for the system state.
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Significant further work is required to elucidate this transi-
tion.

A second speculation engendered by this work is con-
cerned with the possible relation between low-q resonances
and observed profile corrugations and transport barriers.38

The question of the role of low-q surfaces in confinement has
a long history.39–43 Low-q surfaces have in the past been
associated with microtearing modes, magnetic islands of un-
explained origin, etc., all with the aim of providing a physi-
cal basis for the notion of profile consistency. Previous
work44 has also suggested that spikes or humps in the fluc-
tuation intensity profile may sit at low-q resonances, and that
these localized intensity gradients may drive sheared poloi-
dal flow via the Reynolds stress. These flows are “mean”
flows, but sharply localized in radius. Very recently work has
proposed that, profile corrugations at low-q resonances are
related to the formation of localized zonal flows. Here, we
would like to add the suggestion that since low-q resonances
are natural locations for the “vortex mode” we have dis-
cussed that, too, may enter the already complicated story of
resonant q. Note also that the vortex mode is intrinsically
quite narrow, in contrast to the zonal flow, which can be
quite broad. Thus, the vortex mode is an interesting candi-
date for the observed corrugations.

We also again emphasize here that this model is indeed a
“minimalist” “toy” model, which omits many detailed effects
relevant to NTM evolution in tokamaks. These include, but
certainly are not limited to the effects of toroidicity and boot-
strap current drive, the effects of turbulent heat transport on
island evolution, neoclassical modifications of the polariza-
tion drift, island-induced modifications of the density, tem-
perature and turbulence intensity profiles, incoherent emis-
sion from turbulence, spreading of turbulence from adjacent
regimes into the island, etc. Indeed, the list is endless. Many
years of interesting research will be necessary to resolve
these and the other interesting questions pertinent to the
theory of multiscale interaction of turbulence with MHD.
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APPENDIX A: OUTGOING WAVE ENERGY
BOUNDARY CONDITIONS

In order to calculate the ratio A /B in Eq. �46�, it is nec-
essary to match our exact solution Eq. �45� to the outgoing
piece of the eikonal solution. The fluctuating piece of Eq.
�44� can be rewritten as

�̃��� = sgn���
D

���3/4eikx�x�+i�D + sgn���
E

���3/4e−ikx�x�+i�E,

�A1�

where kx is defined as kx= �2/3���x� /x�
3/2. kx can be related to

the frequency through the dispersion relation Re��q�
���c��� /x�, which yields kx���x��q

3/2 / ��c���3/2. Thus, the
sign of vgr can be determined from vgr

−1=�kx /��q. Applying
the outgoing wave energy boundary condition then gives �for
large values of x, i.e., x
x��

�̃�x� = sgn�x�
D

���3/4eikx�x�+i�D. �A2�

We are now interested in matching the exact solution to
the eikonal solution, in order to determine the ratio A /B. The
exact solution in Fourier space can be written as

��qx� = − i
�2

��1/6�
1

61/6sgn�qx��A

B
��qx�J1/6	 �qx�3

3



+ ��qx�Y1/6	 �qx�3

3

� . �A3�

This solution can be rewritten in real space as

1

2�
� dqxe

iqx� sgn�qx���qx�J1/6	 �qx�3

3



= i6�4/3���− 2/3���7/6��0F3	2

3
,
5

6
,
7

6
;

�6

1296



+ i
1

18�2�

��− 1/3�
��7/6�

�3
0F3	7

6
,
4

3
,
3

2
;

�6

1296

 , �A4�

and

1

2�
� dqxe

iqx� sgn�qx���qx�Y1/6	 �qx�3

3



= − i
1

2�6�1/6

1

�3/2��1/3��0F3	2

3
,
5

6
,
7

6
;

�6

1296



+ i
�6

30�2��− 1/3���− 11/6��3
0F3	7

6
,
4

3
,
3

2
;

�6

1296



+ i
61/6

120�2�5
1F4	1;

4

3
,
3

2
,
5

3
,
11

6
;

�5

1296

 , �A5�

where pFq is a generalized hypergeometric function. Match-
ing Eq. �A3� to Eq. �A2�, with the use of Eqs. �A4� and �A5�,
leads to A /B= i. A plot comparing the eikonal solutions to

the exact solutions is given in Fig. 6.
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APPENDIX B: WAVE KINETIC EQUATION FOR ITG
TURBULENCE IN SHEARED MAGNETIC
FIELD

In the main text we considered an absolutely minimal
model of the background microturbulence in order to illumi-
nate a number of the salient features of the tearing mode-drift
wave interaction. Here, we are also interested in introducing
a somewhat more sophisticated model of the ambient micro-
turbulence by including the impact of magnetic shear on the
linear mode structure. As will be seen below, when magnetic
shear is added to the system, the extent of the radial local-
ization, and thus the degree of anisotropy, all affect the linear
dynamics.

We begin by considering a set of fluid equations which
model ITG turbulence in the presence of a sheared magnetic
field. The linear eigenmode and dispersion relation, similar
to that derived in Ref. 45, but here we include a curvature
term relevant for the RFP, are given by:

�k�x� � e−�i/2��kx2
,

�B1�

�k = −
1

Ls

�ky�
��ky

�2
��ky

− i�ky
�	1 −

2

R

ky

�ky

�

� 
1/2

0 = �1 + ky
2��ky

2 + ve
*ky� i

�Ls�
1

ve
* sign�ky�	1 −

2

R

ky

�ky

�

� 
1/2

+ ky
2� + 2

Ln

R
− 1��ky

+
2

R
�ky

2ve
*

+
i

�Ls�
� sign�ky�ky

2ve
*	1 −

2

R

ky

�ky

�

� 
1/2

. �B2�

The derivation of the WKE for ITG turbulence follows
Ref. 46 closely, and is outlined below. The primary differ-
ence is that the linear dynamics are determined via ITG
equations, and that the result is generalized for the case of
strong magnetic shear �relevant for a RFP�. We begin by
considering solutions of the form

����x�,t�,P��x�,t�,V��x�,t��

=� d2k��k
��x,t�,Pk

��x,t�,Vk
��x,t��eiky+ikzz, �B3�

where ky has been written as k. Thus, the vorticity equation45

will now take the form

0 = �t�1 − �xx + k2��k
��x,t� + iVe

*k	1 − 2
Ln

R
+ ���xx − k2�


��k
��x,t� −

2i

R
kPk

��x,t� + ikzVk
��x,t�

− i �
k=k1+k2

k1�k1

��x,t��1 − �xx + k2
2��x�k2

��x,t�

+ i �
k=k1+k2

k2�x�k1

��x,t��1 − �xx + k2
2��k2

��x,t� . �B4�

Here the summations are short hand notation for integrations,

i.e., �k=p+q→�dpdq	�−k+ p+q�. It is now useful to separate
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the time dependence of the small scale fields into a slowly
varying amplitude �resulting from the modulations of the
large scale mean fields�, and a rapidly varying piece, so that:

��k
��x,t�,Pk

��x,t�,Vk
��x,t��

→ �ak�t�e−i�kt�k
��x�,bk�t�e−i�ktPk

��x�,ck�t�e−i�ktVk
��x�� ,

�B5�

where �k
��x� is the linear eigenmode, and x is defined as the

distance from the rm,n resonant surface �k1=m1 /r and k1z

=n1 /R�. We can now define a Wigner function as Ik�y , t�
=�dpeipy�ak+p�t�e−i�k+pta−k�t�e−i�−kt. We choose the normal-
ization �dx�k

��x��−k
� �x�=1 for the radial eigenmodes, where

�−k
�r�=−�k

�r� and �−k
�i� =�k

�i�. An equation describing the evolu-
tion of the intensity of the drift wave turbulence can be de-
rived by multiplying Eq. �B4� �with k→−k� by �k�

��x , t�, and
adding the same equation with−k↔k�. Setting k�=k+ p,
where p corresponds to the wave number of the large scales,
and neglecting the cross terms for reasons of simplicity,
gives:
�−k
� �x��k+p

� �x�	 �

�t
+ i��−k + �k+p�
�a−k�t�e−i�−ktak+p�t�e−i�k+pt�

=i �
−k=k1+k2

ak+q exp�− i�k+pt�ak2
exp�− i�k2

t�k1�k+p
� �x��1 − �xx + k2

2��x�k2

��x��k1

��x,t�− i �
−k=k1+k2

ak+q exp�− i�k+pt�ak2

�exp�− i�k2
t�k2�k+p

� �x��1 − �xx + k2
2��k2

��x��x�k1

��x,t�− i �
k+p=k1+k2

a−k exp�− i�−kt�ak2

�exp�− i�k2
t�k1�−k

� �x��1 − �xx + k2
2��x�k2

��x��k1

��x,t�+ i �
k+p=k1+k2

a−k exp�− i�−kt�ak2

�exp�− i�k2
t�k2�−k

� �x��1 − �xx + k2
2��k2

��x��x�k1

��x,t� , �B6�
�−k
� �x��k+p

� �x�	 �

�t
+ i��−k + �k+p�


��a−k�t�e−i�−ktak+p�t�e−i�k+pt� = S1 + S2 + S3 + S4.

Here �k includes the real frequency and growth rate of the
linear mode. In order to simplify the notation we define
ak�t�=ak�t�e−i�kt. Expanding the linear piece in the ratio
p /k�1, averaging over the fast scales, integrating across the
distribution of resonant surfaces, applying the operator
�dpeipy, and using the normalization condition gives the evo-
lution equation for Ik which is:

	 �

�t
+ vgr

�

�y
+ �k
Ik =� dpeipy� dx�S1 + S2 + S3 + S4 ,

�B7�

where �k includes both the linear growth rate of the ITG
mode, as well as the shear damping piece. In order to evalu-

ate the nonlinear terms it is useful to inverse Fourier trans-
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form the ensemble averaged terms,22 i.e., for S1

�ãk+p�t�ã−k+k1
�t� = �ã�−k+k1�+�p−k1��t�ã−k+k1

�t�

=� dy�e−i�p−k1�y�I−k+k1
�y�,t� . �B8�

Inserting this expression into the first term on the right-hand
side of Eq. �B7� gives

=i� dk1dy�dpk1ei�y−y��peik1y�I−k+k1
�y�,t� � dx�k+p

� �x�

��1 − �xx + k2
2��x�k2

��x��k1

��x�

�B9�

=i� dk1dy�dpk1ei�y−y��peik1y�I−k+k1
�y�,t� � dx�k+p

� �x�

��1 − �xx + k2
2��x�k

��x��k
��x� .
FIG. 7. Plot of C�q� as a function of q and q .
2 1
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The other nonlinear terms can be treated similarly. It is now
necessary to evaluate the spatial integrals. To lowest order,
�k1

��x� may be treated as a constant and pulled out of the
integral. However, since we are anticipating that the large
leads one to expect strong excitation of poloidally extended,

ownloaded 15 Mar 2006 to 132.239.66.163. Redistribution subject to 
scale mean fields vary strongly in the radial direction, we
instead expand �k1

��x� about the rm1,n1
resonant surface.

Keeping up to second order in the power series expansion for
���x�, and performing the spatial integrals gives
k1
�

�t
Nk +

�

�k
��k + 	�k�

�

�y
Nk −

�

�y
	�k

�

�k
Nk

= �kNk − F����Nk − ��kNk
2, �B10�

	�k =

k�	1 + k2 −
1

2
�ik
	k2 −

1

2
�ik
 + 	1

4
�rk
2�

	1 + k2 −
1

2
�ik
2

+
1

4
��rk�2

���

�x
,

Nk = �	1 + k2 −
1

2
�ik
	k2 −

1

2
�ik
 +

1

4
�rk

2 �Ik,

F���� = −
�rk�x�

�

	1 + k2 −
1

2
�ik
2

+
1

4
�rk

2

+ ��1 + k2��k2 − 3�ik� +
3

4
��k�2� �rk�krk�yy�

�

	1 + k2 −
1

2
�ik
2

+
1

4
�rk

2

+
1

2

k

��k�2
�k2	1 + k2 −

1

2
�ik


−
1

4
��k�2� �rk�xxx�

�

	1 + k2 −
1

2
�ik
2

+
1

4
��rk�2

− �1

2
�rk

2 + 	1 + k2 −
1

2
�ik
	�ik +

1

2
k�k�ik
 −

1

4
k�rk�k�rk�

�
�xy�

�

	1 + k2 −
1

2
�ik
2

+
1

4
�rk

2

+
1

2
	1 + k2 −

1

2
�ik
 k�rk�k�rk�xy�

�

�	1 + k2 −
1

2
�ik
2

+
1

4
�rk

2 �2 .
Following a similar procedure as in the homogeneous case
shown above �explained in detail in Ref. 46�, Eq. �B10� can
be linearized and inserted into Eq. �6�. This allows the po-
larization nonlinearity in the vorticity equation for the large
scales to be written as

��ẑ � ���� · ���
2 ���x,t� = C�q���. �B11�

A plot of the structure of C�q� is given in the following as a
function of qy and qx for the parameters given by Te /Ti=2,
�i=15, a /Ls=q� /�=−1/8, R /a=1.6, �=5/3, �=a /Rm,
�=−3, where a and Rm are the minor and major radii, re-
spectively, and �, which is the exponent of the equilibrium
wave action spectrum. �Fig. 7�

Here qx and qy should be interpreted as inverse radial
length scales associated with the large scale mode. The dark
portions of the graph correspond to negative values of C�q�.
It is apparent that the above structures die off rapidly for
large poloidal wave numbers �small poloidal scales�, how-
ever the magnitude of C�q� remains much more pronounced
for large radial wave numbers �small radial scales�. This
narrow radial structures, as is the case with a tearing mode or
zonal flow.
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