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A novel mechanism for the generation and amplification of intrinsic rotation at the low-mode to
high-mode transition is presented. The mechanism is one where the net parallel flow is accelerated
by turbulence. A preferential direction of acceleration results from the breaking of k�→−k�

symmetry by sheared E�B flow. It is shown that the equilibrium pressure gradient contributes a
piece of the parallel Reynolds stress, which is nonzero for vanishing parallel flow, and so can
accelerate the plasma, driving net intrinsic rotation. Rotation drive, transport, and fluctuation
dynamics are treated self-consistently. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2717891�

I. INTRODUCTION

Neutral beam injection �NBI� has long been the heating
method of choice for tokamak plasmas and, as a conse-
quence, the tokamak confinement database is dominated by
entries from NBI-heated discharges. Given that, and the fact
that unbalanced NBI naturally produces toroidal rotation, to-
roidal angular momentum transport has also been the subject
of intensive study for some time now. Pioneering experimen-
tal investigations established that the toroidal viscosity ��

was turbulent and roughly comparable to the ion thermal
diffusivity1 �i.e., ����i� in accordance with expectations
based upon ion temperature gradient driven �ITG� or drift
wave turbulence models.2 Also, toroidal viscosity was ob-
served to be quenched, along with �i and the particle diffu-
sivity Dn in ion internal transport barrier �ITB� regimes.
Taken together, these observations constituted a plausible
phenomenology that the momentum transport was diffusive,
driven by small-scale drift-ITG turbulence, and roughly
comparable to the ion heat transport.

This blissful state of consciousness was disturbed by the
observation that an “off-diagonal” contribution to the mo-
mentum transport, which is proportional to �P �Ref. 3�, was
necessary to fit the experimentally observed profile evolution
in the JFT-2M �Ref. 4� tokamak, suggesting that the Rey-
nolds stress driven flux should have the form �ṽrṽ��
=−���r�v��+V�v��, where V�V ��P�. Note that for ��

��i, V�0 was needed in order to explain the reported in-
ward “pinch” of momentum. The “bliss” of ignorance was
then destroyed by the discovery of “spontaneous” or “intrin-
sic” rotation when toroidal rotation of the central plasma in
Alcator-C-Mod �Ref. 5� for both the Ohmically heated case
and the ion cyclotron resonance frequency �ICRF� driven
case �i.e., no external momentum input in either case� was

observed.6,7 Recently, this observation has been verified in
other tokamaks.9,10 More recently, in the TCV tokamak,11 a
critical density for bifurcation and onset of toroidal rotation
was observed in the low �L�-mode regime.12 Also, study of
the toroidal momentum transport in JT-60U �Ref. 13� with
perpendicular NBI heating suggests that fast particle losses
due to edge magnetic ripple may play an important role in
driving toroidal rotation.14 Related perturbative experiments
using parallel NBI drive suggest that along with the usual
momentum diffusivity, an inward flux of toroidal flow is
needed to explain observed rotation profiles. It is also impor-
tant to note that the Reynolds stress becomes significant dur-
ing the toroidal momentum transport activity,15,16 suggesting
that the observed momentum transport is linked to fluctua-
tions. Thus, it seems eminently fair to say that the early,
superficially simple story about toroidal momentum transport
has vanished and has been replaced by a rich but complex
phenomenology, the most prominent element of which is
spontaneous rotation.

Here, by spontaneous or intrinsic rotation, we mean ro-
tation which occurs in the absence of identifiable NBI or
wave external torques and which unambiguously exceeds the
predictions of neoclassical theory. Note that intrinsic rotation
has manifested itself both as rotation in the absence of any
NBI input and as a finite offset in the plot of rotation velocity
versus torque.10 While intrinsic rotation has been observed in
all tokamak parameter regimes and for all heating methods,
the phenomenology of intrinsic rotation is demonstrably the
cleanest and most consistent for high (H)-mode discharges.
For those plasmas, the intrinsic rotation is observed to be in
the cocurrent direction and to scale with the diamagnetic �
�i.e., v /vA��N�, which means that toroidal rotation de-
creases as the poloidal current increases �with pressure also
increasing� for the cocurrent rotation case.17 Initially re-
garded as something of a curiosity, spontaneous rotation is
now a critical focus of research, since plasma rotation isa�URL: http://diamnd.ucsd.edu, Electronic mail: ogurcan@ucsd.edu
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essential to avoid disruption by resistive wall modes �RWM�,
and because NBI is thought not to be a practical means to
drive rotation in the International Thermonuclear Experimen-
tal Reactor �ITER� �Ref. 18�.

The surge of interest in spontaneous rotation has sparked
renewed interest in the subject of toroidal momentum trans-
port. In particular, a likely element in a dynamical model of
spontaneous rotation is a nondiffusive inward flux of toroidal
momentum, which could enhance momentum confinement
and lead to a peaked rotation profile or produce a spin up by
an inward flow of momentum from edge sources, which are,
as yet, not understood. Indeed there is some discussion of the
edge as a possible momentum source in the current research
literature.6–8 Of course, the total flux of parallel momentum
�� consists of both convective and Reynolds stress driven
pieces, i.e.,

�� 	 �v���ṽrñ� + �n��ṽrṽ�� ,

where the particle flux usually contains an inward flow or
“pinch,” as well as diffusion, i.e.,

�n 
 �ṽrñ� 	 − D
��n�
�r

+ V�n�

with V�0. Hence, one possible channel for inward, nondif-
fusive momentum transport is simply the familiar convective
particle pinch. While the existence of a particle pinch is well
established in the tokamak phenomenology, the dynamics of
the particle pinch remain a topic of active study. Possible
candidate mechanisms for the particle pinch are the thermo-
electric coupling and turbulent equipartition.

Apart from the convective pinch, the other possible
channel for nondiffusive transport of momentum is via the
Reynolds stress �ṽrṽ��. As we will show later in the paper,
breaking of k�→−k� symmetry is required for �ṽrṽ�� to have a
nondiffusive component. Interestingly radially sheared E�B
velocity is one such k�→−k� symmetry-breaking mechanism
in that �vE���0 shifts the centroid of the fluctuation spec-
trum structure function to a nonzero value, so that the spec-
trally averaged k�, written as �k��, becomes nonzero and pro-
portional to �vE��. Furthermore, while E�B flow shear is
not the unique mechanism for breaking of k�→−k� symme-
try, it appears to be the most robust and directly links the
nondiffusive Reynolds stress to the dynamics of transport
bifurcations, in general, and to the low-mode to high-mode
�L-H� transition in particular. The latter observation is indeed
relevant, since the phenomenology of intrinsic rotation is
clearest in the H mode. Of course, electric field shear also
tends to reduce or quench fluctuations and transport, and so
will, ultimately, act to turn off all elements of the Reynolds
stress �ṽrṽ��. Thus a self-consistent treatment is crucial in
order to properly evaluate the tradeoff between increased
symmetry breaking and decreased fluctuation intensity.

Historically, the role of Er� as an important element in the
off-diagonal momentum flux was identified previously.19,20

Also, a basic picture of off-diagonal momentum flux based
on an imbalance between populations of waves propagating
in the parallel direction was suggested.21,22 In fact, neoclas-
sical theory has long been aware of the importance of angu-

lar momentum transport.23 Also, an “Onsager symmetric”
particle/momentum pinch effect was mentioned in neoclassi-
cal literature.24 Another significant modeling attempt along
these lines was a rather detailed study of neoclassical mo-
mentum transport,25 clearly suggesting a mode-dependent
“pinch” term. In this study, which employs a model based on
electrostatic fluctuation ripple, the momentum pinch term is
a mixture of both the Reynolds stress “flow pinch” �which is
a curvature effect for this case� and the convective pinch
�driven convectively by the particle transport�. Recent quasi-
linear modeling, which does not include the Er� effect, found
that no substantial pinch term exists for parallel flow.26 Simi-
lar phenomena have been observed in stellarators,15

tokamaks,6,16 and reversed field pinches.27

In this paper we calculate the diffusive and nondiffusive
flux of parallel momentum driven by ITG turbulence in a
cylindrical plasma model, with a self-consistent, sheared
mean electric field. Both the convective �ṽrñ��v�� and parallel
Reynolds stress contributions �n��ṽrṽ�� are discussed, but we
focus primarily upon the latter. In the spirit of mean-field
electrodynamics we show that the parallel Reynolds stress
can be expressed in the form

�ṽrṽ�� 	 S�x� + V�x��v�� − D�x�
��v��
�x

,

where S�x� is independent of parallel flow, V�x� is the con-
vective flow velocity, and D�x� is the usual turbulent diffu-
sion, which corresponds to ��. In this model S�x� and V�x�
result exclusively from broken k�→−k� symmetry, which is
induced by radial electric field shear. We show that the
velocity-independent stress S�x� is driven by the pressure
gradient contribution to the electric field shear ����P /n���
and that V�x� is driven by the toroidal velocity contribution
���B	�v�����. Note that S�x� is a novel effect and has no
analog in diffusion-convection models of particle transport.
S�x� drives a flux of �v�� in the absence of initial �v��, and
−���n�S� /�x constitutes a local momentum source. Of course,
wave momentum is required for such a local source, and this
is provided by the symmetry breaking, which renders �k��
�0 so the wave momentum Pw��kk�N is also nonzero.
Here N is the wave quanta or action density. Since it is finite
for �v��=0, S�x� may be said to exert a net force on the
plasma so that �in the absence of flow� the velocity incre-
ment 
v� =v��0�−v��a� grows according to

�
v�

�t
= S�a� − S�0� 	 S�a� ,

where a is the plasma “boundary” between the core and
edge, or scrape off layer �SOL� regions. We note that S�0�
	0, since �P��n�0 near the left boundary. With turbu-
lent viscous diffusion �T of a finite flow, the steady-state
velocity gradient increment is then


� ��v��
�x


 = −
S�a�
�T

.

Thus we see that the stress S�x�, along with the edge condi-
tions which set �v��a�� and ���v�� /�x�a, determine the struc-
ture of the intrinsic rotation profile. For ITG turbulence,
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S�x��0 �inward flux� and V�x��0 �small but outward flow�.
At first glance, S�x� increases with �P, suggesting stronger
intrinsic rotation in the H mode, in accordance with obser-
vations. However a self-consistent treatment of the fluctua-
tion intensity along with the momentum flux is required,
since fluctuation levels drop as �vE�� increases. Results of
such a self-consistent study indicate that the rotation genera-
tion mechanism is robust since, althoughS and �T decrease
with increasing �vE��, the ratio S /�T increases with �vE��, so
that the core rotation increases. We study the sensitivity of
the resulting intrinsic rotation to the �edge� boundary condi-
tions on �v��x�� using a simplified transport model.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basic formulation of toroidal momen-
tum transport for a simple fluid ITG model using quasilinear
theory. In Sec. II A, the edge boundary conditions and how
they lead to a bulk rotation of the plasma are discussed,
while in Sec. II B the basic self-consistent transport model is
given. Section III is devoted to numerical results and discus-
sions of the implications of this model. In Sec. IV we give a
fully gyrokinetic derivation, in cylindrical geometry, of the
relevant stresses that appear in the model. Here, Sec. IV A
introduces the two-scale kinetic framework. The moments of
the drift kinetic equation, which describe the slow evolution,
are computed in Sec. IV B, and fluctuating moments of the
gyrokinetic distribution function and the stresses resulting
from these fluctuations are computed in Sec. IV C. The
eigenmode equation resulting from the gyrokinetic formula-
tion is derived in Sec. IV D and its fluid limit is given in Sec.
IV E. In Sec. IV F, we solve this eigenmode equation and
compute the shifts caused by E�B shear for the ITG and
electron drift wave branches. After a brief discussion of mo-
mentum versus flow, in Sec. V, we conclude in Sec. VI. The
higher-order corrections to the Reynolds stresses, which are
calculated in the text within the fluid approximation, are
given in the Appendix.

II. FORMULATION

The equation for mean parallel velocity in a simple fluid
plasma model can be written as

�

�t
v̄��x� +

�

�x
�ṽExṽ�� = �

�2

�x2 v̄� , �1�

where v̄� is the mean parallel flow velocity, ṽ� is the fluctu-
ating parallel flow velocity, ṽEx is the radial component of
the fluctuating E�B velocity, and � is the collisional parallel
viscosity. Note that we use �·�, and �·� interchangeably
throughout the text. These can be interpreted as averages
over the time scales related to the fluctuations. The parallel
Reynolds stress �ṽExṽ��, which controls momentum transport,
can, in general, be written as

�ṽExṽ�� 	 − �T
�v̄�

�x
+ Ur

���v̄� + S , �2�

where �T is a turbulent viscosity coefficient, Urv̄� is a con-
vective flow term, where the direction of the flow depends on
the sign of Ur, and S
Sx� is the “zero-flow” component of
the off-diagonal stress density, which has no direct depen-

dence on v̄� or �v̄� /�x. Note that S appears in addition to the
usual “D and V model,” and may have a significant role,
especially in the generation of toroidal flow. In the spirit of
mean-field electrodynamics, one can formulate �ṽExṽ��

R�v̄� ,�v̄� /�x�, as a Taylor series expansion of R for small
arguments,

�ṽExṽ�� 	 R�0,0� +
�R�0,�rv̄��

���rv̄��
�rv̄� +

�R�v̄�,0�
�v̄�

v̄� ,

where

S 
 R�0,0�, �T 
 −
�R�0,�rv̄��

���rv̄��
and Ur

��� 

�R�v̄�,0�

�v̄�

.

Note that writing �2� as a diffusion and a radial flow would
be misleading, and it is clear that we need something inde-
pendent of the parallel shear flow itself in order to obtain a
nonzero S. This zero mean flow component of the parallel
Reynolds stress quite likely determines the “offset” in the
plot of injected momentum versus toroidal flow.

In order to compute the stress terms, one can follow a
quasilinear closure using a simple linear response based
upon ITG turbulence, for which the basic equations are

Dtṽ� − vtiv���x���i
�

�y

� e
̃

Ti

 = − vti

2��� e
̃

Ti
+

P̃

Pi

 , �3�

DtP̃ − vtiP̄��x���i�y�� e
̃

Ti

 = 0. �4�

The parallel stress can then be easily computed from these
equations, and is

�ṽExṽ�� = − Re �
k

ivti
2�iky�vtiky

�k

�i

vti

�

�x
v̄�

+
vtiky

�k

vtik�

�k

�i

P̄

�

�x
P̄ −

vtik�

�k
�� e
k

Ti
�2

. �5�

Here, the first term is the usual diffusion term and does not
vanish as long as Im��k��0 �note that �k=�k

�r�+ i�k, where
�k is selected in accordance with causality�. The second and
third terms are nonlinear off-diagonal terms which can be
either positive or negative depending on the sign of �k�ky�. If
we use k� =kyx /Ls, where x is the distance from the rational
surface, the average is

�k�ky� = ky
2 �x�

Ls
→ 0

for any spectrum symmetric with respect to the rational sur-
face. When the sums in Eqs. �5� are computed, both signs of
k� contribute equal and opposite amounts to the sum. Since
for most drift instabilities, both signs of k� are equally un-
stable, the last two terms in the sum vanish. However, if
there is breaking of k�→−k� symmetry �i.e., a dynamical
preference for one sign of k��, a finite �k�ky� results. Recall
that a generic effect of E�B flow shear is to shift modes off
the x=0 resonant surface �e.g., Ref. 28�, thus rendering �x�
�0. In this case, the second and third terms in Eqs. �5�
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become nonzero, thus producing a finite stress S, which is
independent of mean toroidal flow. Physically, the asymmet-
ric shift of the mode centroid off the resonant surface creates
an effective imbalance in the population of sound waves
traveling in the clockwise or counterclockwise directions
around the torus �see Fig. 1�. This imbalance creates a local
torque density, thus driving spin-up and momentum trans-
port.

Note that, the imbalance of population of sound wave
densities is also an indication of the appearance of a net
“wave momentum” in the fluctuations. This follows from the
fact that since the wave momentum density is P
=kN�x ,k , t�, where N�x ,k , t� is the wave population density
�i.e., wave action�, net parallel momentum requires a net k�

or equivalently an imbalance in populations of copropagating
and counterpropagating acoustic waves. In other words, the
torque density term is finite only when the fluctuations them-
selves have a net parallel wave momentum. Note that this is
suggestive of a complementary nondiffusive transport of
wave momentum, possibly in the direction opposite to that of
ions. Another obvious advantage of the net wave momentum
picture is that it can be extended in a straightforward way to
toroidal geometry, so that for eigenmodes having no net par-
allel wave momentum, the off-diagonal torque density term
must necessarily vanish.

Given that E�B shear induces asymmetry, the expecta-
tion value of the distance from the resonant surface is equal
to the centroid displacement, proportional to the E�B shear
and given by

�x�
Ls



�

Ls

 − �

�s

Ls

Ln

cs

dv̄Ey

dx
. �6�

Here �= �x� is the centroid shift and � is a coefficient, which
will be defined and calculated later. We argue that the shift of
the eigenmode is due primarily to the E�B shear in most
cases �see Figs. 2 and 3�. For example, radial shear of paral-
lel flow itself may also cause a shift, but that effect is weaker
by a factor of Ln /Ls. It is precisely for this reason, and be-
cause E�B shear is related to transport bifurcations, that we
focus on E�B shear as the symmetry-breaking mechanism.

FIG. 1. Acoustic waves traveling in both directions around the torus.
Sheared flow changes the population density of waves in one direction rela-
tive to the other, breaking the k�→−k� symmetry and creating an imbalance
between the two counterpropagating wave populations.

FIG. 2. Shift of the intensity fluctuation profile due to E�B shear.

FIG. 3. Shifts in the Landau resonance points that are in the same direction
resulting in a shift in the center of the fluctuation spectrum, which results in
a net imbalance in wave momentum deposition.
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Also, the direct wave momentum generation by the parallel
flow shear leads to a modification of the diffusion term,
rather than generating an off-diagonal component. Note,
however, that toroidal flow shear also creates E�B shear
�via radial force balance relation� and hence will affect the
eigenmodes indirectly. This effect is included in our calcula-
tions via the radial force balance equation. The Reynolds
stress, with the shift given by �6�, becomes �recall �k=�k

�r�

+ i�k�,

�7�

where E�B flow is determined by the radial force balance
relation,

�

�x
v̄Ey = − ��i

vti

P̄

�2P̄

�x2 − �i
vti

P̄n̄

�P̄

�x

�n̄

�x
 −
1

B�

�

�x
�v̄�B	� . �8�

Note that if there is significant poloidal mass flow, that
should also be added to the right-hand side of �8�. However,
poloidal flow is usually expected to be limited by the neo-
classical value, which is small.

Before proceeding further, it is helpful to give the fully
kinetic expression for the Reynolds stress �the derivation of
which is left to later sections� in order to justify the state-
ments that appear to be based on the simpler fluid expres-
sion. The kinetic expression for the parallel Reynolds stress
is

�ṽExṽ�� = − Re �
k

i�2vtiLn

�*e
2

�
�0�

����� + 1 − ��1

2
− b

��0 − �1�
�0

− �2�
− �2

�Ln

vti

dv̄�

dx

�1 + �Z���� +

�

2
�� e
̃

T
�2

. �9�

Here Ln=−d ln n /dx, �*i=−�i�i
2Ln

−1ky, �̄=�−kyv̄Ey�x�, �i

=d ln T /d ln n, �= �̄ /�2k�vti, b=k�
2 �i

2, Z��� is the plasma dis-
persion function and �n= In�b�e−b, where In�b� is the modi-
fied Bessel function. Note that for symmetric spectra, only
those terms that are even in �, (or independent of �) will
survive when the sum over k� is performed. Since �1+�Z����
is even in �, the only term that survives the summation over
the toroidal mode numbers is the term proportional to
dv̄� /dx. This suggests that unless x→−x spectral symmetry is
broken, the Reynolds stress term �given in �9�� must have the
usual diffusive form of a Fick’s law. This is perhaps to be
expected, but is remarkable nevertheless, since the result is
based on the full kinetic theory.

Another important point is that �9� does not contain any
terms explicitly proportional to v̄�. Thus, the dominant con-

tribution to “momentum convection” �i.e., part of the flux
that is explicitly proportional to v̄�� comes primarily from the
convective particle flux. However, the Er� symmetry-breaking
mechanism actually introduces a term proportional to v̄�, via
the radial force balance relation.

A. Global conservation relation

Note that the nondiffusive, off-diagonal terms in Rey-
nolds stress are very important because they can act as local
“sources” of toroidal momentum. In order to clarify this, let
us consider the case when there is no explicit source of tor-
oidal flow, such as results in the absence of direct momentum
input by neutral beam injection. In that case, the conservative
form of �1� says we can integrate over the radial direction to
obtain

�

�t
�

0

a−

v̄��x� + �
0

a− �

�x
�ṽExṽ�� = �

0

a−

�
�2

�x2 v̄� .

Neglecting the feeble collisional viscosity yields

�

�t
V̄� + ���a−� = 0,

where V̄� is the total parallel flow and ���a−� is the Reynolds
stress flux at a point a− at the edge, but within the plasma. It
is important to note that if the flux only has diffusive and
drift components �i.e., proportional to �v̄� /�x and v̄��, and if
there is no local flow or flow gradient �or external momen-
tum source� at the edge �i.e., �v̄� /�x= v̄� =0 at a−�, then the
net flow cannot change. However, an off-diagonal term such
as the one in �7�, which includes a torque density, does not
vanish at the edge even when the local flow or flow gradient
vanishes. In fact, with such an off-diagonal term, a strong
edge gradient in density or temperature can drive a flux of
momentum at the edge. In other words, S�x� becomes a local
source of total momentum, which exerts a net torque on the
whole plasma internal to the point a−,

�

�t
V̄� = Re �

k

i�vti
2��i

�k

�i

2ky
2

� �vtiky

�k

�i

P̄

�

�x
P̄�a� − 1
 �s

Ls

Ln

cs

dv̄Ey�a�
dx

.

Here again, �k=�k
�r�+ i�k. The dynamics in the SOL is out-

side the scope of this study and will not be addressed here.
Instead, we will take either a fixed or a rotating “edge” as the
boundary condition to our model. Indeed, note that even for
the boundary condition v̄��a−�=0, balance of stress and tur-
bulent viscosity defines an edge flow gradient �i.e., �v̄� /�x
	−S /�T�. Since roughly S /�T�vE� � ��P /�x���n /�x�, �P
steepening associated with the L-H transition can also spin
up the plasma since the edge flow gradient will be propor-
tional to �P. Note that since the off-diagonal torque density
term draws momentum flux from the pressure and density
gradients, the sources and boundary conditions for density
and pressure are also important for rotation. In particular,
v��a� along with �v̄� /�x	−S /�T, set the level of rotation.
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B. The model

There is one further issue related to taking the E�B
sheared flow as the origin of symmetry breaking. Since the
toroidal momentum transport is proportional to the spectral
form factor shift, and the shift is proportional to the E�B
shear, one may naively expect an increase in transport when
E�B shear is increased. However, the transport is driven by
turbulence and is also proportional to the spectral intensity,
and it is well known that E�B shear suppresses the turbu-
lence. Therefore, one must in fact consider toroidal momen-
tum transport self-consistently by including the effects of
E�B shear suppression on the underlying microturbulence.

We ansatz that for slowly evolving spectra one can
model this quenching effect by29

� =
�0

1 + ���v̄Ey/�x�2 , �10�

where � is the intensity of the electrostatic potential and � is
an ad hoc saturation parameter. Then, the model equation for
the toroidal flow becomes

�

�t
v̄� +

�

�x
�− ��neo + �1��

�

�x
v̄� − ���1 − �

�

�x
P̄
 �

�x
v̄Ey


= F� . �11�

The heat equation is then

�P̄

�t
−

�

�x
���neo + �1��

�P̄

�x

 = H �12�

and the particle transport equation is

�n̄

�t
−

�

�x
��Dneo + D1��

�n̄

�x

 = S . �13�

These should be solved together with radial force balance
�8�, or in parametrized form,

�

�x
v̄Ey = �1

�P̄

�x

�n̄

�x
− �2n̄

�2P̄

�x2 − �v̄� − ��

�

�x
v̄�. �14�

We suggest the model given by Eqs. �10�–�14� as a simple,
self-consistent transport model, which includes diffusion and
an off-diagonal flux of toroidal momentum, as well as den-
sity and pressure dynamics, similar, in spirit, to anomalous
momentum transport models usually geared towards the
NBI-driven case �e.g., Ref. 30�. Here, the parameters such as
�neo ,�1 ,� ,�, etc., are parametrizations of the corresponding
terms in the expressions for the fluxes �i.e., Eqs. �23�, �28�,
and �30��, and the assumed profiles for the sources �S, F�,
and H� are given later.

Note that �	vt�iky /2�k
�r� is negative and ����1 for the

ITG mode, and positive and ����1 for the electron drift
waves as shown in detail later. Hence, while the two terms
constituting the torque density term in �11� �i.e., proportional
to 1 and −��P /�x, respectively� add for electron drift waves,
they compete for ITG. Nevertheless, the dominant part of the
torque density term implies an inward flow for the ITG mode
for which � is also negative �i.e., sign ������P /�x�=−1�.
For a flow in the negative direction, the conclusion is
roughly reversed. Also, various terms in the force balance
�i.e., Eq. �14��, that are in the opposite directions for q��0,
may act in the same direction for q��0. This suggests, for
instance, that apart from the diffusion term �which is an im-
portant exception�, the discrepancy between corotation and
the counter-rotation observed in tokamaks should be roughly
reversed in reversed field pinches �RFPs�. It should be noted,
however, that for RFPs, Maxwell stress driven transport pos-
sibly dominates over the Reynolds stress driven flux.31 In
short, the direction of the flux depend on various factors even
for this simple model �see Table I for a summary�.

III. NUMERICAL RESULTS

The model given in the previous section is a simple
transport model. Nevertheless, it is complex enough that ana-
lytical solutions are not immediately available. On the other

TABLE I. Direction of various terms in Reynolds stress for different parameter regimes. Here, those cases
marked with an � *� are the cases where the velocity is negative. Thus, for these cases, “outward,” for instance,
means an “outward flux of negative momentum” �or an inward flux of positive momentum�. The convention is
such that the diffusive term is always “outward.” The last column denotes the effect of the −�v̄� term in the
radial force balance. Here, “oppose” means that term reduces the magnitude of the shear and hence opposes the
tendencies given in the previous two columns, while “promote” means the flow term enhances those tendencies.
Note that here “R” means q��0; “Co” and “Ctr” mean the momentum drive is parallel and antiparallel to the
direction of rotation, respectively, and the cases where the direction of the drive is not specified has F� =0.

Case −��neo+�1��
�

�x
v̄�, −��

�

�x
v̄Ey, ���

�

�x
P̄

�

�x
v̄Ey, −�v̄�

ITG, v̄Ey� �0 Out Out In Oppose

DW, v̄Ey� �0 Out �*� Out �*� Out �*� Promote

Co, ITG, v̄Ey� �0 Out Out In Oppose

Ctr, ITG, v̄Ey� �0 Out �*� Out �*� In �*� Promote

ITG, v̄Ey� �0 Out �*� In �*� Out �*� Promote

ITG, R, v̄Ey� �0 Out Out In Promote

Ctr, ITG, R, v̄Ey� �0 Out �*� Out �*� In �*� Oppose
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hand, a three-field system in one dimension is a reasonably
simple numerical task for modern computers. The numerical
solutions of this model suggest that various steady states
�corresponding to the L and H modes� exist, and the system
evolves towards one of these steady states depending on the
initial conditions. Another observation that can be made from
the numerical integration is that the sharp gradients observed
in the edge in an H-mode profile can act as a torque density
for the toroidal flow, and effectively drive internal rotation,
even in the absence of an external source �see, for example,
Figs. 4 and 5�. Obviously, in the presence of external
sources, these too must be included, and can create stronger
plasma rotation �see Fig. 6�.

The limit �2=�=��=�=0 corresponds to the Hinton-
Staebler model,29 where conventional heat and particle
source profiles are assumed,

H =
�

�x
�2qa

x

a
�1 −

x2

2a2
� ,

where qa and a are coefficients that parametrize the heat
source and

S =
�

�x
��ae−��na�a−x�+ga�a − x�2/2�� ,

where again �, na, and �ga�dn /dx�a can be taken as arbi-
trary parameters that describe the particle source profile.
Here, we take the “source” term for toroidal flow to have the
same mathematical form as the particle source,

F� =
�

�x
��ve−�v�na�a−x�+ga�a − x�2/2�� .

Note that �v is an arbitrary form factor that characterizes the
spatial extent of this profile. In practice, the scale of this
form factor is surely set by either the fueling depth �neutral
penetration depth� or the poloidal ion gyroradius �symptom-
atic of ion neoclassical processes�. We note that recent
results32,33 suggest that there are strong neoclassical flows
driven in the SOL, which may interact with the core plasma
and act as an edge momentum source. It should be noted
here that, unlike density and pressure, toroidal flow does not
“require” an external source, because the off-diagonal term
together with an edge gradient of density and pressure can
act as a torque density. In order to demonstrate this we first
consider the case where F� vanishes. The result for the case

FIG. 4. Profiles of density, pressure, parallel flow, and the radial electric field shear for the F� =�2=��=�=0 case. The directions of the evolution of the
profiles in time are denoted by the arrows. First few time steps are plotted using dashed lines and the final steady state with a thick solid line. We have plotted
intermediate time steps via thin solid lines as long as they can be distinguished from the steady state. Here, the usual normalization is used such that P is in
units of n0Te, n is in units of n0, and v� is in units of cs. Here, the left-hand side is an open boundary and does not correspond to the actual origin. Therefore,
even though a macroscopic scaling �e.g., a� is in fact used, the domain should actually be taken as a finite annulus in the outer core region. Almost all the
figures �except some cases in parameter scans� correspond to ITG-like parameters �i.e., ��0, ��0, etc.�.
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D0=�0=�1=�=��=�a=�0=1.0, �0=0.5, �=−2.0, �=−1.0,
�2=0, D1=�1=4.0, �1=2.0, qa=3.3, �=�=10.0, and F� =0
�i.e., same parameters as in Ref. 29� is shown in Fig. 4. Note
that in this case the generated flow is about 0.1cs, which is
not extremely strong, but the resulting flow depends on input
parameters and one can get higher values by using different
parameters. Thus, parameter scans of parallel velocity at x
=0 versus �, �, v0 �i.e., flow at the boundary�, and �v was
performed and the results are plotted in Fig. 7. Note that both
Figs. 7�c� and 7�d� display bifurcation behavior. In this
simple model, the bifurcation in velocity is always associated
with the bifurcations in P and n as well. Thus, the jump seen
in Figs. 7�c� and 7�d� correspond to switching from L-mode-
type profiles to H-mode-type profiles as we go from right to
left. Note that negative values of both � and � correspond to
the ITG-type parameter regime.

The case �v=1 �i.e., F��0� is shown in Fig. 6. Not
unexpectedly, the flow generated with the strong edge mo-
mentum source is considerably larger than the case without
the edge source. Note that the �2�0 case is numerically
challenging when F� =0, because of the “corner” from the
barrier. Nevertheless, we have done the case �2=�1=1.0,
and the result is depicted in Fig. 8. The pressure “curvature”
term �i.e., the �2P /�x2 term in the radial force balance�,
seems to affect the background profiles of pressure and den-
sity substantially, thus resulting in a very different velocity
profile �almost linear in x�. This is of course only a single
case, and needs to be studied by changing the parameters.

Paradoxically though, in the steady state obtained when we
include the curvature term, the curvature term seems to be
negligible. But when it is neglected, “the corner” appears and
is not negligible. Also, the Er� profile changes substantially,
and it seems that the open-end boundary on the left starts to
play an important role in the dynamics, which could be an
artifact of the numerical setup.

As shown in this section, parameter scans of numerical
integrations of the system of Eqs. �10�–�14� reveal that some
rotation can be generated via the torque density term. Nev-
ertheless, an edge source, or a boundary condition, would
help explain the observed rotation speeds. Hence, SOL flows
should be studied as feasible candidates for a better quanti-
tative modeling of the edge momentum source.

IV. GYROKINETIC DERIVATION

A. Two-scale kinetic evolution

We assume the fluctuations evolve at a fast time scale
and are described by the gyrokinetic equation,

�D̄t + v����g̃ = J0� k�v�

�i

�D̄t� e


Ti



+ �i�i
2 �

�y
� e


Ti

Lf

−1�x,v���f� , �15�

where D̄t=�t+ v̄0 ·� is the mean convective derivative, which
includes the mean E�B flow as well as any other overall

FIG. 5. Profiles of density, pressure, parallel flow, and the radial electric field shear for the F� =�2=0 case, where the effect of toroidal flow is also included
in the radial force balance �i.e., ��=�=1.0� resulting in an outward flow proportional to v̄�. See Fig. 4 for a key.
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drifts that may exist. Here, �i is the ion cyclotron frequency,
�i is the ion Larmor radius, 
 is the electrostatic potential, e
is the magnitude of fundamental charge, Ti is the ion tem-
perature, g̃ is the nonadiabatic part of the fluctuation distri-

bution �i.e., f̃ =−e /Ti
̃�f�+ g̃, where f̃ is the total fluctuation
distribution�, �f� is the background Maxwellian distribution,
shifted by a mean toroidal flow v̄�, J0 is the Bessel function
of the first kind of the order 0, and Lf

−1�x ,v� is the length
scale for the radial gradient of this background distribution:

Lf
−1�x,v� 


1

�f�
d�f�
dr

=
1

n̄

dn̄

dx
�1 − �i�3/2 −

v�
2

2vti
2

−
�v� − v̄��x��2

2vti
2 
� +

�v� − v̄��x��
vti

2

dv̄��x�
dx

.

On the other hand, mean flows evolve on a slower time scale
and can be adequately described by the drift-kinetic equa-
tion, driven quasilinearly by the fluctuations,

�

�t
�fs� + �ṽE · �� f̃ s� +

qs

ms
�Ẽ�

�

�v�

f̃ s� = 0, �16�

where s= �i ,e� corresponds to ions and electrons, respec-

tively, ṽE is the fluctuating E�B flow, and Ẽ� is the fluctu-
ating parallel electric field.

In order to construct a self-consistent quasilinear model
of turbulent evolution of toroidal momentum, we first com-
pute the moments of the drift kinetic equation for ions and
electrons. Together with the quasineutrality condition, these

give the evolution of mean density, mean toroidal momen-
tum, and mean pressure, evolving under the action of turbu-
lent stresses. Then, we use the solution of the gyrokinetic
equation, assuming that the background Maxwellian distribu-
tion is a function of the mean density, temperature, and par-
allel flow, and compute the first three moments of the gyro-
kinetic distribution. These moments yield the fluctuation
fields that appear in the expressions for the Reynolds
stresses. Then computing the Reynolds stresses in terms of
the mean fields gives a self-consistent model for the transport
of these mean fields.

B. Moments of the drift kinetic equation

We start with the zeroth moment of �16�, which gives the
equation for the mean density evolution,

�tn̄ + �x�ṽExñ� = 0. �17�

Then, we consider the v� moment, which gives the equation
for parallel momentum,

�

�t
�mn̄v̄�� + m�n̄ � · �ṽEṽ�� + v̄� � · �ṽEñ�� = 0. �18�

Here, we also used the quasineutrality condition, which can-
cels the effect of the mean “stress” originating from the par-
allel velocity space nonlinearity. An immediate observation
that can be made from �18� is that mean momentum can be
transported either by the Reynolds stress term �i.e., �ṽEṽ���,
or convectively via the particle flux �i.e., �ṽEñ��. Similarly,

FIG. 6. Profiles of density, pressure, parallel flow, and the radial electric field shear for the �2=��=�=0 case with an edge momentum source similar to
particle source ��v=1.0 case�. See Fig. 4 for a key.
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the equation for the evolution of mean pressure �which is
assumed to be isotropic� follows from taking the second mo-
ment �v� − v̄��2 and has the form,

�

�t
P̄ + � · �n̄�ṽET̃� + T̄�ṽEñ�� = 0.

Pressure, too, can be transported either via the heat flux �in-

volving T̃� or convectively, by the particle flux. Notice that
by taking the difference between v� moments �instead of the
sum, which leads to �18�� we also obtain the equation,

�

�t
J̄� + e�Ẽ�ñ� = 0 �19�

within this framework. This identifies yet another path to
symmetry breaking, namely via current generation by paral-
lel electric field fluctuations. Here the waves that are antipar-
allel to the generated current �i.e., parallel to the “mean elec-
tron flow”� grow, while the waves parallel to the current
�antiparallel to the electron flow� damp. This, too, creates a
difference in wave population densities. Since we expect this
mechanism to be weaker than the electric field shear mecha-
nism, here we focus only on the latter.

It should be noted, however, that experimental diagnos-
tics usually give information about the ion flow instead of
the “fluid flow” commonly used in theoretical formulation. If

formulated using the ion flow, part of the e�Ẽ�ñ� term would
appear in the parallel ion momentum equation and would
cancel a certain part of the flux term in Eq. �18�.

C. Moments and stresses from gyrokinetics

In order to compute the stress terms, we need to compute
the first three moments �i.e., n, v, and P� using �15� and �16�.
Here we assume temporal scale separation, so that the fluc-
tuations have enough time to form semistationary eigen-
modes on the time scale at which the mean flows evolve.
This allows us to solve simply for g̃ from �15� in terms of
�f�, which in turn allows us to compute moments of fluctua-
tion quantities, i.e.,

ñk,�
�i� = − n̄

e
̃k,�

T
+ 2�� v�dv�� dv�J0� k�v�

�

g̃�k,�� .

�20�

Performing the integrals over the velocity space, we obtain

FIG. 7. Scaling of toroidal flow velocity with parameters �a� v0, the value of v� at the right hand boundary �i.e., boundary condition at x=a�; �b� �v, the
external momentum input; �c� �; and �d� �. In all the figures, the dashed lines correspond to the case ��=�=0, whereas the solid lines are ��=�=1. Here
v� is the parallel flow velocity normalized to cs at the left boundary, which is open. Note that this point does not always correspond to the maximum of the
velocity profile especially when the radial momentum flow terms are turned on �i.e., �=1�.
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ñk,�
�i� 	 −

en̄

Ti

̃k,��1 +

�

�̄
�0���̄ − �*i�1 − �i�1

2
+ b

−
b�1

�0
− �2
 − �2�

Ln

vti

dv̄�

dx
�
Z��� + �*i��2

Ln

vti

dv̄�

dx

− �i�
�� , �21�

where Ln=−d ln n /dx, �*i=−�i�i
2Ln

−1ky, �̄=�−kyv̄Ey�x�, �i

=d ln T /d ln n, �= �̄ /�2k�vti, b=k�
2 �i

2, Z��� is the plasma dis-
persion function, and �n= In�b�e−b, where In�b� is the modi-
fied Bessel function. Notice that the only term that is odd
with respect to � is the coefficient of flow shear �since Z��� is
odd� and that all the other terms are even.

The fluid limit of �21� can be obtained by taking �−2

�b�kyx /�*edvEy /dx��−1Ln /vtidv� /dx��k�O��� and ne-
glecting higher-order terms, to obtain

ñi 	
en̄

Te

̃

1

�̄
�1 + ��̄ + K�

��−2

2
−

Ln

vti

dv̄�

dx

�−1

�2
− b���̄ + K�

−
x

�i

Ln

vti

dv̄Ey

dx � , �22�

where �̄
 �̄ /�*e, K= �1+�i� /�, and �=Te /Ti. Notice that
the E�B shear enters at the lowest order. This form, which
we argue is the correct fluid limit, is in fact slightly different
from the form one would get if one took the fluid limit first
and then tried to incorporate the effects of the lowest-order

sheared E�B flow into that fluid calculation.
Of course, for the particle flux, ñi is not really needed,

since it is possible to write simply

�ṽExñi� = Re �
k

iLn�*e
e
̃−k

Te
ñk

�e�, �23�

due to quasineutrality. Note that this form is also valid in the
fluid limit, and that it implies that the electron response de-
termines the particle flux.

We also need the �v� − v̄�� moment of the fluctuation dis-
tribution in order to compute �ṽExṽ��, since

n̄ṽ� = 2�� v�dv�� �v� − v̄��dv�J0� k�v�

�

g̃ ,

which gives

ṽ� = − �2vti
�0�

�
���� + 1 − ��1

2
− b

��0 − �1�
�0

− �2�
− �2

�Ln

vti

dv̄�

dx

�1 + �Z���� +

�

2
� e
̃

T
�24�

after integrations. Notice that if one computes the v� moment

�instead of �v� − v̄���, which would correspond to nv�
˜ �instead

of n̄ṽ��, and computes the Reynolds stress using that expres-
sion, one finds

FIG. 8. The case with �1=�2=1.0 and F� =��=�=0. See Fig. 4 for a key.
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�ṽExnv�
˜ � = n̄�ṽExṽ�� + v̄��ṽExñ� + �ṽExñṽ�� . �25�

We drop the last term, which can be identified as the triplet
contribution to the momentum flux, since it requires a
higher-order closure. Note that the triplet term is similar to
that which is calculated in the theory of “turbulence
spreading.”34 This term could be important in regions of
strong turbulence or in regimes where competing quasilinear
contributions cancel.

Note that there appears a term in �25� that has the form
of a “pinch term” �i.e., proportional to v̄��. Comparing with
�18�, we can identify this term as the convective momentum
flux term. In other words, a substantial part of the “momen-
tum pinch” that was discovered in Ref. 25 is merely the
particle pinch, transporting momentum convectively �since
the particles that are transported possess average momen-
tum�. We deem it important to distinguish this effect from an
off-diagonal inward flux appearing from the Reynolds stress.

Using �24� to compute the Reynolds stress term, we then
obtain

�ṽExṽ�� = − Re �
k

i�2vtiLn

�*e
2

�
�0����� + 1 − ��1

2

− b
��0 − �1�

�0
− �2� − �2

�Ln

vti

dv̄�

dx



� �1 + �Z���� +
�

2
�� e
̃

T
�2

. �26�

Note that this concludes the derivation of �9� �see the discus-
sion in Sec. I after �9��.

If we take the fluid limit of �24�, we get

ṽ� = vti
1

�̄

e
̃

Te
���̄ + K�

��−1

�2
−

Ln

vti

dv̄�

dx � + ṽ�
�higher order�,

�27�

where the higher-order terms that have been neglected are
presented in the Appendix. The Reynolds stress can be com-
puted using the expressions for the fluid limit, and is

�ṽExṽ�� = Re �
k

ics
2� cs�sk�ky

�
�1 −

csky

�

�s

Pe

dP̄

dx



−
�s

2ky
2

�

dv̄�

dx
�� e
̃

Te

�2

, �28�

which is, in fact, the same as �5� �note that �=��r�+ i��.
Thus, again we find that, as long as the spectrum is sym-

metric, the nondiffusive terms in Eq. �28� vanish. Therefore,
a mechanism for symmetry breaking must be identified in
order to produce and account for the imbalance between the
sound waves propagating in opposite directions. We argued
that the effect of a poloidal E�B sheared flow on the eigen-
mode is sufficient to explain the appearance of a net wave
momentum.

The next moment in the hierarchy is pressure. Here, us-

ing isotropic pressure P̃=3P̃� =m��v� − v̄��2�= ñT̄+ n̄T̃, we
write

n̄T̃ = 2�� v�dv�� dv�3�m

3
�v� − v̄��2 − T̄��g̃ ,

so that

T̃ = − Ti
e
̃

Te
�0�b�

�

�
���� + 1 − �i�1

2
+ b −

b�1

�0
− �2


−
�2

vti
�Ln

dv̄�

dx
��2� + �2�2 − 1�Z����� . �29�

The fluid limit for the fluctuating temperature is

T̃ 	 − Ti
�*e

�
Ln� 1

Ti

dT

dx

� e
̃

Te

 ,

where again the higher-order terms, which have been ne-
glected, are given in the Appendix. In order to apply our
strategy, we also need to compute the heat flux,

�ṽExT̃i� = Re �
k

− iTi

Ln�*e
2

�
�Ln

Ti

dT

dx

� e
̃

Te

�2

= − Re �
k

ics
2�s

2ky
2

�
�dT

dx

� e
̃

Te

�2

, �30�

which also has the form of a turbulent diffusion.

D. Eigenmode equation

A fairly general form of the eigenmode equation for the
fluctuations can be obtained using �21�, quasineutrality, and a
simple electron response such as

ñek,�

n̄
=

e

Te
�1 − i�k,��
̃k,�. �31�

Upon substitution, this gives

���1 − i�k + �� + �0�Z������ + 1 − �i�1

2
+ b −

�1

�0
b − �2�

− �2�
Ln

vti

dv̄�

dx
� − �0���2

Ln

vti

dv̄�

dx
− �i�
� e
̃k,�

Te
= 0, �32�

which should be interpreted as an operator equation because

of its dependence on b̄→�−1�s
2�ky

2−�x
2�, both explicitly and

via the terms involving �n=�n�b�. Note that �k�1, since
electrons are nearly adiabatic. In �32� the effect of v̄���x� is
shown explicitly, however, the effect of E�B shear enters
indirectly via the �= ��−kyv̄Ey�x�� /�*e term �i.e., via a dif-
ferential Doppler shift�. Note that this form agrees well with
that in Ref. 35.

E. Fluid limit with EÃB shear

The general form of the eigenmode equation in �32� is
not easily tractable. Instead, it is useful to consider the fluid
limit, which can be obtained either by directly taking the
fluid limit of �32�, or using �22�, �31�, and the quasineutrality
condition. This gives
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�s
2�2


�x2 + Q�k,x,��
 = 0, �33�

where

Q�k,x,�� = − �s
2ky

2 +
1 − ��1 − i�k�

� + K
+

1

�� + K�
�Ln

cs



��dv̄Ey

dx
−

s

�

dv̄�

dx
� x

�s
+

s2

�2

x2

�s
2 , �34�

and where s=Ln /Ls and K= �1+�i� /�. Note that this has ex-
actly the same form as the eigenmode equation in Ref. 2,
where J1/2
Ln /csdv̄� /dx is replaced by Ln /cs�dv̄� /dx
−� /sdv̄Ey /dx�. Thus, we have the same dispersion relation,
eigenmodes, etc.

Note that the form of the eigenmode equation as given
by Eqs. �33� and �34� suggests that the shift can be caused by
dv̄� /dx as well as dv̄Ey /dx. In the past, some authors sug-
gested that this may supply the required symmetry-breaking
mechanism and “explain” spontaneous rotation.22,21 How-
ever, when the dv̄� /dx term in �34� is kept, it can be shown
that the shift generated by this term yields a “diffusive term”
in the momentum equation �i.e., naturally proportional to
dv̄� /dx�. It is in fact possible that this term might have a
positive sign �i.e., competing with the Fick’s law�, however,
since it has a diffusive form, it simply ends up slightly modi-
fying the effective “diffusion coefficient.”

Since �34� has the form Q�k ,x ,��
Ax2−Bx+C, the dis-
persion relation can be obtained from it by requiring �
+1/2=−i /2�A�C−B2 /4A�, which gives

�2�1 + �s
2k2 − i�k� + ��K�s

2k2 − 1 + is�2� + 1�� + is�2� + 1�K

= −
1

4
� �

� + K

�Ln

cs

2�dv̄�

dx
−

�

s

dv̄Ey

dx

2

. �35�

Notice that the analysis from this point on depends on what
kind of solutions are considered. For instance, if ��� we
have the electron drift wave branch, which gives oscillatory
solutions, where the shape of the envelope is determined
either by the effects of Landau damping or by the weak
linear growth �whichever is stronger�.

On the other hand, for the so-called �i branch we have
��O���, and the linear growth dominates, resulting in a
bell-shaped eigenmode. Let us consider these two cases in
reverse order, since the latter seems to be simpler.

F. Shift of the spectra

The existence of nondiffusive terms in the Reynolds
stress depends crucially on �kyk��. This is in fact determined
by the shift of the fluctuation intensity, and not the eigen-
mode. Thus, we need to compute the shift of the fluctuation
intensity for various branches of the dispersion relation.

1. �i branch

If we consider the limit ��s�O���, expanding the dis-
persion relation and iterating for the case with weak sheared
flow and finite Larmor radius �FLR� effects, we get

� � is�K + �s
2k2K2 +

Ln
2/cs

2

4K
��dv̄�

dx
− iK

dv̄Ey

dx

2�


for this branch. Note that without sheared flows, this branch
is essentially purely imaginary. We take the growing mode

� 	 �*esK

to be positive by convention. In this limit Q becomes

Q � − �s
2ky

2 +
1 − iK

K
−

i

K2�Ln

cs

�iK

dv̄Ey

dx
−
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dx
� x
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−
1

K2
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�s
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��x� = A�e−1/2
k
2�x − � − ix0�2

H�� �x − � − ix0�

k


 ,

where


k
2 = K�s

2 x0

�s
=

Ln

2cs

dv̄�

dx

and

�

�s
= K

Ln

2cs

dv̄Ey

dx
.

This implies that the spectrum �for �=0, which accounts for
the main contribution� is given by

�
0�x��2 = �e−1/
k
2�x − ��2

,

where the effect of the toroidal sheared flow has been ab-
sorbed into the normalization constant A�, and � corresponds
to the shift of the spectrum. In particular, note that the
symmetry-breaking spectral shift is directly proportional to
the electric field shear. Thus, for the �i limit, the shift in the
eigenmode occurs “only” via the E�B sheared flow. Note
that this actually agrees with the expression in Ref. 2 �i.e.,
the shift in Eq. �10� in Ref. 2 becomes purely imaginary in
the absence of electric field shear, given our assumptions�.

2. Drift wave branch

The drift wave eigenmode for the case � � can be
localized in two ways: Due to �a� finite growth rate � or �b�
Landau damping. Depending on which one of these effects is
stronger, the shape of the eigenmode is determined by that
effect. We consider these two cases in sequence.

a. Localization via finite � If we consider the case �
 � for the dispersion relation �35� with weak flow shear, we
obtain

� 	
�1 − K�s

2k2�
�1 + �s

2k2�
.

In this case, both the toroidal and the poloidal sheared flows
will act to shift the eigenmode, but the eigenmode is not
localized without Landau damping or growth. Thus, one has
to include higher-order effects. If we simply iterate the dis-
persion relation, at the first iteration we obtain
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1 + �s
2k2 +

isign��*e�
�1 + �s

2k2�
�sK −

�k

�1 + �s
2k2�

� , �36�

which has the basic form that we want. Further iteration is
not necessary since the effect of the sheared flows on the
linear frequencies can be neglected when computing the shift
in the eigenmode. Notice that the real part of �r=�r /�*e is
positive, but the imaginary part has the sign of �*e, so that �
itself, written in this form, is also positive.

However, expanding �32� with the assumptions � /�
��s

2k2�k�
2vti

2 /�2�O��� and taking the fluid limit, is not suf-
ficient for localization and one should include higher-order
corrections in � /�,

Q � − �s
2ky
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�r
2�s

2�1 − 2i
�

�r

 .

Here the effect of toroidal sheared flow has been neglected
because of the factor s /�r in front of it. This has the generic
form with all coefficients complex, hence the solution has
the general form,


��x� = A�e−i1/2
k
2sign�Im 
k

2��x − x0�2

� H�� eisign�Im 
k
2��/4


k
�x − x0�
 , �37�

where the boundary condition is taken to be a decaying en-
velope at infinity. Note that one can further impose “the out-
going wave” condition to determine the phase of the eigen-
mode. Here we only need the intensity. The coefficients in
�37� are

x0

�s
	

1

2

1

��r + K�
�1 + i

���r + 2K�
�r��r + K� 
�Ln

cs

�r
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2

s
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�
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 .

These coefficients combine to give a fluctuation intensity
form factor with the structure,

�
�2 � A� exp�− � s

�r�s
2�� �

�r
��x − �x0r −

�r

�
x0i
�2� .

Hence the various terms in the effective shift of the profile
form factor combine to take the simple form,

�

�s
= −

1

2

K

��r + K�2�Ln

cs

�r

2

s2

dv̄Ey

dx
.

b. Localization via Landau damping When �−1

� k�vti!� �O�1� the large parameter expansion of the Z
function breaks down, and the effects of Landau damping
start to become important. This defines a length scale related
to the ion Landau resonance �i.e., Landau resonance points�,

xi 	 ±
Ls

vti

�

ky
.

When these points are closer to the rational surface than the
width of the spectrum as given in the previous section, the
shape of the envelope is determined by the Landau
damping.36 In other words, if

�

�i
�

�i�s

Lsky
−1

we can approximate the shape of the envelope as a step func-
tion, terminating at x=xi. Of course within the step function,
we will have the usual Pearlstein-Berk modes,37 traveling
outwards with a slow modulation due to the linear growth.
The first obvious effect of the sheared flow on such a struc-
ture is simply to shift the central region �i.e., the region be-
tween the WKB turning points� within the step function. But
this is completely irrelevant, as this shift does not directly
modify the envelope structure, which is in fact determined
by the Landau resonance points.

Physically, E�B flow shear also modifies the two Lan-
dau resonance points that are initially symmetric with respect
to the rational surface by shifting both in the same direction
�see Fig. 3�. In other words,

xi
�+� =

�

ky

Ls

�vthi + LsvEy� � ,
xi

�−� = −
�

ky

Ls

�vthi − LsvEy� �
.

Hence the midpoint of the two shifts by an amount

�

�s
	 −

�r

s2

�Ln/cs�vEy� �x�
��−1 − �Ln/cs�2vEy� �x�2/s2�

	 − �
�r

s2

Ln

cs

dvEy
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.

We take this as the shift of the spectrum for this limit. Note
that an E�B flow without shear would shift the Landau
resonance points either towards or away from the origin and
hence would not cause a net shift of the expectation value.

We have seen that the shift of the spectra, caused by the
sheared E�B flow, has the generic form

�

�s
	 − �

Ln

cs

dvEy

dx
,

where � is a dimensionless coefficient, previously introduced
in Sec. II. Here � is positive for electron drift waves and
negative for ITG, i.e.,

� 	�
�

�r

s2 , DW,
�

�i
�

�i�s

Lsky
−1

K

2s2

�r
2

��r + K�2
DW,

�

�i
�

�i�s

Laky
−1

−
K

2
ITG.

�
V. MOMENTUM VERSUS FLOW

Up to this point, we have used a simple equation of
motion for the parallel flow. Obviously �1� is not exact, as
density gradient, magnetic curvature, and other effects on
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this equation are neglected. A transport equation, governing
the slow evolution of background toroidal momentum,23 is
more general,

�

�t
�mnv�� + �r�� = m�i jr + f�. �38�

Here �mnv�� is the mean toroidal momentum, �� is the flux
of toroidal momentum, jr is the radial current density, and f�

is the toroidal component of the force density. Assuming
�mnv��	m�n��v��, we can write

�� = m�nv�vEr� = m��n��� + �v���n� . �39�

Here ����vErv����vErv��+ �B	 /B���vErv��, where �̂= b̂
� r̂ is the binormal direction. We can solve �39� for �� since
it is the toroidal flow, and not the momentum, which is ac-
tually measured.

However, it is the toroidal momentum that is the locally
conserved field in the case when f�	 jr	0. Then in the
spirit of turbulence equipartition theories,38 the turbulent mo-
mentum flux can be written as a simple diffusion of toroidal
momentum,

�� � − ��m�r�nv�� . �40�

Thus combining Eqs. �39� and �40�, we can write

�� 	
��

m�n�
−

�n

�n�
�v�� 
 − ���r�v�� + Ur�v�� ,

where the last term is an effective inward momentum pinch
driven by the outward particle flux, with a radial flow veloc-
ity, which is roughly

Ur 	 −
�n

n
− ��

�rn

n
. �41�

It should be noted that for �n�−Dn�rn+Vrn, if ��
QL�Dn

QL,
terms that are proportional to these coefficients would cancel
each other and the turbulent radial flow would be propor-
tional only to the neoclassical particle flux and the radial
flow terms in the particle flux �i.e., the part that has the form
Vrn̄�. We can write the equation for the toroidal flow as

�n�
�

�t
v̄� + �r��n���� = f�.

Note that this depends on the assumption that the locally
conserved field that is quasilinearly diffused is the angular
momentum. The formulation of microturbulence drive on the
flow based on �1�–�4� does not immediately lead to the form
given in �40�. Here we mention this formulation as a dem-
onstration of the “recoil” effect of particle flux on toroidal
flow. In other words, an ansatz based on momentum conser-
vation �apart from quasilinear diffusion� leads to an effective
torque proportional to the density gradient and the toroidal
flow itself, and an effective flow �v�� pinch which is inward
if the particle flux is outward and large. Physically, an out-
ward particle flux leads to a drop in the toroidal momentum
at a given radius �simply due to decrease of density�, which
must be compensated by an increase in toroidal speed if the
toroidal momentum is to be conserved locally. Even though
quasilinear diffusion causes local conservation �in the Eule-

rian sense� to break down, this pinch-like effect persists.
Note that the quasilinear microturbulence closure dis-

cussed in this paper does not give a substantial pinch for the
parallel mean flow, which in turn motivated us to explore the
effect of the particle pinch as the main pinch of toroidal
momentum via the convective transport term. By way of
contrast, in this paper we showed that if one uses toroidal
momentum as the locally conserved, globally mixed field,
the outward particle flux itself may appear as an inward
pinch of toroidal flow. These two seemingly contradictory
results highlight the fact that the main issue in understanding
the transport of angular momentum is the identification of
the locally conserved field �i.e., “canonical variables”� and
their relation to the physical observables. This, of course,
depends on the types of microscopic processes that are re-
sponsible for the macroscopic fluxes �neoclassical versus
anomalous, ITG versus electron drift waves, etc.�, and the
conservation laws for these microprocesses.

In order to numerically model the “recoil” effect dis-
cussed in this section we use a simplified version of our
model with simple modifications in order to account for us-
ing a nonconserved field �i.e., v̄��. As usual, we set F� =0.
However, if we also set �=0 there is no spin up, and mo-
mentum can only be redistributed. In other words, S�x� is
necessary in order to get finite rotation without external
drive. In any case, it is a common observation that diffusion
of a conserved field usually leads to radial flow terms in the
nonconserved field �i.e., terms explicitly proportional to the
field itself�. Thus, the S�x� term and its physical basis remain
roughly unmodified by a change of the dependent variable.
The simplified model, which will be used for numerical com-
putations, can be written as

�

�t
v̄� +

1

n̄

�

�x
�n̄���� −

1

n̄

�

�x
�n̄���1 − �

�

�x
P̄
 �

�x
v̄Ey� = 0,

�42�

�

�t
n̄ +

�

�x
��n� = 0,

where

�n = − �Dneo + D1��
�n̄

�x
+ Ur

�n��n̄

and

��� = − ��neo + �1���r�v�� − ��n

n̄
+

�1�

n̄

�n̄

�x

�v�� .

This simple model is completed with Eqs. �10�, �12�, and
�14�. Also, we set �2=0 for simplicity. Note that if �1�D1,
the turbulent radial flow would be proportional to only the
neoclassical particle flux and the particle pinch terms. The
result of the numerical integration of this system for Ur

�n�

=0.5 can be seen in Fig. 9. Note that the parameters in this
case are the same as the parameters in Fig. 5, even though
the models are different. The results also seem somewhat
similar. In fact, for this reason pressure and density profiles
are not plotted. The flow, on the other hand, seems to have a
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surviving negative component near the edge region. Note
that we did not perform parameter scans for this model since
the difference was not enough to justify it. Also, even though
the model seems to produce an “inward pinch” from outward
particle flow, one should be careful, since the effect of the
particle flow on the density profile is more drastic, which
may lead to a relaxation of the edge gradients and this in turn
reduces the more important effect of S�x�. We have also
“tested” our numerical scheme in that if we set S�x�=0 and
start with v̄��x�=0 initially �also without external drive or
boundary flow�, we get v̄�=0 in all subsequent time steps. In
short, even though the details of the profile changes between
the models, the effect that ultimately rotates the plasma is the
mean zero-flow component of the Reynolds stress, S�x�, in
both cases.

VI. CONCLUSIONS

In this paper, we have presented a novel theory for the
generation of intrinsic rotation at the L→H transition. The
principal results of this paper are

1. The total flux of parallel momentum was calculated, and
a convective inflow, associated with the particle pinch,
was identified.

2. A general expression for the parallel Reynolds stress
was derived and shown to have the form

�ṽrṽ�� 	 S�x� + V�x��v�� − �T
��v��
�x

.

Explicit expressions for the flow-independent stress,
S�x�, the convective flow V�x�, and turbulent viscosity
�T�x� were derived. Note that k�→−k� is required for
S�x��0 and V�x��0, and S�x� has no analog in
diffusion-convection models of the particle flux.

3. Sheared radial electric fields have been shown to break
k�→−k� symmetry and render S�x�, V�x��0. In particu-
lar, nonzero S�x� can drive net intrinsic rotation starting
from a stationary plasma. Stationary rotation profiles are
set by the competition between S�x� and �T�x�.

4. The momentum deposited in the plasma by the flow-
independent stress S�x� has its origins in the wave mo-
mentum of the fluctuations. Finite mean �k�� implies fi-

nite net wave momentum, which is ultimately absorbed
at ion Landau resonance points and so transferred to the
plasma. We show that these points are asymmetrically
shifted in the same direction by the mean electric field
shear, thus producing a net wave momentum and in turn
a finite S�x�.

5. A self-consistent treatment of the electric field shear and
the wave driven stress S�x�, the fluctuation intensity, and
the turbulent viscosity �T reveals that the intrinsic rota-
tion increases at the L→H transition, in accordance with
the experimental observations. Intrinsic rotation results
for �v��a��=0, but will of course be stronger if edge
momentum sources are present. Note that the effects of
Er� shear, and hence S�x�, were usually neglected in pre-
vious modeling attempts based on the dubious assump-
tion that the effect of Er� shear on toroidal rotation is
small. We argue that, when all the dimensionless factors
are taken into account, S�x� can be as large as the diffu-
sion term.

6. Since S�x� is driven by the ��P /n�� piece of the electric
field shear, the intrinsic rotation increases with plasma
pressure, also in accordance with experimental observa-
tions.

7. The sensitivity of the intrinsic rotation to edge condi-
tions has been examined.

Several caveats should be mentioned as well. First, this
is only one of several possible mechanisms for understand-
ing intrinsic rotation. Its strengths are its clear foundation in
dynamics, and the fact that it clearly and directly links rota-
tion to L→H transition, a trend which is clearly manifested
in the phenomenology. Second, while a completely general
theory is desirable, some degree of mode dependence is un-
avoidable, since the ratio �E�B� /�k appears frequently in the
calculations. In particular, for ITG modes with q��0, S�x� is
negative �i.e., inward� and V�x��0 �outward�, while for
electron drift waves the opposite holds �S�0 and V�0�.
Third, in order to facilitate a consistent treatment of electric
field shear effects, the theory presented here is cylindrical,
and so we should add that additional toroidal effects may
modify the momentum flux. In particular, toroidal effects can
produce additional convection effects. Fourth, we cannot
overemphasize the importance of boundary conditions and
possible edge momentum sources in determining the intrinsic
rotation. Further research on these is crucial to developing a
predictive understanding of intrinsic rotation.

Finally, throughout this paper we have ignored the dy-
namics of poloidal rotation and assumed �v	� to be well ap-
proximated by its small neoclassical value. However, in re-
ality, poloidal and toroidal rotations are tightly coupled by
the poloidal velocity contribution to �Er�, which enters via
radial force balance �and this leads to cross diffusion via the
effect of �Er�� on toroidal momentum dynamics�. Also, v�

and v	 are coupled due to the fact that v� 	v�+v	�B	 /B��.
This coupling can be accounted for by considering the self-
consistent dynamics of the poloidal flow. Finally, toroidal
and poloidal momenta are coupled by the radial current in-

duced torque �N.B. �Jr���ṽEr�
2
̃����ṽErṽ	� /�r, the poloi-

dal Reynolds stress�. Note also that radial current drives to-

FIG. 9. Profile of parallel flow for the F� =�2=0, ��=�=1.0 case for Eq.
�42�. See Fig. 4 for a key.
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roidal momentum via the Jr�B	 force and poloidal
momentum via the Jr�B� force. Since there are now experi-
mental results which indicate a significant departure of �v	�
from the predicted neoclassical value, dual self-consistent
treatments of both poloidal and toroidal rotations are ulti-
mately required for a complete, definitive theory of momen-
tum transport. Such a detailed analysis of the poloidal mo-
mentum transport is a large undertaking, well beyond the
scope of this paper, and will be presented in a future work.
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APPENDIX: CORRECTIONS TO REYNOLDS STRESS

We neglected higher-order corrections to the fluctuating
parallel velocity �27� in the text. It is possible to continue the
fluid expansion and include higher-order terms. The first few
of those terms can be written as

ṽ�
�higher order� 	 − vti

1

�̄

e
̃
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�b� �−1

�2
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Ln
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x

�i

Ln

vti

dv̄Ey

dx � .

This also leads to a correction in the expression for the Rey-
nolds stress, which can be written as

�ṽExṽ���higher order�

= − �
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2� k�

2 �s
2

�
� �� cs�skyk�
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Higher-order corrections for temperature are

T̃�higher order� = Ti
e
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�̄
�− b�i −

�2
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dv̄�

dx

+ ���̄ + 1��−2 −
�−2

�2

x

�i

Ln

vti

dv̄Ey

dx
� .

1S. D. Scott, P. H. Diamond, R. J. Fonck et al., Phys. Rev. Lett. 64, 531
�1990�.

2N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 �1988�.
3K. Ida, Y. Miura, K. Itoh, S. Itoh, and T. Matsuda, J. Phys. Soc. Jpn. 67,
4089 �1998�.

4Y. Kusama, M. Yamamato, and JFT-2M Team, Fusion Sci. Technol. 49, 89
�2006�.

5I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511
�1994�.

6J. E. Rice, W. D. Lee, E. S. Marmar et al., Nucl. Fusion 44, 379 �2004�.
7B. LaBombard, J. E. Rice, A. E. Hubbard et al., Phys. Plasmas 12, 056111
�2005�.

8J. R. Myra, J. Boedo, B. Coppi et al., in Proceedings of the 19th IAEA
Fusion Energy Conference, Chengdu, China �IAEA, Vienna, 2006�,
IAEA/TH-P6–21.

9M. Yoshida, Y. Koide, H. Takenaga et al., in Proceedings of the 19th IAEA
Fusion Energy Conference, Chengdu, China �IAEA, Vienna, 2006�,
IAEA/EX-P3–22.

10J. S. deGrassie, Intrinsic Rotation in DIII-D, APS-DPP Meeting, Philadel-
phia �2006�.

11F. Hofmann, J. B. Lister, M. Anton et al., Plasma Phys. Controlled Fusion
36, B277 �1994�.

12A. Bortolon, B. P. Duval, A. Pochelon, and A. Scarabosio, Phys. Rev. Lett.
97, 235003 �2006�.

13S. Ide and JT-60U Team, Phys. Plasmas 7, 1927 �2000�.
14M. Yoshida, Y. Koide, H. Takenaga et al., Plasma Phys. Controlled Fusion

48, 1673 �2006�.
15B. Gonçalves, C. Hidalgo, M. A. Pedrosa, R. O. Orozco, E. Sanchez, and

C. Silva, Phys. Rev. Lett. 96, 145001 �2006�.
16C. Hidalgo, B. Gonçalves, C. Silva, M. A. Pedrosa, K. Erents, M. Hron,

and G. F. Matthews, Phys. Rev. Lett. 91, 065001 �2003�.
17J. E. Rice, A. Ince-Cushman, J. S. deGrassie et al., “Inter-machine com-

parison of intrinsic toroidal rotation,” Nucl. Fusion �to be published�.
18Technical Basis for the ITER Final Design, ITER EDA Documentation

Series Vol. 24 �IAEA, Vienna, 2001�.
19P. H. Diamond, V. B. Lebedev, Y. M. Liang, A. V. Gruzinov, I. Gruzinova,

and M. Medvedev, in Proceedings of the 15th IAEA Fusion Energy Con-
ference, Seville, Spain �IAEA, Vienna, 1994�, IAEA-CN-60/-2-II-6.

20X. Garbet, Y. Sarazin, P. Ghendrih, S. Benkadda, P. Beyer, C. Figarella,
and I. Voitsekhovitch, Phys. Plasmas 9, 3893 �2002�.

21B. Coppi, Phys. Lett. A 201, 66 �1995�.
22B. Coppi, Nucl. Fusion 42, 1 �2002�.
23F. L. Hinton and S. K. Wong, Phys. Fluids 28, 3082 �1985�.
24H. Sugama and W. Horton, Phys. Plasmas 4, 2215 �1997�.
25K. C. Shaing, Phys. Plasmas 8, 193 �2001�.
26A. G. Peeters and C. Angioni, Phys. Plasmas 12, 072515 �2005�.
27A. K. Hansen, A. F. Almagri, D. Craig, D. J. D. Hartog, C. C. Hegna, S.

C. Prager, and J. S. Sarff, Phys. Rev. Lett. 85, 3408 �2000�.
28B. A. Carreras, K. Sidikman, P. H. Diamond, P. W. Terry, and L. Garcia,

Phys. Fluids B 4, 3115 �1992�.
29F. L. Hinton and G. M. Staebler, Phys. Fluids B 5, 1281 �1993�.
30R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 �1993�.
31F. Ebrahimi, V. V. Mirnov, S. C. Prager, and C. R. Sovinec, “Momentum

transport from current-driven reconnection in the reversed field pinch,”
Phys. Rev. Lett. �to be published�.

32T. Füllop, P. Helander, and P. J. Catto, Phys. Rev. Lett. 89, 225003 �2002�.
33S. Ku, C. S. Chang, M. Adams et al., J. Phys.: Conf. Ser. 46, 87 �2006�.
34Ö. D. Gürcan, P. H. Diamond, and T. S. Hahm, Phys. Rev. Lett. 97,

024502 �2006�.
35M. Artun and W. M. Tang, Phys. Fluids B 4, 1102 �1992�.
36F. Y. Gang, P. H. Diamond, and M. N. Rosenbluth, Phys. Fluids B 3, 68

�1991�.
37L. D. Pearlstein and H. L. Berk, Phys. Rev. Lett. 23, 220 �1969�.
38M. B. Isichenko, A. V. Gruzinov, and P. H. Diamond, Phys. Rev. Lett. 74,

4436 �1995�.

042306-17 Intrinsic rotation and electric field shear Phys. Plasmas 14, 042306 �2007�

Downloaded 15 Feb 2008 to 137.110.192.30. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp


